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Quark spin and orbital angular momentum from proton generalized parton distributions
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We calculate the leading-twist helicity-dependent generalized parton distributions (GPDs) of the proton at
finite skewness in the Nambu–Jona-Lasinio (NJL) model of quantum chromodynamics (QCD). From these (and
previously calculated helicity-independent GPDs) we obtain the spin decomposition of the proton, including
predictions for quark intrinsic spin and orbital angular momentum. The inclusion of multiple species of diquarks
is found to have a significant effect on the flavor decomposition, and resolving the internal structure of these
dynamical diquark correlations proves essential for the mechanical stability of the proton. At a scale of Q2 = 4
GeV2 we find that the up and down quarks carry an intrinsic spin and orbital angular momentum of Su = 0.534,
Sd = −0.214, Lu = −0.189, and Ld = 0.210, whereas the gluons have a total angular momentum of Jg = 0.151.
The down quark is therefore found to carry almost no total angular momentum due to cancellations between
spin and orbital contributions. Comparisons are made between these spin decomposition results and lattice QCD
calculations.
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I. INTRODUCTION

How the proton’s spin is shared among its constituents is
one of the most pressing open questions in hadron physics.
Ever since the European Muon Collaboration found that the
quarks’ intrinsic spin falls far short of saturating the proton’s
total spin [1], various theoretical efforts have gone both into
accounting for the remaining spin and into exploring the the-
oretical foundations for decomposing the proton’s spin. For a
review, see Ref. [2].

A prominent gauge-invariant decomposition of spin was
proposed by Ji [3] using the flavor-separated gravitational
form factors:

Ja = 1
2 [Aa(0) + Ba(0)], (1)

where a = q and g are the quark and gluon contributions. This
allows the proton’s spin to be decomposed into total contribu-
tions from each parton type. Because the total intrinsic spin
of quarks is a gauge-invariant quantity, one may decompose
Jq further into spin and orbital angular momentum, giving a
proton spin decomposition:

1

2
=

∑
q

(Sq + Lq) + Jg. (2)

This is called the Ji spin decomposition. A gauge-invariant de-
composition of Jg into intrinsic and orbital angular momentum
is not possible in this framework.

While alternative spin decompositions exist, the Ji spin
decomposition has the virtue of being calculable from
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leading-twist generalized parton distributions (GPDs) [4–6].
In particular, polynomiality sum rules [7] relate the Mellin
moments of GPDs to gravitational and axial form factors,
which when evaluated at t = 0 give access to the total and
spin angular momentum of partons. The GPDs are themselves
of great contemporary interest because of their relationship to
spatial light cone distributions [8], the proton’s mass decom-
position [9,10], and cross sections for hard exclusive reactions
such as deeply virtual Compton scattering [5,11] that can be
measured at facilities such as Jefferson Lab and the Electron
Ion Collider.

It is therefore important to perform calculations of the
proton’s helicity-dependent and helicity-independent leading-
twist GPDs within a single framework to make a unified set
of predictions. It is vital that any model calculation must re-
spect the symmetries and low-energy dynamical properties of
quantum chromodynamics (QCD). Accordingly, we calculate
the proton’s helicity-dependent GPDs using the Nambu–Jona-
Lasinio (NJL) model of QCD [12–14], an effective field
theory that preserves all the global symmetries of QCD, repro-
duces dynamical chiral symmetry breaking, and can simulate
aspects of confinement1 through the use of proper time regu-
larization [15–17]. Moreover, the NJL model has previously
been used to calculate the helicity-independent proton GPDs
[18], and because these calculations are symmetry-preserving,
the baryon number, momentum, and angular momentum sum

1In particular, when using proper time regularization with an
infrared cutoff, quark propagators contain no poles, and meson
and baryon propagators do not develop an imaginary part at p2 >

(2M )2/(3M )2, preventing decay into the quark and antiquark con-
stituents.
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rules are automatically satisfied, as are constraints such as
polynomiality and correct support properties.2

This paper is organized as follows. In Sec. II, we discuss
the formalism used for calculating the helicity-dependent pro-
ton GPDs. In Sec. III, we present the results for the GPDs and
for the spin decomposition they entail. Finally, in Sec. IV we
present a summary and outlook.

II. FORMALISM FOR CALCULATING PROTON GPDs

The formalism for calculating the proton GPDs has been
laid out already in Ref. [18]. However, we briefly review the
formalism here, with additional elaborations relevant to the
helicity-dependent case. The proton is considered as a bound
state of three dressed quarks. The bound state amplitude
is found by solving the Faddeev equation, which is domi-
nated by configurations with two of the quarks in a diquark
correlation [19]. In this work, we consider quark-diquark
configurations specifically, in particular, configurations with
isoscalar, Lorentz scalar, and isovector, axial vector diquarks.
More information about the proton bound state amplitude can
be found in Ref. [17].

The proton’s helicity-dependent GPDs are defined from the
axial bilocal lightcone correlator [4–6]:

Aq
λ′λ = ū(p′, λ′)

[
/nγ5 H̃q(x, ξ , t )

+ γ5(n�)

2MN
Ẽq(x, ξ , t )

]
u(p, λ), (3)

where P = 1
2 (p′ + p), � = p′ − p, ξ = −2(�n)/(Pn), t =

�2, and n is a lightlike vector defining the light front. The
GPDs are Lorentz-invariant functions of the three explicitly
written Lorentz-invariant arguments and are also dependent
on a renormalization scale μ not notated above. In the NJL
model calculation, we take μ = M = 400 MeV [17,20,21].

The axial correlator itself is calculated by evaluating Feyn-
man diagrams, with the bilocal operator defining the GPDs
inserted into either a quark within a diquark or into the accom-
panying quark; both scenarios are depicted diagrammatically
in Fig. 1. To be more specific, we obtain analytic expressions
for the GPDs by first taking arbitrary Mellin moments of
the relevant Feynman diagrams and then analytically perform
an inverse Mellin transform. By having analytic expressions
for the Mellin moments in an intermediate step, we are able
to explicitly verify that polynomiality is satisfied within the
calculation. For the diquark propagators we implement the
widely used pole approximation [22–30].3 Self-consistency

2Note that parity-time symmetry and Poincaré invariance are suf-
ficient to entail polynomiality, and that these symmetries alone are
the premises used to prove that QCD satisfies polynomiality. Ap-
proximations that break these symmetries will result in violations of
polynomiality, but no symmetry-breaking approximations are used
in this work.

3Because calculations using the full diquark propagator have not
been done, the accuracy of this approximation is hard to quantify.
The suitability of this approximation is attested to by the results of

+

FIG. 1. Diagrams contributing to the leading-twist proton GPDs.
On the left is the quark diagram and on the right is the diquark
diagram. The single line is the dressed quark propagator, the double
line is the diquark propagator, the shaded oval is the Faddeev vertex,
and the shaded circles represent the dressed quark and diquark GPDs.

then demands that on-shell forms for the diquark GPDs be
used [33], even though they are in general off-shell. These
approximations mean that the inner structures of the diquarks
are folded into the proton through a convolution relation,
which takes the form [18]

HX (x, ξ , t ) =
∫

dy

|y| hY/X (y, ξ , t ) HY

(
x

y
,
ξ

y
, t

)
, (4)

where a hadron (proton) X contains a composite hadron (di-
quark) Y , and where hY/X signifies “body GPDs” that encode
the distribution of Y within X . The isospin weights for the
quark and diquark diagrams, for each quark flavor, are given
in Eqs. (102) and (103) of Ref. [17].

A. Helicity-dependent diquark GPDs

We proceed to consider the helicity-dependent GPDs of
diquarks. We first remark that scalar diquarks do not have
helicity-dependent GPDs, because the lack of total angular
momentum does not provide a quantization axis. Thus we
need consider just axial vector diquarks and transition GPDs
between the two diquark species.

The axial vector diquark has four helicity-dependent
GPDs. We parametrize the on-shell correlator in the following
way:

Aq,μν
a = (n�)

�2

iε�μνP

(Pn)
H̃q

1a(x, ξ , t )

− iεn�Pμ�ν − iεn�Pν�
μ + i(P�)εnμν�

�2(Pn)

×
[
−H̃q

1a(x, ξ , t ) + �2

M2
a

H̃q
2a(x, ξ , t )

]
− iεn�Pμ�ν + iεn�Pν�

μ

M2
a (Pn)

H̃q
3a(x, ξ , t )

+ iεn�Pμnν + iεn�Pνnμ

2(Pn)2
H̃q

4a(x, ξ , t ), (5)

where Ma is the axial vector diquark mass and we use the
notation ε�μνP = εαμνβ�αPβ (i.e., a four-vector in the Levi-
Civita subscripts signifies contraction with that four-vector).

Refs. [22–30]. The Dyson-Schwinger calculations of Refs. [31,32]
are additionally suggestive, in that the baryon masses and elec-
tromagnetic form factors calculated therein show good agreement
between a full three-body calculation and a quark-diquark approx-
imation that uses the pole approximation for the diquark propagator.

045204-2



QUARK SPIN AND ORBITAL ANGULAR MOMENTUM FROM … PHYSICAL REVIEW C 103, 045204 (2021)

When contracted with polarization vectors εμ and ε′∗
ν , this is

equivalent to the standard form given in Ref. [34], owing to
a Schouten identity and the fact that the polarization vectors
are orthogonal to the diquark momenta. We choose the form
in Eq. (5) in part because � has no virtuality dependence, thus
being preferred over P for having a free Lorentz index, and in
part because it prevents the appearance of unphysical poles in
the axial form factors. (See the Appendix for more details on
the elimination of these unphysical poles.)

Scalar-to-axial-vector and axial-vector-to-scalar (sa and as)
transition GPDs must be considered. The bilocal axial corre-
lator for scalar-to-axial transitions is

Aq,ν
sa = nνMas

(Pn)
H̃sa,1(x, ξ , t ) + (n�)�ν

(Pn)Mas
H̃sa,2(x, ξ , t ), (6)

where Mas = Ms + Ma and Ms is the scalar diquark mass.
There is an analogous expression for the axial-vector-to-scalar
transition case. These GPDs have the property of being neither
T -even nor T -odd. However, they remain related by time-
reversal symmetry in a vital respect:

H̃sa,i(x, ξ , t ) = −H̃as,i(x,−ξ, t ). (7)

Crucially, the proton body GPDs accompanying these diquark
GPDs in the convolution formula, Eq. (4), exhibit this same
property, which ensures that any T -odd contributions to the
proton GPDs resulting from the diquark transition diagrams
cancel out—a necessity, because proton GPDs are strictly
T -even.

B. Dressed quark GPDs

The dressed quarks in the NJL model are quasiparticles
arising from an amalgamation of nearly massless current
quarks. Because GPDs are defined using bilocal operators
of current quark fields, the dressed quarks have nontrivial
GPDs that must be calculated within the NJL model and
folded into hadrons via Eq. (4). As discussed in Ref. [18], the
leading-twist dressed quark GPDs can be obtained by solving
an inhomogeneous Bethe-Salpeter equation. For the helicity-
dependent GPDs, one has /nγ5δ(n[xP − k]) as a driving term.

We find the isoscalar and isovector helicity-dependent
dressed quark GPDs to be as follows:4

H̃I=0,1(x, ξ , t ) = δ(1 − x), (8a)

ẼI=0,1(x, ξ , t ) = Nc

2π2

1

|ξ |
Gη,π M2

1 + 2Gη,π�PP(t )

×�
(
0, α/�2

UV, α/�2
IR

)
�(|ξ | − |x|), (8b)

where �(s, a, b) = ∫ b
a dtt s−1 e−t is the generalized incom-

plete gamma function and α = M2 − 1
4 (1 − x2/ξ 2)t . We

remark that the support region for the dressing functions
[i.e., for the contributions to the GPDs other than δ(1 − x)]
is entirely constrained to the Efremov-Radyushkin-Brodsky-
Lepage (ERBL) region and thus that the PDF in particular
is undressed. It is also worth noting that the GPD ẼI (x, ξ , t )

4These results are without π -a1 mixing for consistency with
Ref. [17], from which we lift the model parameters.

contains a pion pole or an η-meson pole, depending on the
isospin.

III. RESULTS

With the formalism above, we proceed to present results
for the helicity-dependent GPDs of the proton, as well as
for the proton spin decomposition. Specifically, the model
parameters from Ref. [17] are used. However, in addition,
we also consider a model variant with only scalar diquarks.
For this, the scalar diquark parameter Gs is found by solving
proton’s Faddeev equation with the proton mass fixed to its
physical value. In the scalar-only model, we find Gs = 9.98
GeV−2 and Ms = 576 MeV.

A. Helicity-dependent proton GPDs

Helicity-dependent GPDs are presented for zero and finite
skewness (ξ = 0.5) at the model scale Q2 = M2 in Fig. 2. Be-
cause the helicity-dependent GPD Ẽ q(x, ξ , t ) becomes large
near t = 0 due to the presence of a pion pole, it is scaled by
a factor of τ = −t/(4M2

N ). We see that for ξ = 0 our GPD
results have no support for −1 < x < 0 because, at the model
scale, we have not included antiquarks in the model calcula-
tion. However, at finite skewness an ERBL region (−ξ < x <

ξ ) develops and our GPDs are nonzero in the range −ξ < x <

1, even in this valence quark picture at the model scale. These
results clearly show that GPDs at finite skewness can display
features radically different from those at ξ = 0.

A visually significant aspect of the Ẽ q(x, ξ , t ) results in
Fig. 2 is the jump discontinuities at x = ±ξ . This occurs
in effective theories with a four-fermion interaction vertex
[35–37] and can be seen in the dressed quark GPD of Eq. (8b).
On the surface this is an apparent problem for QCD fac-
torization, which requires GPDs to be continuous across the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)-ERBL
boundary. However, numerical studies suggest that these jump
discontinuities are removed by GPD evolution, rendering the
model calculations compatible with QCD factorization above
the model scale and allowing Compton form factors to be
rigorously calculated.

In Fig. 3, we present the same helicity-dependent proton
GPDs as in Fig. 2, but evolved to a scale of Q2 = 4 GeV2

using leading-order kernels [5,11,38]. We find that the QCD
evolution has a dramatic impact on Ẽ q(x, ξ , t ), which is now
also continuous across the DGLAP-ERBL boundary.

In both Figs. 2 and 3 the range 0 � −t � 2 GeV2 was
used to give a broad perspective on the functional form of
the GPDs. It is worth noting that physical processes sensitive
to the GPDs, such as deeply virtual Compton scattering, are
accompanied by the kinematic constraint −t < Q2. However,
as formally defined via Eq. (3), the GPDs can be evaluated
at any t . We present the large −t behavior of the NJL model
GPDs to ascertain their suitability for empirical predictions
in this kinematic regime. In the presented figures, a slow
−t falloff can be observed. This behavior is known to be
characteristic of contact interactions [39].

With both the helicity-dependent proton GPDs above and
the previously calculated helicity-independent GPDs [18] in
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FIG. 2. The helicity-dependent proton GPDs at the model scale of Q2 = 0.16 GeV2, where the GPD Ẽ q(x, ξ , t ) has been scaled by a factor
of τ = −t/(4M2

N ). The top row is for ξ = 0 and the bottom row has ξ = 0.5. The transparent (orange) surface is up quarks and the opaque
(blue) surface is down quarks.

hand, we proceed to consider various static properties of the
proton, with a special focus on its spin decomposition.

B. Static properties of the proton

Various static properties of the proton can be obtained
from Mellin moments of the GPDs at t = 0. Several of these,
such as the electric charge, the magnetic moment, the axial
charge, and the quark spin Sq can be obtained from form
factors and have been studied elsewhere (see Ref. [17] for
electromagnetic properties). Others, such as the total angular
momentum J , the anomalous gravitomagnetic moment B(0),
and the D-term C(0) are new opportunities afforded through
GPDs. The gravitational form factors A(t ), B(t ), and C(t ) can
be obtained from the helicity-independent GPDs through∑

a=q,g

∫ 1

−1
dxxHa(x, ξ , t ) = A(t ) + ξ 2C(t ), (9)

∑
a=q,g

∫ 1

−1
dxxEa(x, ξ , t ) = B(t ) − ξ 2C(t ), (10)

and the total angular momentum can then be obtained through
the Ji sum rule in Eq. (1). Moreover, by not summing over
parton flavors, one can obtain a flavor decomposition of these
quantities, although such a breakdown will be renormalization
scheme and scale dependent (unlike the sum, which is scheme
and scale independent).

The quark spin can be obtained from the helicity-
dependent GPDs:

Sq = 1

2

∫ 1

−1
dxH̃q(x, ξ , t = 0), (11)

and the quark orbital angular momentum can then be obtained
through Lq = Jq − Sq. The isovector axial vector charge gA is
related to the up and down intrinsic spin via the Bjorken sum
rule: gA = 2(Su − Sd ).

We present the results for various static quantities of the
proton, along with a diagram-by-diagram breakdown, in Ta-
ble I. In particular, these quantities are calculated with both
scalar and axial vector diquarks present in the proton. The
first two columns of results provide contributions to the
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FIG. 3. The helicity-dependent proton GPDs at the scale of Q2 = 4.0 GeV2, where the GPD Ẽ q(x, ξ , t ) has been scaled by a factor of
τ = −t/(4M2

N ). The top row is for ξ = 0 and the bottom row has ξ = 0.5. The transparent (orange) surface is up quarks and the opaque (blue)
surface is down quarks.

proton’s flavor-separated anomalous magnetic moment, which
are included to provide a comparison with other results and
because they would vanish in the absence of orbital angular
momentum in the proton. The next two columns provide
quark momentum factors in the proton, and we find that
scalar diquark configurations carry about twice the light-cone
momentum as the axial vector configurations. In addition, up

quarks carry about two-thirds and down quarks about one-
third of the total light-cone momentum, as naively expected.

For the flavor-separated quantities in Table I we first re-
mark that not only does the total B(0) vanish (as expected
by angular momentum conservation) but also the total con-
tribution from each diquark configuration vanishes. However,
this is not the case for Bu(0) or Bd (0) separately. This is an

TABLE I. Decomposition of static properties of the proton by the various diagrammatic contributions, where the full scalar + axial diquark
model is used. The quantities are given at the model scale of Q2 = 0.16 GeV2 and the diquark in the parentheses is the spectator.

Diagram κu κd Au(0) Ad (0) Bu(0) Bd (0) Cu(0) Cd (0) Stot Ltot Jtot gA

Quark (scalar) 1.134 0 0.248 0 0.306 0 0.020 0 0.287 −0.100 0.277 0.574
Scalar diquark −0.546 −0.546 0.220 0.220 −0.153 −0.153 −0.516 −0.516 0 0.068 0.068 0
Quark (axial) −0.150 −0.300 0.034 0.067 −0.060 −0.120 0.039 0.048 −0.066 0.026 −0.040 0.044
Axial diquark 0.785 0.157 0.176 0.035 0.150 0.030 −0.155 −0.031 0.137 0.058 0.195 0.182
Transition diquark 0.346 −0.346 0 0 0.108 −0.108 0.014 −0.014 0 0 0 0.751

Sum 1.569 −1.045 0.678 0.322 0.351 −0.351 −0.598 −0.483 0.358 0.142 0.500 1.551
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Su Sd Stot

−0.2

0.0
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0.4

Scalar only

Full

Lu Ld Ltot
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0.10

0.15

0.20 Scalar only

Full

Ju Jd Jtot

0.0

0.2

0.4

Scalar only

Full

FIG. 4. Spin decomposition at the model scale. The scalar-diquark-only model variant is contrasted with the full model containing both
scalar and axial vector diquarks.

observation similar to that found in Ref. [40], where each
state in a Fock space expansion has B(0) = 0 and has the
same formal cause: the diquark configuration (or the Fock
state) has the same quantum numbers as the proton and is
thus a J = 1

2 eigenstate. Thus we can say 〈J〉 = 1
2 〈x〉 = 1

2 A(0)
for each configuration (or Fock state) individually, entailing
B(0) = 0.

We next remark on the C(0) contributions of the various
diagrams. The negativity condition [41], which states that
C(0) < 0 is necessary for mechanical stability, is satisfied by
both diquark configurations. In both cases, C(0) is positive for
the quark diagram and negative for the diquark diagram. This
illustrates the necessity of resolving the dynamical diquark
degrees of freedom to obtain a mechanically stable proton.

For the total intrinsic spin contribution Stot = Su + Sd we
find that scalar diquark configurations dominate, even though
the scalar diquark itself has no intrinsic spin. For Ltot and
Jtot the situation is more subtle because of cancellations be-
tween different contributions. However, we note that diquark
transition diagrams cannot contribute to conserved quantum
numbers, because the scalar and axial vector diquark con-
figurations are effectively orthogonal states. Moreover, the
transition diagrams cannot contribute to any isoscalar quan-
tities such as S, L, or C(0) because the transition itself is
isovector (namely, from an isovector to an isoscalar diquark,
or vice versa). On the other hand, they can make a potentially
large contribution to isovector quantities such as Su − Sd . In
fact, the transition diagram is responsible for nearly half of
our calculated value for gA. In this case, one can see that
gA is an overestimate compared to the experimental value of
gA = 1.2732(23) [42]. This discrepancy can be alleviated by
the inclusion of meson cloud effects, as done in Ref. [17]
for the simpler calculations of proton electromagnetic form
factors.

C. Proton spin decomposition

The leading-twist proton GPDs allow us to obtain the Ji
decomposition of proton spin. In particular, the quark total
angular momentum Jq can be broken up into Sq and Lq, and
the total gluon angular momentum Jg can be obtained at an
evolved scale from the perturbatively generated gluon GPDs.
Because the Ji decomposition does not allow Jg to be broken
into spin and orbital components, we use Stot and Ltot to
signify the total quark spin and orbital angular momentum.

In Fig. 4, we compare the proton spin decomposition at the
model scale for both variants of our NJL model, that is, one
where the proton has only scalar diquark correlations and the
full model that also includes axial vector diquarks. Remark-
ably, the total angular momentum carried by each quark flavor,
as well as the total quark spin and total quark orbital angular
momentum change very little when axial vector diquarks are
introduced. This may be attributed to the static approximation
being used for the quark-diquark interaction kernel, where
orbital angular momentum is generated by relativistic effects,
in particular, by the presence of a p-wave component in the
quark wave function [44]. Because the relativistic effects are
about equally strong in both variants of the model, Ltot and Stot

are about equal.
In the scalar-only model, Sd = 0 because the down quark is

present only in the diquark, which does not allow a spin quan-
tization axis to be identified. Nonrelativistically, one would
have Ld = Jd = 0 as well, but the remaining quark in the
proton carrying orbital angular momentum—since it can exist
in a p-wave state—implies that the diquark, and thus the
down quark, can carry orbital angular momentum as well.
The diagram breakdown for the full model in Table II indeed
shows that Ld and Jd are nonzero because of the scalar diquark
diagram.

The flavor breakdown of J , L, and S changes significantly
when axial vector diquarks are present, for two reasons. The
first—but more minor—reason is that the flavor breakdown
within axial diquark configurations differs from that of the
scalar diquark case. The effects of this are minimal, how-
ever, and due entirely to relativistic effects. Nonrelativistically

TABLE II. Flavor decomposition of the total, spin, and orbital
angular momenta, where the results include contributions from both
scalar and axial vector diquarks. Results are at the model scale of
Q2 = 0.16 GeV2 and the diquark in the parentheses is the spectator.

Diagram Ju Jd Su Sd Lu Ld

Quark (scalar) 0.277 0 0.287 0 −0.010 0
Scalar diquark 0.034 0.034 0 0 0.034 0.034
Quark (axial) −0.013 −0.026 −0.022 −0.044 0.009 0.018
Axial diquark 0.163 0.033 0.114 0.023 0.049 0.010
Transition diquark 0.054 −0.054 0.188 −0.188 −0.134 0.134

Sum 0.514 −0.014 0.567 −0.209 −0.053 0.195
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FIG. 5. Comparison of NJL model spin decomposition to the lattice QCD results of Ref. [43] at Q2 = 4 GeV2. The NJL results contain
contributions from both scalar and axial vector diquarks.

(and within the static approximation), there is no orbital an-
gular momentum, and the axial diquark configuration has a

spin wave function: |Jz
p = + 1

2 〉 =
√

2
3 |Jz

dq = +1; Jz
q = − 1

2 〉 −√
1
3 |Jz

dq = 0; Jz
q = + 1

2 〉, which when combined with the ap-
propriate isospin recombination coefficients gives Jd = Sd =
0. Indeed, even within the proper NJL model calculation, we
find the contributions to Jd and Sd from the axial diquark
diagrams are 0.006 and −0.021, respectively.

The most significant contributions to the change in flavor
breakdown come from transition diagrams. Although J is a
conserved quantity, individual flavor contributions are not.
Moreover, individual flavor contributions are not isoscalar,
and in fact Ju − Jd , etc., are isovector, meaning the transition
diagram has the potential to make significant changes to these
differences. In fact, as can be seen in Table II, Sd and Ld are
dominated by the transition diagram, although this diagram
makes a small contribution to Jd .

Overall, Jd comes out very close to zero in the scalar +
axial model. This can be seen as arising from cancellations.
On one hand, Sd and Ld end up being nearly equal and op-
posite after contributions from all the diagrams have been
summed. On the other hand, in Table I, one sees that Ad (0)
and Bd (0) are nearly equal and opposite after summing the
diagrams.

Besides intermodel comparisons, it is worth comparing
our flavor-separated proton spin decomposition to the best
available estimates for the true proton spin decomposition.
Although experimental extractions for linear combinations of
Ju and Jd exist from JLab [45] and HERMES [46,47], these
extractions are model dependent and may not be instructive.
On the other hand, there exists a lattice QCD computation of
the proton spin decomposition at physical pion mass [43].

In Fig. 5, we compare our results (with both diquark
species present) to the lattice results of Ref. [43] at a scale
of Q2 = 4 GeV2. One can observe mixed agreement with
the lattice results. First, it is worth remarking that the broad
qualitative agreement on the sign and magnitude of Ju, Jd , Lu,
Ld , Su, and Sd is remarkable considering the simplicity and
minimalism of the NJL model. This is suggestive that the spin
decomposition of the proton is governed to a large extent by
three effects: its diquark content, relativistic effects that can
generate L, and QCD evolution (which connects the model
scale to the empirical scale). Further intricacies (such as a
meson cloud) could be somewhat large but seem to be second-

order effects. Solving the Faddeev equation beyond the static
approximation will also have an impact; however, because the
spin decomposition is defined through t = 0 moments, the
effects of exchange diagrams are expected to be small.

The agreement for Jg is surprising, because in our cal-
culation this is generated purely by QCD evolution, and is
therefore suggestive of a small intrinsic gluon angular mo-
mentum. Our calculations also tend to overestimate Sq for the
light quarks, which could be rectified by the inclusion of a
pion and kaon cloud, which would also generate the missing
intrinsic Ss contributions. Because Jq agrees reasonably well
with lattice, corrections that decrease Sq would at the same
time need to increase Lq, which is natural in the meson cloud
picture because of their p-wave couplings to the quarks or the
nucleon.

IV. SUMMARY AND OUTLOOK

In this work, we calculated the helicity-dependent and
helicity-independent leading-twist proton GPDs in a confining
version of the NJL model. A quark-diquark approximation
was used for the proton, and two variants of the model were
considered: (i) a model with only isoscalar, Lorentz scalar
diquarks, and (ii) a model also containing isovector, axial vec-
tor diquarks. In both model variants, a flavor-separated spin
decomposition was performed for the proton, and the presence
of both diquark species was found to contribute significantly
to the flavor-separated spin decomposition, but little to Stot

and Ltot. In particular, transition diagrams between the diquark
species—which can affect only isoscalar quantities, such as
Su − Sd —were responsible for most of the difference between
the models’ spin decompositions.

The model variant with both diquarks present was found
to have mixed agreement with lattice results for the proton’s
spin decomposition. The discrepancies are due primarily to
the NJL model’s overestimates of spin and underestimates of
orbital angular momentum, along with the lack of strangeness
content. The former of these discrepancies can be resolved by
the inclusion of a pion cloud, and the latter can be resolved
with the inclusion of a kaon cloud. These improvements war-
rant future work on the subject.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy, Office of Science, Office of Nuclear Physics, Contract

045204-7



ADAM FREESE AND IAN C. CLOËT PHYSICAL REVIEW C 103, 045204 (2021)

No. DE-AC02-06CH11357, and an LDRD initiative at Ar-
gonne National Laboratory under Project No. 2020-0020. A.F.
was additionally supported by U.S. Department of Energy
Grant No. DE-FG02-97ER-41014.

APPENDIX: LONGITUDINAL-TRANSVERSE
SEPARATION FOR AXIAL OPERATORS

The nonlocal operator defining the helicity-dependent
GPDs, as well as the local axial current, is defined using
matrix elements of the operator q̄(x)γμγ5q(y), with the space-
time points x and y determined by the application in question.
This operator notoriously does not correspond to a conserved
current. However, it is possible to break the operator into a

“transverse” piece that is conserved and a “longitudinal” piece
that is not. The breakdown is most clear in momentum space,
where we define

(γμγ5)⊥ =
(

γμ − �μ /�

�2

)
γ5, (γμγ5)‖ = �μ /�

�2
γ5, (A1)

with � being the momentum transfer to the target. That
(γμγ5)⊥ is transverse to � makes q̄(x)(γμγ5)⊥q(x) a con-
served local current.

Notably, the dynamics of q̄(x)(γμγ5)⊥q(y) and
q̄(x)(γμγ5)‖q(y) completely decouple. This means that
the Bethe-Salpeter equations for the local currents
q̄(0)(γμγ5)⊥q(0) and q̄(0)(γμγ5)‖q(0) decouple from each
other and also that the BSEs for the leading-twist nonlocal
correlators

Aq
⊥,‖ = 1

2

∫
dz

2π
eix(Pn)κ〈p′λ′|q̄

(
− nz

2

)
(/nγ5)⊥,‖

[
− nz

2
,

nz

2

]
q

(
nz

2

)
|pλ〉, (A2)

decouple from each other.
The Lorentz decompositions of the transverse and longitudinal components of the helicity-dependent correlator can be written,

for a spin-half particle, as

Aq
⊥,λ′λ = ū(p′, λ′)(/nγ5)⊥u(p, λ) H̃ (x, ξ , t ), (A3)

Aq
‖,λ′λ = ū(p′, λ′)(/nγ5)‖u(p, λ) [H̃ (x, ξ , t ) − τ Ẽ (x, ξ , t )] ≡ ū(p′, λ′)(/nγ5)‖u(p, λ) Ẽ‖(x, ξ , t ). (A4)

Comparing to Eq. (8), we observe that the pion pole can contribute only to the longitudinal component of the correlator. This
additionally means that the pion pole will not be present in H̃q(x, ξ , t )—nor GA(t )—of the proton.

For an on-shell spin-one particle, the longitudinal-transverse separation can be written as

Aq
⊥,λ′λ = −i

(
εn�Pρ

�2

ερ (ε′∗�) − ε′∗ρ (ε�)

(Pn)
+ (P�)

�2

εnεε′∗�

(Pn)

)[
−H̃q

1 + �2

M2
a

H̃q
2

]
− iεn�Pρ

M2
a

ερ (ε′∗�) + ε′∗ρ (ε�)

(Pn)
H̃q

3

+ iεn�Pρ

2(Pn)

ερ (ε′∗n) + ε′∗ρ (εn)

(Pn)
H̃q

4 , [0] (A5a)

Aq
‖,λ′λ = (n�)

�2

iε�εε′∗P

(Pn)
H̃q

1 . (A5b)

This breakdown agrees exactly with the standard breakdown in Ref. [34] for on-shell particles, through use of the Schouten
identity result,

(n�)ε�εε′∗P = �2εnεε′∗P − εn�Pσ [εσ (ε′∗�) − ε′∗
σ (ε�)] − (�P)εnεε′∗�, (A6)

and the on-shell relation (�P) = 0, as well as use of the
identities (ε�) = 2(εP) and (ε′∗�) = −2(ε∗P).

For an off-shell particle, (�P) 	= 0 means the equiva-
lence between the decompositions no longer holds. Crucially,
the decompositions differ by a transverse structure that
multiplies a longitudinal GPD. This means using the stan-
dard decomposition for an off-shell spin-one particle will
introduce unphysical pion poles into transverse quantities,
such as GA(t ) of the proton. Therefore, the alternative de-
composition suggested in Eq. (A5)—which indeed does
not produce unphysical pion poles in the proton’s ax-
ial form factor—is preferred for the off-shell spin-one
correlator.

One last crucial aspect of Eq. (A5) worth remarking on
is the explicit inclusion of a term proportional to (P�). For
an on-shell spin-one particle, this term is zero and is not
important. For an off-shell particle, however, it is necessary
for the axial correlator Aq

λ′λ to be analytic at t = 0. Neither
the Lorentz structure multiplying H̃q

1 in Eq. (A5b) nor the
structure multiplying −H̃q

1 + t
M2

a
H̃ q

2 in Eq. (A5a) has a well-

defined forward limit; if one writes �μ = √−t eμ, with eμ

being an arbitrary spacelike unit vector, then the t → 0− limit
depends on eμ, which is unphysical. However, by virtue of
the Schouten identity, Eq. (A6), and the presence of the (P�)
term in Eq. (A5a), the total axial correlator Aq

‖,λ′λ + Aq
⊥,λ′λ

does have a well-defined t = 0 limit, even when (P�) 	= 0.
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