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Nuclear matrix elements for the 0νββ(0+ → 2+) decay of 76Ge within the two-nucleon mechanism
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In this paper, we present the first beyond closure calculation for the neutrinoless double-β decay of 76Ge to the
first 2+ states of 76Se within the two nucleon mechanism. The isospin symmetry restored quasiparticle random-
phase approximation method with the charge-dependent-Bonn realistic force is adopted for the nuclear structure
calculations. We analyze the structure of the nuclear matrix elements and estimate the uncertainties from our
nuclear many-body calculations. We find gpp plays an important role for the calculations, and if quenching
is included, suppression for the transition matrix element Mλ is found. Our results for the transition matrix
elements are about one order of magnitude larger than previous projected Hartree-Fock-Bogolyubov results with
the closure approximation.
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I. INTRODUCTION

In the standard model, the nuclear weak decay is in-
terpreted as the low-energy effective theory of the weak
interaction. This decay is mediated by the left-handed (L)
gauge boson W ±. The mass of W ± are acquired through
the spontaneous symmetry breaking by the so-called Higgs
mechanism. However, the Yukawa coupling of Higgs parti-
cle to neutrinos is absent in the standard model due to the
absence of the right-handed (R) neutrinos. The discovery of
neutrino masses from oscillation experiments then asks for
new physics beyond the standard model. As an extension
to standard model, the L-R symmetric model [1–3] intro-
duces the right-handed SU(2)R gauge symmetry and a heavy
right-handed gauge boson from symmetry breaking with extra
Higgs bosons at a higher-energy scale beyond electroweak
scale. In such a theory, the introduction of lepton number
violating neutrino Majorana mass terms together with nor-
mal Dirac mass terms gives naturally the tiny neutrino mass
through the so-called seesaw mechanism [4]. Such extensions
to the standard model could also affect the rare nuclear process
called neutrinoless double-β decay (0νββ). The participation
of right-handed weak gauge bosons will also induce the emis-
sion of right-handed leptons. The simultaneous presence of
weak currents with both chirality will introduce a momen-
tum term into the neutrino propagator. These terms are not
suppressed, such as the mass terms due to the smallness of
neutrino mass. The right-handed weak currents will contribute
to the decay to the ground states with extra terms and change
the electron spectra [5]. Nevertheless, these terms are sup-
pressed by the new physics parameters as well as the electron
wave functions for p partial waves. Therefore, they are hin-
dered in normal 0νββ decay compared to the neutrino mass
mechanisms. On the other hand, the decay to the 2+ states
are dominated by the helicity changing mechanisms (V + A

terms, see Ref. [6]). In this sense, the branching ratio of neu-
trinoless double-β decay to the 2+ state (hereafter 0νββ(2+),
the spin parity of the final states of the decay are included
inside the parentheses) could help to reveal the underlying
mechanisms of this very rare decay. Nevertheless, experimen-
tally such a process is extremely difficult to observe due to
the large 2νββ(0+) background around the position of the
0νββ(2+) Q value. Despite the difficulties, the observation
of 0νββ(2+) together with that for the decay to the ground
states will determine the underlying mechanisms of the neu-
trinoless double-β decay and pave our way to new physics
beyond the standard model. For example, the observation
of 0νββ(2+) could possibly rule out a category of mecha-
nisms where no right-handed gauge bosons or fermions are
present.

There are numerous publications dedicated to the nuclear
many-body calculations for neutrinoless double-β decay with
various approaches, e.g., the shell-model calculations [7,8],
the quasiparticle random-phase approximation (QRPA) cal-
culations [9,10], the IBM calculations [11], and the nuclear
mean-field calculations [12], especially the recently devel-
oped ab initio methods [13]. However, all these works focus
on 0νββ(0+), and there are not too many theoretical investi-
gations available for the nuclear matrix elements (NMEs) of
0νββ(2+) in the literature. An earlier calculation [14] with
the projected Hartree-Fock-Bogolyubov method (PHFB) sug-
gests, that the NMEs for this decay mode are much smaller
than for the decay to the ground states. The QRPA method
is widely used in double-β decay calculations [10,15,16].
And it can be adopted to describe the vibrational 2+ states.
Therefore, there are attempts to use the QRPA to calculate
ββ decays to the first 2+ state [17–21]. And most of them
focus on the 2νββ case. There are also calculations with
other many-body methods [22,23]. In this paper, we go step
forward by carrying out the QRPA calculations for 0νββ(2+)
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for 76Ge. Taking advantage of the QRPA method, we take
into account the contributions from all the intermediate states.
Also we can include the isoscalar particle-particle residual
interaction which is missing in PHFB calculations. At this
first attempt, we do not include too many examples. We focus
on one nucleus, 76Ge which is also the candidate treated in
Ref. [14]. It has been shown in Ref. [14], that besides the
nucleon mechanism, the N* could also play an important role,
we will not discuss this in the current paper. Also, as in Ref.
[7], the induced weak current will further reduce the NME,
this will be neglected in this paper as well as the heavily
suppressed neutrino mass mechanism for 0νββ(2+) through
nuclear recoil [24].

The current article is arranged as follows: First we give the
general formalism of our many-body calculations, and then
we show the results and discuss possible uncertainties, and
finally we present the conclusions and outlook.

II. FORMALISMS

The half-lives of 0νββ(2+) can be expressed in a simple
form, whereas we consider only the light neutrino [6,14],

τ−1 = F1(〈λ〉Mλ − 〈η〉Mη )2 + F2(〈η〉M ′
η )2. (1)

Here F1(2) are the phase-space factors expressed in
Refs. [6,14]. 〈λ〉 and 〈η〉 are the new physics parameters which
are model dependent. In the L-R symmetric model [2] [such
as SU(2)LSU(2)RU (1)B−L], we have [6]

〈λ〉 = λ
∑

j

Ue jVe j, 〈η〉 = η
∑

j

Ue jVe j . (2)

Here Ue j and Ve j are matrix elements for the general-
ized Pontecorvo-Maki-Nakagawa-Sakata matrix [25]. λ ≈
(MW L/MW R)2 are the square of the ratio of the masses be-
tween the mass eigenvalues of the light and heavy gauge
bosons, η ≈ tan ξ is the mixing angle between the left-handed
gauge boson and the heavy gauge boson mass eigenstate.

Mλ, Mη, and M ′
η are the NMEs which are combinations of

different components [6],

Mλ =
5∑

i=1

CλiMi, Mη =
5∑

i=1

CηiMi, M ′
η =

7∑
i=6

C′
ηiMi.

(3)

The different coefficients CIi are given in Table I of Ref. [14].
The general form of above NMEs can be expressed within

the QRPA framework as

MI =
∑

Jπ mim f

∑
J ′JJ ′

⎧⎨
⎩

jp jp′ J
jn jn′ J ′
J J ′ 2

⎫⎬
⎭〈 jp jp′J ‖OI‖ jn jn′J ′〉

× (−1)J ′+J

√
2J ′ + 1

〈2+
1 f ‖˜[c†

pc̃n]J ′ ‖Jπm f 〉〈Jπ m f ‖Jπ mi〉

× 〈Jπ mi‖[c†
pc̃n]J‖0+

i 〉. (4)

A general derivation of the expressions for above single-
particle matrix elements 〈 jp jp′J ‖lOI‖ jn jn′J ′〉 are given

in the Appendix. For the related operators, we have the
form [14]

O1 = σ1σ2[r̂ ⊗ r̂](2)h(r), (5)

O2 = [σ1 ⊗ σ2](2)h(r), (6)

O3 = ([σ1 ⊗ σ2](2) ⊗ [r̂ ⊗ r̂](2))(2)h(r), (7)

O4 = [r̂ ⊗ r̂](2)h(r), (8)

O5 = {(σ1 + σ2) ⊗ [r̂ ⊗ r̂](2)}(2)h(r). (9)

And,

O6 = {(σ1 − σ2) ⊗ [r̂ ⊗ r̂+](1)}(2) r+
r

h(r), (10)

O7 = {(σ1 − σ2) ⊗ [r̂ ⊗ r̂+](2)}(2) r+
r

h(r). (11)

Here r is the relative distance between the two decaying
nucleons 	r = 	r1 − 	r2 and 	r+ = 	r1 + 	r2 is defined in Ref. [14].

Here, M1 – M3 are the space-space components of the
current-current interaction, whereas M4 is the time-time com-
ponents, and M5 – M7 are the time-space components. These
time-space components of the NMEs appear only in the L-R
symmetric case and are missing in the neutrino mass mecha-
nisms. In all these NMEs, we find a similarity between M2 and
M0ν

GT for 0νββ(0+) as well as M3 and M0ν
T . The Gamow-Teller

(GT) operator σ or the tensor operator [σ ⊗ r̂]2 replace the
scalar products in 0νββ(0+). We also find an analog similarity
between M4 and M0ν

F , where r̂’s come from the p-wave elec-
tron and the momentum term form a tensor product instead of
a scalar product in 0νββ(0+).

The neutrino potential differs from that of the mass
mechanism due to the momentum terms in the neutrino
propagator [5],

h(r) = 2R

π
r
∫

F (q2) j1(qr)q2dq

q + EN
. (12)

By deriving this, we assume that the two electrons share the
decay energy, therefore, EN = Em + Mm − (Mi + M f )/2, and
Em is the excitation energy of the mth excited states of the
intermediate nucleus. The nuclear radius R = 1.2A1/3 (fm)
introduced here makes the final NME dimensionless. For the
form factor F (q2) we use a dipole form with the parameters
as in Ref. [9].

Usually, an extra radial function f (r) should be multiplied
to the above expression to take into consideration the strong
repulsive nature of nucleon-nucleon interaction at short range.
This is usually called the short-range correlation (src) func-
tion, and in our calculation we choose the charge-dependent
(CD)-Bonn or Argonne src extracted from the corresponding
nuclear force with the form given in Ref. [26].
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For the reduced one-body density for transitions from intermediate states to final 2+, the expression is complicated
[27]

〈2+
f ‖[c̃†

pcn]J ′ ‖Jπ m〉
√

2J ′ + 1
=

√
5(2J + 1)

[ ∑
p′�p

(−1) jp′ + jn√
1 + δpp′

{
2 jp′ jp
jn J ′ J

}(
upunX 2+

f

p′pX Jπ m
p′n − vpvnY2+

f

p′pY
Jπ m

p′n
)

+
∑
p′�p

(−1) jp+ jn√
1 + δpp′

{
2 jp′ jp
jn 1 1

}(
upunX 2+

f

pp′ X m
p′n − vpvnY2+

f

pp′Y m
p′n

)

−
∑
n′�n

(−1) jn+ jp

√
1 + δnn′

{
2 jn′ jn
jp 1 1

}(
vpvnX 2+

f

n′nX m
pn′ − upunY2+

f

n′nY m
pn′

)

−
∑
n′�n

(−1) jn′ + jp

√
1 + δnn′

{
2 jn′ jn
jp 1 1

}(
vpvnX 2+

f

nn′ X m
pn′ − upunY2+

f

nn′Y m
pn′

)]
. (13)

Here X ’s and Y ’s are the amplitudes for pn-QRPA (proton-
neutron quasiparticle random-phase approximation) describ-
ing the intermediate states and X ’s and Y’s are the amplitudes
for charge-conserving (CC)-QRPA describing the final 2+
state [27]. And u’s and v’s are the BCS coefficients.

The reduced one-body density for transitions from the ini-
tial states to the intermediate states can be expressed as [9]

〈Jπ mi‖[c†
pc̃n]J‖0+

i 〉√
2J + 1

=
∑

pn

(
upvnX Jπ ,mi

pn + unvpY
Jπ ,mi

pn

)
. (14)

We also introduce the overlap between the initial and the final
intermediate states with the form [9],

〈Jπ m f ‖Jπ mi〉 =
∑

pn

(
X Jπ,mi

pn X
Jπ,m f
pn − Y Jπ,mi

pn Y
Jπ,m f

pn
)

× (
ui

pu f
p +vi

pv
f
p

)(
ui

nu f
n +vi

nv
f
n

)
f 〈BCS|BCS〉i.

(15)

For simplicity, we set f 〈BCS|BCS〉i ≈ 1.
The details of derivations of the BCS coefficients and re-

spective QRPA amplitudes for the current paper are presented
in Ref. [27].

III. RESULTS AND DISCUSSION

For our QRPA calculations, the single-particle energies
are taken from the solutions of Schrödinger equations with
a Coulomb corrected Woods-Saxon potential. For the single-
particle wave functions, we use the harmonic-oscillator wave
functions. For the pairing part, we use the realistic CD-
Bonn force derived from the Brückner G matrix. This is also
used for the pn-QRPA and CC-QRPA residual interactions.
A fine-tuning of the interactions is needed to reproduce the
experimental values. For the pairing part, we fit the two
parameters gp

pair and gn
pair to reproduce the odd-even mass

staggering. For pn-QRPA, we multiply the G matrix by overall
renormalization factors gph and gpp’s for particle-hole and
particle-particle parts, respectively. We set gph = 1. And for
gpp, we fit the isoscalar channel (gT =0

pp ) and isovector channel
(gT =1

pp ) separately. gT =0
pp is fixed by reproducing the experi-

mental 2νββ and gT =1
pp are fixed to put to zero the 2νββ

Fermi matrix elements due to isospin symmetry restoration
[28]. For more details, one can refer to the our previous
work [27]. For a baseline calculation, we consider the CD-
Bonn src and the bare axial vector coupling constant gA0 =
1.27. And we use the model space with Nmax = 6 which
consists of 28 single-particle levels for both neutrons and
protons.

In Table I, we present the NMEs for each operator. As a
comparison, we also present the results from PHFB calcu-
lations. The current results (the baseline results) differ from
the PHFB results by factors from five to more than one order
of magnitude case by case. The largest deviation we see in
M7 for the M ′

η part. We obtain M7 much larger than M6 in
magnitude. Our results have also different phases for these
two NMEs, this then combined with the C′

η coefficients leads
to the enhancement instead of the reductions of M ′

η. Therefore,
our M ′

η is much larger than a previous PHFB calculation.
Although PHFB gets an approximate cancellation between M6

and M7, which leads to an negligible M ′
η.

For the Mλ(η) part, we find the NMEs have basically sim-
ilar phases as the PHFB results except for M2. On the other
hand, our results are about one order of magnitude larger,
although the relative ratios among different NMEs (M1 – M5)
are similar. Of these NMEs, M1 is the largest. The second
largest is M2, and third is M4. M3, and M5 are relatively
small and, hence, less important. For Mλ, if we multiply the
NMEs with the corresponding Cλ’s, we find that M1 and M2

contributes coherently, they are then canceled by M4, whereas
the remaining two NMEs contributes less than 10%. For Mη,
all these three NMEs give additive contributions, this makes
Mη about three times larger than Mλ. This is the reason why
Mη is larger than Mλ as also observed in Ref. [14]. However, in
their calculation, the strong cancellation gives a negligible Mλ,
the ratio of Mη to Mλ is about 30. In short, in their calculation,
only Mη is important whereas Mλ and M ′

η can be neglected
due to the cancellations between different parts of the NME.
We get quite different results, and M ′

η is the most important
contribution with a value about three times larger than Mη.
This will affect the constraints on new physics models and
needs further investigation.

As we show above, no obvious suppression of
0νββ(2+) NMEs as claimed by Ref. [14] is found from
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TABLE I. The NME values for 0νββ(2+). Here the baseline calculation is explained in the text. And various approximations and
parameters will be discussed in the text.

M1 M2 M3 M4 M5 Mλ Mη M6 M7 M ′
η

PHFB [14] 0.151 0.027 −0.002 −0.049 −0.004 0.002 0.061 0.074 0.042 0.001
Baseline 0.705 −0.253 −0.046 −0.153 −0.048 0.150 0.469 0.527 −1.270 1.519
Nmax = 5 0.629 −0.208 −0.014 −0.124 −0.069 0.151 0.438 0.661 −1.369 1.688
Nmax = 7 0.640 −0.256 −0.048 −0.145 −0.063 0.121 0.439 0.643 −1.251 1.564
Without src 0.701 −0.234 −0.049 −0.154 −0.051 0.128 0.451 0.485 −1.182 1.410
Argonne src 0.705 −0.250 −0.046 −0.153 −0.048 0.149 0.467 0.519 −1.261 1.505
Leading order 0.749 −0.347 −0.051 −0.154 −0.041 0.228 0.540 0.823 −1.756 2.152
Without F (q2) 0.695 −0.241 −0.047 −0.154 −0.050 0.136 0.457 0.529 −1.272 1.521
Closure energy 0.696 −0.267 −0.043 −0.144 −0.041 0.177 0.472 0.522 −1.247 1.493
gT =0

pp = 0 0.611 −0.169 −0.054 −0.161 −0.065 0.029 0.376 0.540 −1.240 1.496
gT =1

pp = 0 0.795 −0.246 −0.034 −0.156 −0.034 0.206 0.516 0.501 −1.437 1.665
gA = 0.75 0.695 −0.241 −0.047 −0.154 −0.050 0.008 0.317 0.529 −1.272 1.249

current calculations compared to 0νββ(0+), this also agrees
with the q terms in 0νββ(0+) calculations [29]. This is the
major difference of the current paper and Ref. [14]. This is
also different from 2νββ(2+) where the NME is suppressed
by the cubic dependence of the energy denominator [6]. In
this sense, suppression of 0νββ(2+), if it exists, must be
related to other issues. This may come from the uncertainties
of the many-body approaches, such as the size of the model
space or other structure ingredients for the 2+ states which
may lead to different transition rates from the intermediate
states for various transitions. A more thorough comparative
study could give us more detailed hints.

Compared to previous calculations with PHFB [14], the
QRPA calculation goes beyond the closure approximation
(see Ref. [30]). We calculate explicitly the contribution from
each intermediate state. In Figs. 1–4, we present the individual
contributions from different multipoles of the intermediate
states, and we will also show how the different approxima-
tions may affect these results. In each graph, the results are
compared with our present baseline calculations with standard
conditions described above.

For details of the structure of the nuclear MMEs, we start
with our baseline calculation (e.g., orange bars in Fig. 1).
For M1, the multipoles give positive contributions with sev-
eral exceptions. Unlike 0νββ(0+) (M0ν

GT) where the largest
contributions come from low-spin intermediate states and the
NME values decrease as spins increase, M1 has its largest
contribution from 4−. We find a rough trend that the NMEs
first increase and then decrease as spin increases. And as one
would expect, the NMEs from states with very high spin can
be safely neglected. M2 has basically the same characters as
M1 except the much smaller magnitude. A large contribu-
tion from 1− is observed for M2 but not for M1. For most
multipoles, M2 has different signs as M1, this contradicts
conclusions in Ref. [14]. Not all multipoles contribute equally
with similar spins, we find that the states with negative parity
generally contribute more. In some sense, these two NMEs
behave like M0ν

GT for 0νββ(0+) as we mentioned above. The
smallness of final M3 comes partially from its magnitude
and partially from the cancellations between low-spin and

high-spin multipoles. This is in analog with M0ν
T , although

these two NMEs depend differently on r̂. M4, the time-time
component of the NME is, on the other hand, very close to
M0ν

F . These two NMEs have one thing in common: Only inter-
mediate states with natural parity [π = (−1)J ] have nonzero
contributions. In the current calculation, all multipoles con-
tribute negatively except 1−.

For the space-time components, M5 – M7, we find a quite
different behavior. The values of M5 from each multipole is
about one order of magnitude smaller than M6 and M7. Due to
the strong cancellations among different multipoles, M5 is one
of the smallest of all the NMEs. For M6, almost all multipoles
contribute positively except a strong cancellation from 3−. For
M7, the important contributions comes from three multipoles
(3−, 5−, and 7−), all the other multipoles contribute much
less. The lack of cancellations from other multipoles thus
makes M7 the largest from all the NMEs.

A possible cause of the smallness of NMEs in Ref. [14]
may come from the small model space with only two major
shells. To test this, we plot in Fig. 1 the results with Nmax = 5
(blue bars) and Nmax = 7 (green bars). The sensitivity of the
NME to different model spaces is different. Also the sensitiv-
ity of the individual multipoles for each NME is different. For
M1, the influence from model space is generally small, there
is no unique trend for different multipoles under the change
in the model space. For some multipoles, the NME decreases
with enlarged model space, but most cases we find that the
addition of extra orbitals will first enhance but then reduce the
NME. The orbitals of different parities contribute to the NME
differently. The addition of N = 6 shell brings in the positive-
parity orbitals which enhance the NMEs for multipoles, such
as 3− or 5+, whereas the negative-parity orbitals from N = 7
shells reduce the NMEs. Unlike the case of M1, the increase
in the model space enlarge M2, especially for 1+, 2−, etc.
For 1+, a strong suppression is observed when the N = 6
shell is added. But such addition gives strong enhancement
to 2− or 3+. The addition of the N = 7 shell to the model
space causes milder changes. We see enhancement from 1−
and 2− but reductions from 3− and 4− intermediate states.
A similar behavior works for the M3 where we find a strong
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FIG. 1. The dependence of the NMEs on the model space for different multipoles. Here Nmax refers to the largest principal quantum number
for the outermost shell.

enhancement from 1+ too. For all other multipoles, the change
due to model space enlargement is relatively small. For M4,
low-spin multipoles are much more sensitive to the model
space changes, and different multipoles behave differently,
although we cannot find any specific patterns. This is also
true for the space-time components of the NME. In general,
they are less affected by the change in model space in our
calculations.

If we look at the total changes in each NME from Nmax = 5
to Nmax = 6, M1 increases about 10%. This is the smallest
change among all the NMEs. Meanwhile, all the other NMEs
change about 20% or more. By percentage M3 changes by
more than 200%. By the absolute values of NMEs, M1 – M4

get enhanced whereas the rest get reduced. When the N = 7
shell is added, the change is relatively milder, especially for
M2 – M4, this implies a general trend of convergence of the
results with a larger model space. But for M1, M5 – M7, we
find a slower trend of convergence than for the above NMEs.
In either cases, the changes from adding the N = 7 shell is
smaller than adding the N = 6 shell. Current results suggest
that the errors of adopting the current model space are gen-
erally smaller than 20%. Also, these results suggest that the
deviation of our calculations and those in Ref. [14] is probably
not caused by the small model space, which they adopted. It
is most probable that the smallness of their results are caused
by different structures from the calculations. Additional work
is needed to clarify this.

The form factor with a dipole form is widely used in
0νββ(0+) calculations [9]. In our calculations, we use the
same form for gV (q2) and gA(q2). We find that the form
factors are not very important except for the 1+ states of M2.
This may suggest that with the actual neutrino potential, the
low-momentum parts where the q2 satisfies gA(q2) ≈ gA(0)
dominate, and the high-momentum parts are either small or
cancel each other. A careful check suggests the latter should
apply in QRPA calculations. These behaviors also help to
explain the large reduction for some NMEs when the realistic
neutrino potential is considered. With low momenta, the in-
termediate energies may become important. In this sense, the
choice of the intermediate energies becomes important. For
calculations with closure approximation, a closure energy is
needed. So we also check how the usage of closure energy
would affect the NMEs. This is illustrated with the red bars
in Fig. 2 where a closure energy of 7 MeV is used. We
find for most multipoles of most NMEs, the proper choice
of closure energy brings small errors to the calculation, and
we can draw the conclusion, that using the closure energy
in 0νββ(2+) barely changes the final results, the errors are
within several percentages, and this agrees with 0νββ(0+)
QRPA calculations. Another important correction comes from
the induced weak current [9], it is not included in the current
calculations and will be implemented in our future study.
If that is included, the NME will most probably be further
reduced, and new potentials also need to be introduced [5].
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FIG. 2. The NMEs for a Coulomb-type neutrino potential (blue bars). The orange bars are NMEs without form factors and the red bars are
with excitation energies replaced by a closure energy. The green bars are our baseline calculations explained in the text.

In 0νββ(0+), src plays an important role for the heavy
neutrino mass mechanism [12,31], whereas for the light neu-
trino mass mechanism, the correction is relatively small, up to
only several percentages [12,31]. In current calculations, we
adopt two srcs [26]: The CD-Bonn type and Argonne type,
they are obtained by fitting the respective nuclear potentials.
From Fig. 3, we find similar trends as 0νββ(0+), the general
correction from the src is about several percentages, and for
most cases, the two srcs give similar amounts of corrections.
For almost all multipoles, we find that the src enhances the
NMEs more or less. However, the net effects to the NMEs are
slight reductions for M3 and M5 due to cancellations among
different multipoles. And enhancements of NME values for
other operators are observed. The largest correction comes
from M6, then M7 and M2. For M6 we can also find a slight
difference between the two srcs.

The most important parameters in QRPA calculations are
the particle-particle interaction strength gpp’s. For 0νββ(0+),
one finds that MGT for both 2νββ and 0νββ depends sen-
sitively on the isoscalar strength gT =0

pp whereas M0ν
F ’s are

sensitive to the isovector strength gT =1
pp . So we also test such

dependence in current calculations. As we have shown in
Ref. [27] for the case of 2νββ to 2+ states, the GT-type
decays are also sensitive to gT =1

pp since the isovector particle-
particle residue force affects the structure of 2+ states in
QRPA calculations. In Fig. 4, we first switch off the isoscalar
interaction (the blue bar). Then the effects of this interaction
to NMEs can be estimated by comparing the blue and green

bars. The results suggest that, whereas M6 and M7 are not
closely related to gT =0

pp , M2 comes out to be the most sensitive
one like its 0νββ(0+) counterpart M0ν

GT. Similar as M0ν
GT, 1+

comes out to be the most sensitive multipole, the increase
in the gT =0

pp drastically changes the NME most probably due
to the SU(4) symmetry restoration [28]. And the effects of
isoscalar residue interactions to the specific multipoles of
specific NMEs are quite different, some NMEs are enhanced,
and some are reduced. In total, the introduction of isoscalar in-
teractions enhances M1, M2, and M7 but reduces other NMEs.
And the magnitudes of these enhancements and reductions are
really case dependent. The similar thing happens to isovector
interactions (this interaction has been switched off for the
red bars in Fig. 4) for some cases they are more important
than the isoscalar interactions. In general, the particle-particle
interaction is one of the most important source of the errors for
QRPA calculations. M4 is, at least, sensitive to gpp’s whereas
M2 and M7 are really sensitive to gT =0

pp and gT =1
pp respectively.

Especially M2, the absence of isoscalar interactions will re-
duce the NME by more than 30%.

The special attention should be paid to the case of the
quenched gA. In all our above analyses, we assume that gA

is not quenched, however, in nuclear medium quenching of
gA is observed. In current calculations, we use the simplest
treatment for quenching, that is simply change the value of
gA, whereas there exists more fundamental approaches for the
quenching of gA using the chiral two-body currents [32]. In
our case, the difference between quenched gA calculations
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FIG. 3. The NME dependence on the short-range correlations.

FIG. 4. The NME dependence on gpp’s. The values in the bracket are gT =0
pp and gT =1

pp , respectively. The blue bars are results with gT =0
pp = 0,

and the orange bars are gT =0
pp values which reproduce the 2νββ NME with gA = 0.75gA0. The red bars are results with gT =1

pp = 0. And the green
bars here again are the baseline calculations.
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and our baseline calculations are the different fits of gT =0
pp .

Therefore, the difference for the individual NMEs are small
as in Fig. 4. But the quenched gA will also change the co-
efficient C’s. As a result, the NMEs Mλ, Mη, and M ′

η have
been changed too. In general, these NMEs are reduced due
to the convention used in Ref. [14]. For M ′

η, a reduction of a
rough factor of gA/gA0 is expected since the two components
M6 and M7 have the same dependence on gA. For Mλ and Mη,
different components have a different gA dependence. And if
we take gA = 0.75gA0 we find a rough cancellation for Mλ

as also predicted in Ref. [14], this comes from the interplay
among different components. Meanwhile the reduction for Mη

is basically 25%. The severe reductions of Mλ emphasize the
importance of where the quenching of gA originates and how
to treat it properly.

IV. CONCLUSION AND OUTLOOK

In this paper, we calculate the NME of 0νββ to 2+
1 for

76Ge. We got quite large results compared to previous cal-
culations. We estimate the errors of current calculation by
changing several parameters we use. We find that gA may
be a very important issue for the final NMEs. Further inves-
tigations, such as the role of the induced weak current, the
anharmonicity beyond QRPA, and the decay mechanism me-
diated by N*, are needed for much more detailed conclusions.
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APPENDIX: DERIVATION OF SINGLE-PARTICLE
MATRIX ELEMENTS IN THE PARTICLE-PARTICLE

CHANNEL

The seven 0νββ(2+) decay operators are taken from
Ref. [14] and presented above. They can be written in
the forms of combination of three parts: the relative co-
ordinate [Or (	r) ≡ OJ (r̂)h(r)], the center-of-mass coordinate
[Or+ (	r+) ≡ OJ (r̂+) f (r+)] and the spin part [OS (	σ1, 	σ2)].
These operators can then be expressed in a general form
O(2)

I = {[OJ1 (r̂) ⊗ OJ2 (r̂+)](J ′ ) ⊗ OJ3 (	σ1, 	σ2)}(2)h(r) f (r+).

We assume the quantum numbers for the single orbital
are (n1, l1, j1) and (n2, l2, j2) for protons and (n′

1, l ′
1, j′1)

and (n′
2, l2, j′2) for neutrons. The single matrix elements of

these operators under the harmonic-oscillator basis can be
expressed as〈

pp′J ∥∥{[
OJ1 (r̂) ⊗ OJ2 (r̂+)

](J ′ ) ⊗ OJ3 (	σ1, 	σ2)
}(2)∥∥nn′J ′〉

=
∑

nlNLLS

App′J ,LS〈n1l1, n2l2, L|nlNL, L〉

×
∑

n′l ′N ′L′L′S′
Ann′J ′,L′S′ 〈n′

1l ′
1, n′

2l ′
2, L′|n′l ′N ′L′, L′〉

× 〈
nlNLL; s1, s2, S;J ∥∥O(2)

I n′l ′N ′L′L′; s′
1, s′

2, S′;J ′〉.
(A1)

Here App′(nn′ )J,LS is the 9 j symbol for JJ to LS coupling trans-
formations,

Aττ ′J,LS = (2S + 1)(2L + 1)
√

(2 jτ + 1)(2 jτ ′ + 1)

×

⎧⎪⎨
⎪⎩

1
2 lτ jτ
1
2 lτ ′ jτ ′

S L J

⎫⎪⎬
⎪⎭. (A2)

And 〈n1l1, n2l2, L|nlNL, L〉 is the Brody-Moshinski trans-
formation coefficients [33].

Using techniques from, e.g., Ref. [34], we could further get
the expressions of each operator,〈

nlNLL; s1, s2, S;J ∥∥O(2)
I

∥∥n′l ′N ′L′L′; s′
1, s′

2, S′;J ′〉

=
√

5(2J + 1)(2J ′ + 1)

⎧⎨
⎩

L L′ J ′
S S′ J3

J J ′ 2

⎫⎬
⎭

×
√

(2J + 1)(2J ′ + 1)(2J ′ + 1)

⎧⎨
⎩

l l ′ J1

L L′ J2

L L′ J ′

⎫⎬
⎭

× 〈
nl

∥∥OJ1 (r̂) f (r)
∥∥n′l ′〉〈NL∥∥OJ2 (r̂+) f (r+)

∥∥N ′L′〉
× 〈

s1, s2, S
∥∥OJ3 (	σ1, 	σ2)

∥∥s′
1, s′

2, S′〉. (A3)

All these reduced matrix elements with different OJ1 (r̂)’s, etc.,
can be calculated analytically in harmonic-oscillator basis,
and we omit their derivations in current article, one could refer
to references, such as Ref. [34].
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