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We present a calculation of radiative pion photoproduction in the framework of covariant chiral perturbation
theory with explicit �(1232) degrees of freedom. The analysis is performed employing the small-scale expansion
scheme adjusted for the � region. Depending on the channel, we include contributions up to next-to-next-to-
leading order. We fit the available experimental data for the reaction γ p → γ pπ0 and extract the value of the
�+ magnetic moment. Errors from the truncation of the small-scale expansion are estimated using the Bayesian
approach. We compare our results both with the previous studies within the δ-expansion scheme and with the
�-less theory. We also give predictions for radiative charged-pion photoproduction.
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I. INTRODUCTION

The properties of the �(1232) resonance are important for
understanding the low-energy dynamics of the strong inter-
action owing to its nature as the lowest nucleon excitation.
One of the main characteristics of the � isobar is its electro-
magnetic moments, which are rather poorly known at present.
Since the � isobar is unstable and its lifetime is very short,
a direct experimental determination of the electromagnetic
moments is impossible. Therefore, one has to rely only on
an analysis of scattering experiments where the � resonance
can be produced. In particular, the magnetic dipole moment
(MDM) of the �+ particle can be accessed through the mea-
surement of the radiative photoproduction of neutral pions
in the �-resonance region. An accurate determination of the
MDM of the �+ from experiment is particularly important as
it would allow us to test predictions based on a variety of the-
oretical approaches such as quark models, Dyson-Schwinger
equations, hadron-string duality, QCD sum rules, large-Nc

constraints, chiral perturbation theory calculations (covariant
and heavy-baryon), etc.; see Refs. [1–16]. The spread of the
theoretical predictions for the �+ MDM is quite large, namely
μ�+ � (1.7–3.5)μN ,1 where μN = e/(2mN ) is the nucleon
magneton. Lattice-QCD calculations of the �+ MDM are also
available (see, e.g., Refs. [17–21]) but not fully conclusive
yet. These studies report μ�+ values in the range μ�+ �
(1.0–2.4)μN .

The current Particle Data Group (PDG) value of the �+
MDM is μ�+ = (2.7+1.0

−1.3(stat.) ± 1.5(syst.) ± 3(theor.))μN .
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1Throughout this paper, μ� denotes the real part of the correspond-

ing magnetic moment; see Sec. V I.

It is based on the analysis of the radiative neutral-pion
photoproduction observables measured at the Mainz Mi-
crotron (MAMI) [22]. The analysis was performed em-
ploying a phenomenological model of Ref. [23]; see also
Refs. [24,25] for earlier studies along this line. In a
subsequent experiment at MAMI [26], a considerable im-
provement on statistics was achieved. The extraction of the
�+ MDM was performed using the more advanced uni-
tarized dynamical model of Ref. [27] resulting in μ�+ =
(2.89+0.30

−0.34(stat.) ± 0.30(syst.))μN , although the data were not
described by the model very well.

The main disadvantage of using phenomenological models
for the analysis of the experimental data is the impossibility
of obtaining a reliable estimate of theoretical uncertainties. A
more systematic way to analyze radiative neutral-pion pho-
toproduction is achieved in the effective field theory (EFT)
framework, which allows one to account for theoretical uncer-
tainties. The low-energy effective field theory of the standard
model is chiral perturbation theory (χPT). It is based on the
effective chiral Lagrangian constructed from the pion, nu-
cleon, and, for the case at hand, also � fields in the presence
of external sources. The Lagrangian is organized as a series
of terms with increasing number of derivatives and powers
of the quark masses (proportional to the pion mass squared).
The scattering amplitude can then be written as a systematic
expansion in terms of a small parameter (pion mass, external
momenta, �-nucleon mass difference); see Sec. V for the
details.

In the single-nucleon sector, calculations are performed
both using the heavy-baryon [28–30] and covariant [31,32]
formulations of χPT. In the energy regime considered in the
present work (the � region), the covariant approach appears
to be the natural choice because the initial momentum may be
too high for the nucleon to be treated nonrelativistically. The
analysis of radiative pion photoproduction in the � region,
i.e., close to the � pole, makes it inevitable to include explicit
� degrees of freedom. In the following, we will explicitly
demonstrate this feature by also showing predictions within
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the �-less approach and studying the convergence pattern in
such a scheme.

The first analysis of radiative π0 photoproduction within
covariant �-full χPT was done in Refs. [33,34] within the
so-called δ-expansion scheme [35]. The δ counting treats the
�-nucleon mass difference � as being a lower order quan-
tity than the pion mass Mπ (� ∼ δ, Mπ ∼ δ2). The � width
is regarded to be of order M3

π , and, therefore, all �-pole
graphs are assumed to be dominant in the � region. The
analysis of the old experimental data from Ref. [22] based
on this scheme resulted in the values of the �+ MDM in
the range of μ�+ = (1–3)μN [34]. However, when applied to
the combined set of data including the newer higher statistics
experiment at MAMI, the extracted value of the MDM turned
out to be μ�+ = (3.77+0.14

−0.15(stat.) ± 0.65(syst.))μN [26]. This
value lies outside the range of the theoretical predictions men-
tioned above and might be an indication of a slow convergence
of such a scheme.

In this work, we analyze radiative pion photoproduction
utilizing the covariant �-full χPT framework within the so-
called small scale expansion (SSE) scheme [36], where one
treats the �-nucleon mass difference as � ∼ O(Mπ ). We
also take into account that certain tree-level diagrams in-
volving � are enhanced in the vicinity of the � pole. We
include the leading pion-nucleon loop graphs, which provide
a sizable background (with respect to the � poles) contri-
bution. For the treatment of the meson-baryon loops, we
adopt the extended on-mass-shell (EOMS) renormalization
scheme [32]. The details of our approach and its differences
from the scheme of Ref. [34] are discussed in subsequent
sections.

The only free parameter of our calculation is the � MDM
since other low-energy constants are taken from analyses
of other reactions. We also analyze pion photoproduction, a
subprocess of the reaction under consideration, in order to
determine various γ N� low-energy constants in full consis-
tency with our treatment of radiative pion photoproduction.
We also take into account the theoretical uncertainty related to
the truncation of the small-scale expansion within a Bayesian
approach, thus providing a reliable extraction of the � MDM
from the data.

In addition to the γ p → γ pπ0 reaction, we also study
radiative photoproduction of charged pions γ p → γ nπ+,
which provides access to the MDM of the �0 resonance. Since
no experimental data are available for this reaction, we give
our predictions for various observables using the isospin sym-
metry and the value of the �++ MDM extracted previously
from the reaction π+ p → π+ pγ [37,38] and discuss their
sensitivity to the �+ and �0 MDM.

Our paper is organized as follows. In Sec. II, we intro-
duce the notation, define various kinematical quantities, and
discuss the observables used in our analysis. In Sec. III, we
provide the effective Lagrangian relevant for our calculation.
Construction of the reaction amplitude, power counting, and
renormalization are discussed in Secs. IV and V. Next, Sec. VI
is devoted to the extraction of the low-energy constants from
pion photoproduction while the numerical results of our study
are presented and discussed in Sec. VII. The main results of
our work are summarized in Sec. VIII.

II. KINEMATICS, REACTION AMPLITUDE,
AND OBSERVABLES FOR RADIATIVE

PION PHOTOPRODUCTION

Radiative pion photoproduction is a reaction with a photon
and a nucleon in the initial state and a photon, a nucleon and
a pion in the final state,

γ (λ, k) + Ni(s, p) → γ (λ′, k′) + N ′
j (s

′, p′) + πa(q), (1)

where p (p′), s (s′), i ( j) are the momentum, helicity, and
the isospin index of the incoming (outgoing) nucleon; k (k′)
and λ (λ′) are the momentum and helicity of the incoming
(outgoing) photon; while q and a are the momentum and the
isospin index of the outgoing pion.

For each set of the isospin indices a, i, j, the radiative-pion-
photoproduction matrix element

Ma; ji = ū(s′ )
j (p′) ε(λ)

μ (k) ε∗(λ′ )
ν (k′)Mμν

a; ji u(s)
i (p), (2)

where u(s)
i (p) (ū(s′ )

j (p′)) stands for the initial (final) nucleon

spinor and ε(λ)
μ (k) (ε∗(λ′ )

ν (k′)) for the initial (final) photon
polarization vector, can be parameterized in terms of 16 scalar
invariant amplitudes Al;mn (see, e.g., Ref. [39]) by introducing
the projector Pμν = gμν − k′μkν

k·k′ via

Mμν = PμαPνβ

4∑
l=1

2∑
m,n=1

Qm;αQn;βXl Al;mn,

Q1;α = pα, Q2;α = p′
α, X1 = γ 5, X2 = /kγ 5, (3)

X3 = /k′
γ 5, X4 = [/k, /k′]γ 5.

This ensures that the amplitude is explicitly transverse:
kμMμν = k′

νMμν = 0. The invariant amplitudes Al;mn ≡
Al;mn(s, s1, s2, t1, t2) are functions of the scalar Mandelstam
variables

s = (p + k)2, s1 = (p′ + k′)2, s2 = (p′ + q)2,

t1 = (k − k′)2, t2 = (k − q)2. (4)

The number of invariant amplitudes coincides with the num-
ber of helicity amplitudes. Note that parity conservation does
not lead to a reduction of the number of independent ampli-
tudes because a parity-violating structure can be made parity
conserving by multiplying it with the pseudoscalar quantity
εμνρσ pμ p′

νkρk′
σ , which cannot be expressed unambiguously

as a function of the Mandelstam variables introduced above.
The amplitudes Al;mn are not free of kinematical singularities
or constraints, which can be fixed by finding an appropriate
linear transformation. This might be relevant for an analysis
based on dispersion relations but is not crucial for our purely
perturbative calculation. Therefore, we stick to the above-
mentioned basis.

In isospin space, each Al;mn can be decomposed into a
linear combination of four structures2

Aa = B1 δ3a 1 + B2 δ3a τ3 + B3 τa + B4 iε3ab τb, (5)

2Here, we suppress the indices l , m, and n but show explicitly the
isospin indices.
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where τa are the Pauli matrices. There are four possible chan-
nels of the radiative pion photoproduction reaction, namely

1. γ p → γ pπ0,

2. γ p → γ nπ+,

3. γ n → γ nπ0,

4. γ n → γ pπ−. (6)

The amplitude in the isospin basis can be transformed into the
particle basis by means of the following relations:

1. ζ †
p A3ζp = B1 + B2 + B3,

2.
1√
2
ζ †

n (A1 − iA2)ζp =
√

2(B3 − B4),

3. ζ †
n A3ζn = B1 − B2 − B3,

4.
1√
2
ζ †

p (A1 + iA2)ζn =
√

2(B3 + B4), (7)

with ζp = (1, 0)T and ζn = (0, 1)T .
Our calculations are carried out in the center of mass (c.m.)

frame with k = (Eγ , k), k′ = (Eγ ′ , k′), and q = (Eπ , q),
where Eγ = |k|, Eγ ′ = |k′|, and Eπ = √

M2
π + q2. We choose

our coordinate system such that

k =
⎛⎝ 0

0
Eγ

⎞⎠,

k′ = Eγ ′

⎛⎝sin ϑγ ′ cos ϕγ ′

sin ϑγ ′ sin ϕγ ′

cos ϑγ ′

⎞⎠, and (8)

q = |q|
⎛⎝sin ϑπ cos ϕπ

sin ϑπ sin ϕπ

cos ϑπ

⎞⎠.

The differential cross section for a reaction 1 + 2 → 3 + 4 +
5 is given by (the notation is obvious)

dσ = 1

2
√

λ
(
s, m2

1, m2
2

) (2π )4 δ(4)

×
(

5∑
j=3

p j − p1 − p2

)
|M|2

5∏
j=3

d3 p j

(2π )32Ej
, (9)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. For radia-
tive pion photoproduction, this equation turns into

dσ = 1

s − m2
N

1

16(2π )5EN ′
δ(EN ′ + Eγ ′ + Eπ − √

s)

× |M|2Eγ ′ |q|dEγ ′d�γ ′dEπd�π, (10)

where EN ′ =
√

m2
N + (q + k′)2 is the energy of the outgoing

nucleon and �γ ′ (�π ) is the solid angle corresponding to the
emitted photon (pion).

In this work, we focus on the polarized and unpolarized dif-
ferential cross sections dσ

d�γ ′ and dσ
d�π

, dσ
dEγ ′ , which are readily

obtained from Eq. (10) by integrating over remaining vari-
ables. For the unpolarized cross section, one sums in Eq. (10)
over the polarizations of the outgoing particles and averages
over the polarizations of the incoming particles. We also con-
sider several further polarization-dependent observables. The
linear photon polarization asymmetry for a fixed direction of
the outgoing pion is given by

�π = (dσ⊥/dEγ ′d�π ) − (dσ‖/dEγ ′d�π )

(dσ⊥/dEγ ′d�π ) + (dσ‖/dEγ ′d�π )
, (11)

where σ⊥ (σ‖) are the cross sections for the initial photon
polarizations that are perpendicular (parallel) to the plane
spanned by the incoming photon and outgoing pion momenta.
The superscript π signifies the choice ϕπ = 0. The circular
photon polarization asymmetry for a fixed direction of the
outgoing pion is defined according to Ref. [34] as

�π
circ = 2

π

∫
d�γ ′2 sin ϕγ ′ (dσ+ − dσ−)∫

d�γ ′ (dσ+ + dσ−)
, (12)

where we introduce the shorthand notation for the polarized
cross sections according to

dσ± = dσ±
dEγ ′d�γ ′d�π

. (13)

The subscript ± stands for the incoming photon helicity λ =
±1. Analogously, we define the circular photon polarization
asymmetry for a fixed direction of the outgoing photon

�
γ

circ = 2

π

∫
d�π2 sin ϕπ (dσ+ − dσ−)∫

d�π (dσ+ + dσ−)
, (14)

where the superscript γ indicates the choice ϕγ ′ = 0.
Whenever the integration over the energy of the outgoing

photon Eγ ′ is performed, the lower limit (infrared cutoff) is
set to E−

γ ′ = 30 MeV in accordance with the experimental
methodology of Refs. [22,26].

We also analyze the ratio of the differential cross sections
for radiative and ordinary pion photoproduction weighted
with the bremsstrahlung factor introduced in Ref. [27]. For
the neutral channel, it is defined as

R = 1

σπ0
Eγ ′

dσ

dEγ ′
, (15)

with

σπ0 = e2

2π2

∫
d�πW (v)

(
dσ

d�π

)γ p→pπ0

,

W (v) = −1 + v2 + 1

2v
ln

(
v + 1

v − 1

)
, (16)

v =
√

1 − 4m2
N/(p′ − p)2

whereas for the charged channel, it is given by

R = 1

σπ+
Eγ ′

dσ

dEγ ′
, (17)

with

σπ+ = e2

2π2

∫
d�πW (v′)

(
dσ

d�π

)γ p→nπ+

,

v′ =
√

1 + 4mN Mπ/[(mN − Mπ )2 − (q − p)2]. (18)

The soft-photon theorem ensures that R
Eγ ′→0−→ 1 [27].
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III. EFFECTIVE LAGRANGIAN

Chiral perturbation theory is based on the effective La-
grangian consistent with symmetries of QCD. It contains an
infinite set of terms with increasing number of derivatives and
powers of quark masses. The terms of the effective Lagrangian
relevant for the calculation of the radiative-pion photoproduc-
tion amplitude at the order we are working are given by

Leff =
2∑

i=1

L(2i)
ππ + L(4)

WZW +
3∑

j=1

L( j)
πN +

2∑
k=1

L(k)
π� +

3∑
l=1

L(l )
πN�,

(19)

where the superscripts denote the order of the corresponding
term. The building blocks of the Lagrangian are the following:
the pion matrix field entering via U = u2,

U = 1 + i

F
τ · π − 1

2F 2
π2 − απ

i

F 3
π2τ · π

+
(

απ − 1

8

)
1

F 4
π4 + Oπ5, (20)

where F is the pion decay constant in the chiral limit and
απ is an arbitrary parameter that does not affect observables;
the nucleon isodoublet field N ; the � isospin-3/2 Rarita-
Schwinger-spinor field �

μ
i , satisfying τi�

μ
i = 0; the vector

source vμ = −eQN Aμ = −e 1+τ3
2 Aμ, with the electric charge

e ≈ 0.303 and the electromagnetic field Aμ; and the axial
source aμ.

The covariant derivatives are defined as

∇μU = ∂μU − irμU + iU lμ,

DμN = (∂μ + �μ)N, (21)

Dμ
i j�

ν
j = (∂μ + �μ)�ν

i − iεi jkTr(τk�
μ)�ν

j ,

with

lμ = vμ − aμ, rμ = vμ + aμ,

�μ = 1
2 [u†(∂μ − irμ)u + u(∂μ − ilμ)u†]. (22)

We also introduce the quantities

uμ = i[u†(∂μ − irμ)u − u(∂μ − ilμ)u†],

w
μ
i = 1

2 Tr(τiu
μ),

w
μν
i = 1

2 Tr(τi[D
μ, uν]),

χ± = u†χu† ± uχ†u, (23)

where χ = diag(M2, M2) and M is the pion mass to leading
order in quark masses. The field strength tensors are given by

Fμν
L = ∂μlν − ∂ν lμ − i[lμ]lν,

Fμν
R = ∂μrν − ∂νrμ − i[rμ]rν,

F±
μν = uFL,μνu† ± u†FR,μνu,

F±
i,μν = Tr(τiF

±
μν ). (24)

The pionic part of the effective Lagrangian reads [40]

L(2)
ππ = F 2

4
Tr((∇μU )†∇μU ) + F 2

4
Tr(χ+),

L(4)
ππ = l3

16
Tr(χ+)2 + l4

16
{2Tr(∇μU (∇μU )†)Tr(χ+) + Tr(2[(χU †)2 + (Uχ†)2] − 4χ†χ − χ2

−)}

+ l5
2

[
2Tr

(
FR,μνUFμν

L U †
) − Tr

(
FL,μνFμν

L + FR,μνFμν
R

)]
+ il6

2
Tr(FR,μν∇μU (∇νU )† + FL,μν (∇μU )†∇νU ) + · · · . (25)

The term from the Wess-Zumino-Witten (WZW) Lagrangian relevant for our calculation has the form3 [41,42]

L(4)
WZW = e2

32π2F
εκλμνFκλFμνπ3, (26)

where Fμν = ∂μAν − ∂νAμ.
The leading-order pion-nucleon Lagrangian reads

L(1)
πN = N̄

(
i /D − m + g

2
/uγ 5

)
N, (27)

where m is the bare nucleon mass and g is the bare axial coupling constant of the nucleon. The second- and third-order pion-
nucleon Lagrangians depend on the low-energy constants ci and di:4

L(2)
πN = N̄

{
c1Tr(χ+) + σμν

[
c6

8mN
F+

μν + c7

8mN
Tr(F+

μν )

]}
N + · · · ,

3We use the convention ε0123 = 1.
4In the definitions of the constants, the physical nucleon mass mN is used.
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L(3)
πN = N̄

[
− i

d8

2mN
εμναβTr(F̃+

μνuα )Dβ − i
d9

2mN
εμναβTr(F+

μν )uαDβ − i
d20

8m2
N

γ μγ 5[F̃+
μν, uλ]Dλν

]
N + H.c.

+ N̄

[
d16

2
γ μγ 5Tr(χ+)uμ + d18

2
iγ μγ 5[Dμ, χ−] + d21

2
iγ μγ 5[F̃+

μν, uν] + d22

2
γ μγ 5[Dν, F−

μν]

]
N + · · · , (28)

with σμν = i
2 [γ μ]γ ν and F̃±

μν = F±
μν − 1

2 Tr(F±
μν ); see Ref. [43] for the full list of terms.

The relevant terms quadratic in the � field are given by [36,44]

L(1)
π� = −�̄i,μ

[
(i /Di j − m̊�δi j )g

μν − i
(
γ μDν

i j + γ νDμ
i j

) + iγ μ /Di jγ
ν + m̊�γ μγ νδi j + g1

2
gμν/uγ 5δi j

]
� j,ν ,

L(2)
π� = −ic�

1 �̄i,μTr(χ+)σμν�i,ν + c�
6

8Re(m�)
�̄i,μF+

κλσ
κλ�

μ
i + c�

7

8Re(m�)
�̄i,μTr(F+

κλ)σκλ�
μ
i + · · · , (29)

where m̊� stands for the bare � mass and m� for the physical � mass (complex pole mass). The terms in L(2)
π� are modified as

compared to Ref. [44] in analogy with the pion-nucleon Lagrangian. However, they are equivalent up to a �-field redefinition.
We also need the following terms from the �-to-nucleon transition Lagrangian [44,45]:

L(1)
πN� = h

(
�̄i,μw

μ
i N + N̄w

μ
i �i,μ

)
,

L(2)
πN� = i

b1

2
�̄

μ
i F+

i,μκγ
κγ 5N + ib3�̄

μ
i wi,μκγ

κN − b6

mN
�̄

μ
i wi,μκDκN + H.c. + · · · , (30)

L(3)
πN� = h1

mN
�̄

μ
i F+

i,μκγ
5DκN − i

h15

2
�̄

μ
i Tr([Dκ ]F+

μλτ
i )σκλγ 5N + i

h16

2mN
�̄

μ
i Tr([Dκ ]F+

μλτ
i )γ λγ 5DκN + H.c. + · · · .

Note that all redundant off-shell parameters in LπN� and
Lπ� are set to zero as they have no observable effects; see
Refs. [46,47].

The renormalization of the low-energy constants (LECs)
appearing in the effective Lagrangian as well as the relations
between the bare and renormalized constants are discussed in
Sec. V.

IV. POWER COUNTING

A. Small-scale expansion

In chiral perturbation theory, the perturbative expansion
of the amplitude in small parameters is organized according
to a certain power counting. We start with considering the
power counting in the pion-nucleon threshold region, i.e.,
with the external particle momenta being | q | ∼ Mπ , and then
discuss its modification in the � region. In this work, we em-
ploy the so-called small-scale expansion scheme (ε scheme),
which treats the �-nucleon mass difference � = m� − mN ≈
300 MeV as being of order O(Mπ ). Therefore, the expansion
is performed in the parameter

ε ∈
{

q

�b
,

Mπ

�b
,

�

�b

}
, �b ∈ {Mρ, 4πFπ , mN }, (31)

where the mass of the ρ-meson Mρ , the nucleon mass mN ,
and the scale 4πFπ emerging from pion loops are regarded
as hard scales. The small-scale expansion was introduced for
heavy-baryon χPT in Ref. [36]. In the covariant formulation
of χPT it was applied, e.g., to pion-nucleon scattering [48]
and to nucleon Compton scattering [49].

Since both the � and the nucleon propagators count as
O(ε−1), the order D of any Feynman diagram can be com-

puted according to the formula [50]

D = 1 + 2L +
∑

n

(2n − 2)V M
2n +

∑
d

(d − 1)V B
d , (32)

where L is the number of loops, V M
2n is the number of purely

mesonic vertices of order 2n, and V B
d is the number of vertices

involving baryons of order d . We label purely pion-nucleon
contributions as qD and those containing � lines as εD. All
Feynman diagrams relevant for the present study are collected
in Figs. 10–25 of Appendix A for radiative pion photopro-
duction and in Figs. 26–35 of Appendix B for ordinary pion
photoproduction. The latter reaction is used to determine sev-
eral LECs serving as input for our calculation.

The leading tree-level contributions appear at order O(q).
However, for radiative neutral-pion photoproduction as well
as for ordinary neutral-pion photoproduction, such diagrams
are suppressed as 1/mN (in particular, because the diagrams
involving photon-pion couplings vanish).

Tree-level graphs involving � lines start to contribute
at order ε2 for both reactions. However, for radiative pion
photoproduction in the neutral channel, they are also 1/mN

suppressed and thus shifted to order ε3.
For the process γ N → γ Nπ , diagrams with the emitted

photon coupled to the outgoing or the incoming nucleon
are enhanced in case of ultrasoft photons (Eγ ′ � Mπ ). The
γ N → γ Nπ amplitude in this regime is determined by the
photoproduction amplitude [27] according to the soft-photon
theorem [51]. This theorem is satisfied automatically in our
scheme since the amplitude satisfies gauge invariance. That is
why we do not modify the power counting for this small part
of the phase space.

Loop diagrams first appear at order O(q3) for the purely
nucleonic graphs and ε3 diagrams involving � lines. Notice
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that not all ε3 diagrams are taken into account in our study, as
will be discussed in detail in the next subsections.

In what follows, we denote by qi (εi) the order i of a dia-
gram that follows directly from Eq. (32) without taking into
account possible additional enhancements or suppressions in
specific kinematical regions.

B. Power counting in the � region for radiative
pion photoproduction

The main goal of our study is to investigate the electro-
magnetic properties of the � resonance. Therefore, the energy
region of interest is the � region, i.e.,

√
s ≈ m�. Unlike in

the threshold region, in this energy regime new scales such as
Eγ − � and the � width come into play. This requires some
modification of the power counting.

There are two sources of enhancement (suppression) for
some of the contributions. The first one is due to a numerically
large value of the initial particle momenta (Eγ ∼ �) as com-
pared to the threshold kinematics and, especially, to the final
particle momenta. This makes the 1/mN suppression of the ε2

tree-level diagrams of Fig. 21 to be of order �/mN ∼ 1/3 in
contrast to the “genuine” ε3 diagrams of Fig. 22, which are
suppressed by a factor Eγ ′/�b coming from the second-order
vertices from L(2)

πN , L(2)
πN�, and L(2)

π� containing Fμν . On the
other hand, for the same reason, some of the nucleon prop-
agators (at least in the tree diagrams) are less enhanced as
compared to the threshold region; i.e., they are of order 1/�

rather than 1/Mπ (even though they are not distinguished in
the ε counting).

The second and main source of enhancement are the s-
channel � propagators in the 1�-reducible graphs. Those
propagators that have a pole in the s variable are enhanced
by a factor5

γ = �

|Im(m�)| , (33)

as compared to the threshold region [the maximal enhance-
ment is obtained for the energy

√
s = Re(m�)]. Formally, the

imaginary part of the � pole mass (or the � half-width), being
a one-loop effect, is of order O(q3) and, naively, we must
regard γ ∼ ε−2 and promote many contributions from orders
(in the threshold power counting) ε3, ε4, and even higher.
However, numerically (γ ≈ 6), this estimate is not justified
and γ is rather of order O(ε−1) due to a large value of the
πN� coupling constant. The enhancement with respect to
the nucleon propagator [counted as O(q−1)] is even smaller:

Mπ

|Im(m� )| ≈ 3. Therefore, we simply keep such factors of γ in
the following analysis when promoting the formally higher or-
der diagrams mentioned above. There are also � propagators
with a pole in the s2 variable, i.e., those which couple to the
πN system in the final state. Such propagators are enhanced
by a factor

γ̃ ≈ �

|√s − Eγ ′ − m�| . (34)

5We employ the complex-mass scheme; see Sec. V for details.

The enhancement is maximal (γ̃ ≈ 6) in the part of the phase
space where Eγ ′ ≈ √

s − Re(m�). For the energy closest to
the � pole

√
s = Re(m�), this enhancement affects only the

phase-space region of very soft emitted photons.
In our study, we concentrate predominantly on the neu-

tral channel, i.e., on the reaction γ p → γ pπ0. In this case,
motivated by the above-mentioned modifications in the �

region, we attribute various contributions to leading and next-
to-leading orders, to which we assign effective orders ε2

eff and
ε3

eff, respectively, according to the following power counting
rules:

(1) Leading order (ε2
eff):

(a) Nucleonic order-q1 tree-level diagrams in Fig. 10,
which are 1/mN suppressed for the neutral-pion
channel.

(b) Tree-level diagrams with � lines of order O(ε2)
shown in Fig. 21. While they are also suppressed
by a factor ∼�/mN , certain diagrams within this
set appear to be enhanced by the factor of γ

such as graphs in Figs. 21(b), 21(c)6 and/or by
a factor of γ̃ such as diagrams in Figs. 21(a),
21(b). Therefore, taking into account a numeri-
cally rather weak 1/mN suppression and a sizable
enhancement due to the factors of γ and γ̃ , we
expect these diagrams to be, at least, not less im-
portant than the above-mentioned q1 ones. In fact,
numerically, they do provide the dominant contri-
bution due to a large value of the γ N�-coupling
b̄1 ≈ 6m−1

N .
Note that we consider all subsets of diagrams con-

taining the same vertices (and therefore the same
combinations of LECs) together even if only some
of them are subject of a certain enhancement (sup-
pression) in order to ensure that gauge and chiral
symmetries are not violated.

(2) Next-to-leading order (ε3
eff):

(a) Nucleonic order-q2 tree-level diagrams in Fig. 11,
which are 1/mN suppressed.

(b) Nucleonic order-q3 tree-level diagrams in Figs. 12
and 13.

(c) Pion-nucleon loop diagrams of order O(q3) in
Figs. 14–20.

(d) Tree-level order-ε3 diagrams with � lines,
including the diagrams in Figs. 22(a)–22(i)
proportional to the � magnetic moment vertex.
This set contains the s-channel pole diagrams,
Figs. 22(a), 22(b), 22(e), and 22(h), and is
enhanced by a factor of γ . However, in contrast to
the second set of the leading-order diagrams, these
enhanced diagrams are proportional to Eγ ′/�b due
to insertions of vertices from L(2)

πN , L(2)
πN�, and L(2)

π�

containing Fμν (and not to Eγ /mN ), which leads
to a numerically smaller total enhancement factor.
For the same reason, there is no additional γ̃

6We mention only diagrams that yield nonvanishing contributions
for the neutral channel.
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enhancement for the diagram depicted in
Fig. 22(h) close to the � pole (

√
s = m�). A

moderate enhancement due to a factor γ̃ takes
place only at the energies above the � pole, which
we also include in the analysis (see Sec. VII).
From dimensional arguments, this set of diagrams
falls somewhere between the leading-order
terms and other next-to-leading-order terms.
Numerically, they turn out to yield rather
small contributions comparable with other
next-to-leading-order terms. Nevertheless, we
checked that promoting them to leading order
has very little effect on our results, including the
truncation error estimation.

(e) Tree-level order-ε3 diagrams with � lines con-
taining the subleading γ N� vertex from L(3)

πN�;
see Figs. 22(j)–22(s). This set of diagrams is
completely analogous to the second set of the
leading-order diagrams, the only difference being
the replacement of the second-order γ N� vertex
by the third-order one, leading to an extra factor of
Eγ /mN ∼ �/mN . The same kinds of suppression
and enhancement as in the case of the correspond-
ing leading-order diagrams apply also here.

(f) Loop corrections of order O(ε3) to the � pole
graphs. They include corrections to the γ N� ver-
tex in the previous set of diagrams (Fig. 23),
which are subject to the same types of enhance-
ment and suppression. The loop diagrams shown
in Figs. 24 form a gauge-invariant set together
with the ones from Fig. 23 and are also taken into
account. Given the rather narrow energy domain
we consider, the real parts of the loops in Fig. 23
merely renormalize the γ N� LECs b1 and h1.
We have explicitly verified this feature numeri-
cally by switching them on and off. Thus, only
the imaginary parts of such loops yield nontrivial
contributions. This is also the reason why we do
not include the analogous but technically more
complicated loop diagrams with � lines inside the
loops which generate no imaginary parts in the
considered energy region.7

(g) Tree-level diagrams of order ε3 with a � line
and one insertion of the Wess-Zumino-Witten
anomalous π0γ γ vertex are taken into account
as they are enhanced by a factor of γ̃ (but only
for energies above the exact � region since the
amplitude is proportional to Eγ ′ ); see Figs. 22(t)–
22(u). Moreover, for forward angles of the emitted
photon, we have t ≈ 0 and the pion propagator is
maximally enhanced. The numerical effect of such
diagrams turns out to be insignificant, which can
justify neglecting further ε3 diagrams that are not
subject to the γ enhancement. In particular, other

7The same argument applies to the � loop corrections to m�, gA,
c̄6, and c̄7.

ε3 loop diagrams that are not enhanced by a factor
of γ are not included in our analysis.

As already pointed out above, we do not take into
account order-ε3 diagrams with � lines inside loops.
Calculating such diagrams requires evaluating high-
rank-tensor loop integrals (up to five-point functions),
which is computationally extremely demanding. Our
expectation that such contributions are not important
at the order we are working is based, apart from
the arguments given above, on the relative numerical
insignificance of the pion-nucleon order-q3 loop di-
agrams (see Sec. VII for details) and the additional
suppression of the � propagators (inside loops) com-
pared to the nucleon propagators.

For radiative charged-pion photoproduction, we apply the
power counting analogous to the neutral channel. The main
difference is the absence of the 1/mN suppression for the
sets of order-O(q1), O(q2), O(ε2), O(ε3) diagrams due to the
possibility for photons to couple directly to pions. Therefore,
we obtain the following sets of leading (εeff), next-to-leading
(ε2

eff), and next-to-next-to-leading (ε3
eff) order diagrams based

on the enhancement arguments discussed above.

(1) Leading order (εeff):
(a) Nucleonic order-q1 tree-level diagrams; see

Fig. 10.
(b) Tree-level diagrams with � lines of order O(ε2)

enhanced by a factor of γ ; see Fig. 21.
(2) Next-to-leading order (ε2

eff):
(a) Nucleonic q2-tree-level diagrams; see Fig. 11.
(b) Tree-level ε3 diagrams with � lines involving

one insertion of the subleading γ N� vertex from
L(3)

πN� enhanced by a factor of γ ; see Figs. 22(j)–
22(s).

(c) Loop corrections of order O(ε3) to the �-pole
graphs; see Figs. 23–25.

(3) Next-to-next-to-leading order (ε3
eff):

(a) Nucleonic order-q3 tree-level diagrams; see
Figs. 12 and 13.

(b) Pion-nucleon loop diagrams of order O(q3); see
Figs. 14–20.

(c) Tree-level order-ε3 diagrams with � lines, includ-
ing the diagrams proportional to the � magnetic
moment vertex; see Figs. 22(a)–22(i). Note that
for the reaction γ p → γ nπ+, the diagram in
Fig. 22(i) is proportional to the �0 magnetic mo-
ment. However, this particular diagram contains
no enhancement factors like γ and, therefore, the
sensitivity of the results to μ�0 is expected to be
very weak.

(d) Tree-level diagrams of order ε3 with the � line
and the Wess-Zumino-Witten anomalous π0γ γ

vertex; see Figs. 22(t)–22(u).

We can summarize our discussion of the power counting
for radiative pion photoproduction by providing a modifica-
tion of Eq. (32) in the relevant kinematical regime:

Deff = D + δ1/mN − δ� + δEγ ′ , (35)

045203-7



J. RIJNEVEEN et al. PHYSICAL REVIEW C 103, 045203 (2021)

FIG. 1. An example of a loop diagram included in Ref. [34] and
neglected in the present work. All vertices are from the leading-order
Lagrangians L(2)

ππ , L(1)
πN , and L(1)

πN�, except the open circle that denotes
the subleading vertex from L(2)

πN�.

where

(1) δ1/mN = 1 if there is at least one leading-order γ NN
or γ N� vertex (1/mN suppression) while δ1/mN = 0
otherwise,

(2) δ� = 1 if there is a � propagator coupled to the initial
γ N system (a diagram is 1�-reducible) while δ� = 0
otherwise, and

(3) δEγ ′ = 1 if there are two γ NN , γ N� or γ�� vertices
of order 2 and higher (i.e., if at least one of them
couples to the emitted photon and involves factors of
Eγ ′ ) while δEγ ′ = 0 otherwise.

Since all diagrams are split into gauge-invariant subsets,
a diagram of the smallest order determines the order of the
whole subset. Further, as already mentioned above, all loop
diagrams with � lines inside the loops are demoted to higher
orders by phenomenological arguments.

Finally, we would like to underline the key differences
between our scheme and the δ-counting approach of Ref. [34],
which we use for comparison. In the δ-counting scheme, the
single and multiple �-pole graphs are stronger promoted as
the � half-width is regarded as being of order O(q3) ∼ O(δ3).
Therefore, one includes the pion-nucleon loop corrections to
the �-pole graphs (including the �-magnetic-moment contri-
bution) such as the one shown in Fig. 1, which appear at higher
order in our scheme (numerically, we found them indeed
being small). On the other hand, at next to leading order in the
δ scheme considered in Ref. [34], the purely nucleonic order-
q3 loop and tree-level graphs (Figs. 12–20) are not included
(being of higher order). However, our analysis shows that
these contributions are important in order to achieve a better
agreement with experimental data. The authors of Ref. [34]
also perform the expansion of the amplitude in energy of the
emitted photon Eγ ′ , which converges slowly apart from the
region of very soft photons.

C. Power counting for pion photoproduction

In order to determine several LECs needed as an input
for radiative pion photoproduction, we consider ordinary pion
photoproduction from the threshold region to the lower �

energy region; see Sec. VI for details. We apply the power
counting scheme consistent with the one used for radiative
pion photoproduction and described in Sec. IV B. In particu-
lar, we take into account all tree-level and loop contributions

up to order q3. We also include the order-ε2 and ε3 tree-level
diagrams enhanced in the vicinity of the � pole with the
leading and subleading γ N� vertices as well as the loop
corrections to them; see Appendix B for the whole set of
considered diagrams. Analogously to radiative pion photopro-
duction, we neglect diagrams involving loops with � lines
inside.

Since we analyze simultaneously both the threshold region
and the � region, we choose to assign to each diagram an
order that follows from the standard threshold ε counting
[see Eq. (32)] when estimating the truncation uncertainty.
One could, in principle, introduce a different power counting
for different energy regions in order to take into account the
enhancement of the �-pole graphs. However, this would lead
to unnecessary complications without significantly affecting
the results. We have verified this explicitly by promoting the
�-pole graphs one order lower for the multipoles coupled to
the � in the s channel.

Note further that the fits to the photoproduction multipoles
are performed in the isospin basis, which corresponds to a
linear combination of the neutral and charged channels. We
therefore do not introduce any special treatment for the neutral
channels, where certain 1/mN suppressions appear.

V. RENORMALIZATION

In this section, we describe the renormalization of the
low-energy constants and the relations between the bare
parameters of the effective Lagrangian in Eq. (19), their renor-
malized values, and physical quantities.

The loop integrals appearing in our calculation contain
ultraviolet divergencies, which we handle by means of di-
mensional regularization. Divergent parts of the integrals are
canceled by the counter terms entering the bare parameters of
the Lagrangian so that the resulting amplitude is expressed
in terms of the finite renormalized LECs, physical masses,
and coupling constants. Due to the presence of an extra hard
scale corresponding to the nucleon or � mass, baryonic loops
also generate power-counting-violating terms, i.e., terms of
a lower order as compared to the estimation based on di-
mensional power counting in Eq. (32) [52]. These terms are
local and can be absorbed by a redefinition of the LECs of
the effective Lagrangian at lower orders. Such a procedure is
realized in a systematic way in the extended on-mass-shell
scheme (EOMS) [32]. However, for radiative (ordinary) pion
photoproduction, there are no contact interactions at order
lower than q5 (q3) except for the ones fixed by symmetries.
Therefore, no power-counting-breaking terms appear at the
order we are working, and the EOMS scheme is essentially
equivalent to the M̃S [32,40] scheme for the case at hand.

For the masses and wave functions as well as for the πNN ,
πN�, γ NN , γ N�, and γ�� coupling constants, we impose
the on-shell renormalization conditions as this is more ap-
propriate for calculating physical on-shell amplitudes. Notice
that in the course of renormalization, when calculating the
matrix elements of subprocesses with two, three, and four ex-
ternal lines, the same sets of diagrams as in the corresponding
subgraphs in the radiative-pion-photoproduction diagrams are
taken into account.
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In the subsections below, we provide the renormalization
conditions for all relevant LECs. The explicit expressions for
the counter terms are given in Appendix C.

A. Pion mass, field, and decay constant

For the pion field, the renormalization conditions

�π

(
M2

π

) = 0, �′
π

(
M2

π

) = 0,

and 〈0|Aμ
i (0)|π j (q)〉 = iqμδi jFπ , (36)

with �π (q2) and Aμ
i being the pion self-energy and the axial

current, respectively, relate the constants M, Zπ , F , l3, and
l4 to the physical quantities Mπ and Fπ and the Z factor Zπ .
The fourth-order LECs l3 and l4 do not explicitly enter the
amplitude of the considered processes at the order we are
working after renormalization.

B. Nucleon mass and field

For the nucleon, analogous renormalization conditions

�N (mN ) = 0 and �′
N (mN ) = 0, (37)

with �N (/p) being the nucleon self-energy, fix the constants
m and ZN . In turn, an explicit dependence of the radiative
(ordinary) pion-photoproduction amplitude on c1 disappears
after renormalization.

C. �-resonance mass and field

We implement the complex-mass scheme [53–55] for the
� resonance and take into account its width explicitly. Such
an approach has been successfully employed in various appli-
cations of chiral perturbation theory; see, e.g., Refs. [48,56–
59]. In the complex mass scheme, the bare � mass m̊�, which
is real, is split into the physical complex pole mass m� =
Re(m�) − i|Im(m�)| and the counter term m̊� = m� + δm�.
The counter terms δm� and δZ� are determined from the
renormalization condition at the � pole:

��(m�) = 0 and �′
�(m�) = 0. (38)

Loop corrections to the self-energy of the � turn out to con-
tribute beyond the order we are working. This holds also in
the � region.

As in the case of the nucleon, the constant c�
1 does not

appear explicitly in our calculation after renormalization.

D. The πNN coupling constant

Since the nucleon axial coupling constant gA enters our
calculation only through the πNN vertex, it is natural to use
the renormalization condition for the pseudoscalar coupling
gπNN defined as the πNN vertex function for all three particles
being on mass shell:

ū(p′)�i(p, p′, q = p′ − p)u(p) = gπNNτiū(p′)γ 5u(p),

q2 = M2
π . (39)

This condition relates the constants g, d18, d16 to the physical
quantity gπNN . We therefore follow the common procedure in
the single- and few-nucleon sectors of chiral EFT (see, e.g.,

Refs. [60–64]) and introduce the effective axial coupling gA

defined via the Goldberger-Treiman relation [65],

gA = Fπ

mN
gπNN , (40)

which differs from the physical nucleon axial coupling, de-
fined as the matrix element of the axial current, by higher
order contributions that give rise to the Goldberger-Treiman
discrepancy. This ensures that the amplitudes relevant for the
present work do not explicitly depend on the constants d16 and
d18 anymore.

E. Electromagnetic form factors of the nucleon

For the renormalization of the γ NN vertex, we consider
the matrix element of the electromagnetic current Jμ between
the 1-nucleon states:

〈N (p′)|Jμ(0)|N (p)〉

= ū(p′)
(

γ μF1(Q2) + iσμνkν

2mN
F2(Q2)

)
u(p), (41)

where Q2 = −(p − p′)2 and the functions F1(Q2) and F2(Q2)
are the Dirac and Pauli form factors of the nucleon, respec-
tively. The renormalized constants c̄6 and c̄7 are related to the
nucleon magnetic moment and defined by the relations

c̄6 = F p
2 (0) − F n

2 (0), c̄7 = F n
2 (0), (42)

where the superscript p(n) stands for the proton (neutron).

F. The πN� coupling constant

In a complete analogy with gA, we define the effective
axial nucleon-to-� transition coupling constant hA through
the corresponding gπN� coupling gπN� ≡ gπN�(M2

π ) as

hA = FπRe(gπN�), (43)

where the form factor gπN�(q2) is defined in terms of the
πN� vertex function [66]:

ū(p′)�μ
i j (p, p′, q= p′−p)u�

j;μ(p)=gπNN (q2)qμū(p′)u�
i;μ(p).

(44)

Here, the momentum of the � resonance is taken at the pole:
p2 = m2

�. Since the � particle, being unstable, appears only
in the intermediate states, the matrix elements in Eq. (44)
are defined as the residues at the poles of the corresponding
matrix elements between stable particles that couple to the �

[67]. These poles appear from the dressed � propagator. In
turn, the spinors u�

i;μ(p), which are functions of the complex
mass, are just the formal analytic continuations of the spinors
defined for real masses and are related to the pole part of the
propagator:

Gμν
� i j (p) = i(/p + m�)

p2 − m2
�

(
− gμν + 1

3
γ μγ ν − 1

3

pμγ ν − pνγ μ

m�

+ 2

3

pμ pν

m2
�

)(
δi j − 1

3
τiτ j

)
+ · · ·

=
∑

λ u�
i;μ(p, λ)ū�

j;ν (p, λ)

p2 − m2
�

+ · · · , (45)
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where λ runs over all spin-isospin states of � and the dots
stand for the nonpole part of the dressed propagator. The same
treatment applies to all other matrix elements involving the �

state that appear in the present work.
Note that taking the real part in the definition in Eq. (43) is

not necessary at the order we are working since there are no
loop corrections to hA. Equation (43) relates the bare constants
h, b3, b6, with hA and allows one to get rid of the redundant
constants b3 and b6 by a redefinition of hA. There remains
a residual contribution of b3 and b6 to the (radiative) pion-
photoproduction amplitude coming from the nonpole parts of
tree graphs involving � lines, which can, up to terms of a
higher order, be absorbed by the shifts in di’s given in Sec. V J.
Therefore, one can safely set b3 = 0 and b6 = 0.

G. The π�� coupling constant

In our calculation, the π�� vertex appears only at its
leading order. Therefore, the π�� coupling g1 does not get
renormalized.

H. Electromagnetic N� transition form factors

The electromagnetic N� transition matrix elements can be
parameterized using three form factors Gi, e.g., via [68]

〈�(p′)|Jμ(0)|N (p)〉

= −
√

2

3
ū�

ν (p′)
(

γ μkν − /kgμν

2
G1(Q2)

+ k · p′gμν − kν p′μ

mN
G2(Q2)

+ kμkν − k2gμν

mN
G3(Q2)

)
iγ 5u(p), (46)

where Q2 = −(p − p′)2 and the isospin indices are sup-
pressed; see also Ref. [69] for a discussion of subtleties related
with matrix elements of unstable particles. We impose the
renormalization conditions

b̄1 = Re[G1(0)], h̄1 = Re[G2(0)]. (47)

The � momentum is taken at the pole: (p′)2 = m2
�. Notice

that the first contributions of contact terms to G3 appear at
order ε4. Equation (47) relates the bare constants b1, h1, h15,
and h16 with b̄1 and h̄1 and allows one to get rid of the
redundant constants h15 and h16. The residual contributions of
the LECs h15 and h16 to (radiative) pion-photoproduction am-
plitude coming from the nonpole parts of tree graphs involving
� lines can, up to terms of a higher order, be absorbed by the
shifts in di’s given in Sec. V J. Therefore, we set h15 = 0 and
h16 = 0.

The divergent and power-counting breaking parts of the
loop corrections to the electromagnetic N� transition form
factors can be absorbed by real counter terms since we do not
include loop contributions with internal � lines. Therefore, in
the present calculation, we do not need to introduce complex
counter terms. When such loops are to be included at higher
orders, it will be straightforward to fix the imaginary parts of
counter terms within the EOMS scheme; see Ref. [48].

Notice that in the literature, one also finds another conven-
tion for the γ N� terms in the effective Lagrangian in terms
of the couplings gM and gE ; see, e.g., Refs. [34,70]. For the
sake of completeness, we give the relation between them and
b̄1 and h̄1 obtained from the on-shell matching:

b̄1 = 3
m�

mN (mN + m�)
gM , h̄1 = 3

2

1

mN + m�

(gE + gM ).

(48)

I. Electromagnetic form factors of the � resonance

The matrix element of the electromagnetic current Jμ be-
tween the � states can be written in terms of the four form
factors F ∗

i as [71]8

〈�(p′)|Jμ(0)|�(p)〉

= −ūα (p′)
{

F ∗
1 (Q2)gαβγ μ

+ i

2m�

[
F ∗

2 (Q2)gαβ + F ∗
4 (Q2)

kαkβ

4m2
�

]
σμνkν

+ F ∗
3 (Q2)

4m2
�

[
kαkβγ μ − 1

2
/k(gαμkβ + gβμkα )

]}
uβ (p),

(49)

where Q2 = −(p − p′)2. The form factors F ∗
1 and F ∗

2 for zero
momentum transfer are given by the electric charge and the
dipole magnetic moment of the �:

F ∗
1 (0) = Q� ≡ 1 + 3τ3

2
,

μ� = e

2m�

{Q� + Re[F ∗
2 (0)]}. (50)

The imposed renormalization condition on c̄�
6 and c̄�

7 has the
form

μ� = e

2m�

(
Q� − 1 + τ3

2
c̄�

6 − c̄�
7

)
. (51)

Contributions of contact terms to F ∗
3 and F ∗

4 start at higher
orders. Notice that at the order we are working, there are no
loop corrections to the � electromagnetic form factor and no
counter terms for c�

6 and c�
7 , and, therefore, c̄�

6 = c�
6 and

c̄�
7 = c�

7 . For the same reason, the imaginary part of the �

magnetic moment is equal to zero in our calculation.
In the particle basis, the MDM for each � state reads

μ�++ = e

2m�

(
2 − c̄�

6 − c̄�
7

)
,

μ�+ = e

2m�

(
1 − 2

3
c̄�

6 − c̄�
7

)
,

μ�0 = e

2m�

(
−1

3
c̄�

6 − c̄�
7

)
,

μ�− = e

2m�

(−1 − c̄�
7

)
. (52)

8Notice that in this subsection we use the notation m� ≡ Re(m�).
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J. Other LECs

The renormalized constants l̄5 and l̄6 from the pionic La-
grangian L(4)

ππ are related to the corresponding bare quantities
through [40]

li = βli
l̄i

32π2
−βli

A0
(
M2

π

)
2M2

π

, with βl5 = −1

6
, βl6 = −1

3
.

(53)

The pion tadpole function in d ≈ 4 dimensions is equal to [see
Eq. (D1)]

A0
(
M2

π

) = −2M2
π

[
λ̄ + 1

32π2
ln

(
M2

π

μ2

)]
, (54)

with the divergent quantity λ̄ given by

λ̄ = 1

16π2

(
1

d − 4
+ 1

2
[γE − ln(4π ) − 1]

)
. (55)

Here, γE is the Euler-Mascheroni constant and μ is the
renormalization scale. Notice that only the renormalization-
scale-independent linear combination l̃5;6 ≡ l̄5 − l̄6 ∝ (2l5 −
l6) appears in our calculation.

The renormalized constants d̄8, d̄9, d̄20, d̄21, and d̄22 appear-
ing in the photoproduction contact terms are related to the bare
quantities as follows:

di = d̄i + δdi − βdi

F 2
π

A0
(
M2

π

)
2M2

π

, (56)

with the β functions:

βd8 = gAh2
A

18
, βd9 = 0, βd20 = −2gAh2

A

9
,

βd21 = gAh2
A

9
, βd22 = 0, (57)

and the shifts due to the absorption of the constants b3, b6, h15,
and h16 by the redefinition of hA, b1, and h1:

δd8 = δd20 = −δd21 = −b1(b3 + b6) + 2hA(h15 + h16)

9
,

δd9 = δd22 = 0. (58)

We have calculated the β functions in Eq. (57) using the
power counting described in Sec. IV C. In general, there are
other divergent contributions proportional to gAh2

A, such as
π� loops, that are neglected in our scheme.

Notice that in the �-less case, all the β functions are equal
to zero. We further emphasize that the LECs d̄21 and d̄22

always appear in the linear combination d̄21;22 ≡ d̄21 − d̄22/2
in our calculation.

As was already mentioned, we use the M̃S renormalization
scheme throughout our work; i.e., we set λ̄ = 0. We have
checked that the residual renormalization scale dependence
of the amplitude is of a higher order than we are working. In
the numerical calculations, the renormalization scale is set to
μ = mN .

VI. DETERMINATION OF THE LECS FROM PION
PHOTOPRODUCTION

We now focus on the determination of the low-energy
constants b̄1, h̄1, d̄8, d̄9, d̄20, and d̄21;22, which serve as input
parameters for the study of radiative pion photoproduction,
from the analysis of ordinary pion photoproduction. The con-
stants d̄8, d̄9, d̄20, and d̄21;22 correspond to the γ N → πN
contact terms, whereas b̄1 and h̄1 control the strength of
the leading and subleading γ N� vertices. The latter two
are found to have the largest impact on the radiative-pion-
photoproduction amplitude.

There have been several studies of pion photoproduction
within covariant χPT, both in the �-less [72–74] and the
�-full approach [70,75–77]; see also Ref. [78] for a pioneer-
ing calculation in relativistic χPT and [29,79–84] for related
studies in the heavy-baryon approach. However, we cannot
rely on the values of LECs from these studies as we have
to treat pion photoproduction consistently with the scheme
that we implement for radiative pion photoproduction. For this
reason, we have to perform our own analysis.

We consider both �-less and �-full approaches to pro-
vide the input parameters for the corresponding versions of
the radiative-pion-photoproduction amplitude. For the �-full
analysis, we take into account, apart from the low-energy
region, also a part of the � region: 1150 MeV � √

s �
1250 MeV. At energies

√
s > 1250 MeV, one can hardly

apply χPT due to the strong nonperturbative dynamics in
the pion-nucleon system. We exclude energies very close to
the πN threshold (

√
s � 1150 MeV) from the analysis to

avoid possible threshold artifacts due to the constant � width
in our approach as a consequence of using the complex-
mass scheme. In the �-less approach, we exclude the �

region completely and consider the energies 1090 MeV �√
s � 1200 MeV. We work in the isospin-symmetric limit

and therefore exclude energies
√

s � 1090 MeV from the
analysis in order to minimize the impact of the pion
mass difference.

Ideally, one would have to fit the whole set of available
photoproduction observables in the considered energy region,
a task which requires a considerable effort and deserves a
separate study. In this work, we follow a more pragmatic
approach and fit the photoproduction multipoles in the isospin
basis taken from empirical partial wave analyses. The def-
inition of the photoproduction multipoles and their relation
to the invariant amplitudes can be found, e.g., in the original
paper by Chew et al. [85]. It is sufficient to consider only the
real parts of the multipoles because the imaginary parts are
not independent and constrained by unitarity as follows from
Watson’s theorem [86].

In Fig. 2, the real parts of the s- and p-wave photoproduc-
tion multipoles for the isospin I = 3/2 channel and for the
proton and neutron isospin I = 1/2 channel from the MAID
analysis [87] and from the energy-dependent MA19 [88,89]
and energy-independent [90] SAID analyses are shown. One
can see that the dominant contributions come from the s-wave
(E0+) multipoles and M3/2

1+ multipole, which corresponds to
the magnetic excitation of the � isobar in the s channel.
For both electric and magnetic � multipoles (E3/2

1+ and M3/2
1+ )
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FIG. 2. �-less fits to the real parts of the s- and p-wave photoproduction multipoles. The solid, dashed, and dotted lines denote the q3, q2,
and q1 calculations, respectively. The bands indicate the estimated truncation errors at order q3. The filled circles show the results of the MAID
partial wave analysis from Ref. [87], while the squares (diamonds) are the results of the energy-dependent (energy-independent) SAID partial
wave analysis from Refs. [88,89] (Ref. [90]).

the agreement between the MAID and the SAID analyses is
quite good. Taking into account these observations and the
fact that we are mostly concerned about the γ N� couplings,
we choose to fit first only the I = 3/2 multipoles. For the
�-full fit, we consider four s- and p-wave I = 3/2 multipoles:
E3/2

0+ , M3/2
1+ , M3/2

1− , and E3/2
1+ , which are most sensitive to the

LECs di and the �-pole contributions. In the �-less case, we
exclude the E3/2

1+ multipole from the fit because it receives no
contributions from the LECs that we adjust (in the absence of
the �-pole graphs), apart from the residual 1/mN effects. The
constant d̄9 does not contribute to any of the I = 3/2 multi-
poles and must be determined subsequently from a separate
fit to I = 1/2 multipoles as will be described below.

For the fit, we use the MAID partial wave analysis which,
however, does not provides uncertainties. Therefore, we fol-
low a common practice (see, e.g., the analysis of pion-nucleon
elastic scattering in Ref. [91]) and assign the same relative
error of 5% for all data points using energy steps of 2 MeV.
We have varied the value of the relative error in the range
1–15% and found that its choice has almost no impact on
the result of the fit and very little impact on the value of the
χ2 since the resulting uncertainty appears to be dominated by
the truncation error within the small scale (chiral) expansion.
Our approach to estimating the truncation errors is discussed
in Sec. VII C. We combine the truncation uncertainty with
the “experimental” errors and minimize the objective χ2

3/2
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function

χ2
3/2 =

∑
i

(Oexp
i − O(3)

i

δOi

)2

,

δO =
√(

0.05 Oexp
i

)2 + (δO(3) )2, (59)

to obtain the central values of the fit parameters. Here, the
summation runs over all fitted I = 3/2 multipoles and energy
points Oi. Oexp

i refers to the empirical value of the corre-
sponding multipole from the MAID analysis, while O(3)

i is its
theoretical value calculated at order q3 (ε3) for the �-less (�-
full) case. The truncation errors at order q3 (ε3) are denoted as
δO(3). The uncertainties of the parameters are extracted from
the covariance matrix, which is approximated by the inverse
of the Hessian matrix:

Cov(yi, y j ) = H−1
i j , with

Hi j = 1

2

∂2χ2
3/2

∂yi∂y j

∣∣∣∣
y=ȳ

, (60)

y = (b̄1, h̄1, d̄8, d̄20, d̄21;22),

and ȳ denoting the vector of the best-fit parameters.
To determine the LEC d̄9 we proceed as follows. We as-

sume that the constants b̄1, h̄1, d̄8, d̄20, and d̄21;22 = d̄21 −
d̄22/2 are relatively well constrained from the fit to the I =
3/2 multipoles and can be used as input for a determination of
d̄9 from I = 1/2 multipoles. We have verified this assumption
by checking that the uncertainties of the LECs determined
from the I = 3/2 fit have little impact on the results of the
I = 1/2 fit. The constant d̄9 contributes to four multipoles
(excluding the 1/mN effects), namely pM1/2

1+ , nM1/2
1+ , pM1/2

1− ,

and nM1/2
1− . Unfortunately, reasonable convergence is not yet

reached in the case of pM1/2
1− and nM1/2

1− , as can be seen from
Figs. 2 and 3. The situation remains the same independent of
what value of d̄9 one adopts. Moreover, the fit values of d̄9 do
not (or very little) depend on whether these two multipoles
are included into the χ2 or not (of course, this affects the
value of the χ2 itself). We, therefore, retained only the pM1/2

1+
and nM1/2

1+ multipoles in the final fit. The χ2
1/2 is defined

analogously to the case of I = 3/2 fit [see Eq. (59)], and the

uncertainty of d̄9 is given by δd̄9 = [ 1
2

∂2χ2
1/2

(∂ d̄9 )2 ]
−1/2

, where the
derivative is taken at the minimum.

Special attention should be paid to the choice of the renor-
malized � mass m�, which determines our complex mass
scheme. Although the scattering amplitude has a pole at s =
m2

�, it does not necessarily mean that m� must coincide with
the physical � pole mass because our theory is not meant to
be applicable in a vicinity of the complex � pole. Rather, m�

must be chosen in such way as to obtain an efficient scheme
from the convergence point of view. In fact, the photopro-
duction amplitude at order ε2 is quite sensitive to m� since
the real part of the s-channel �-pole diagram vanishes for
the magnetic � multipole M3/2

1+ at
√

s = m�, and there are
no other free parameters to compensate for the shift in the
position of the resonance. As a result, an inappropriate choice
of m� would lead to large discrepancies with experimental

TABLE I. Low-energy constants obtained from a �-less fit to
the photoproduction multipoles using the partial-wave analysis of
Ref. [87] in units of GeV−2.

d̄8 d̄9 d̄20 d̄21;22

Order-q3 fit value: −4.8(2) 0.01(1) −8.4(3) 9.2(3)

data at order ε2, which, in turn, would have a large impact
on the estimated truncation errors making the fit less stable.
Therefore, we decided to fit m� (along with the coupling con-
stant b1) to the M3/2

1+ multipole at order ε2. We obtain m� =
1219.3 − 53.7 i MeV, which is rather close to the PDG value
of the pole mass 1210 − 50 i [92]. The same value is then used
in our order-ε3 calculations. The value of the LEC b1 obtained
from the above-mentioned ε2 fit, b1 = 5.7m−1

N , is almost the
same as the one extracted from the ε3 fit (b1 = 5.4m−1

N ),
which is a nice indication of the stability of the scheme. As
a consequence, the truncation errors do not depend on which
of the two values of b1 is chosen for the ε2 amplitude.

The values of the low-energy constants obtained from the
�-less (�-full) fit are collected in Table I (Table II). The
reduced χ2/ndof (ndof stands for the number of degrees of
freedom) for the I = 3/2 (I = 1/2) fit is equal to 0.4 (0.3)
in the �-less case and to 0.2 (2.5) in the �-full case, which
we find satisfactory given our somewhat simplistic approach
to the statistical errors. Small (large) values of the reduced
χ2 may indicate the overestimation (underestimation) of the
truncation errors, in particular, by using an inappropriate value
of the breakdown scale �b. Nevertheless, we prefer to follow
the procedure consistent with radiative pion photoproduction
and adopt the value �b = 700 MeV; see Secs. VII C and
VII D. We emphasize again that the extracted values of b̄1

and h̄1 cannot be directly compared with other values from
the literature [e.g., in Refs [35,68,75] b̄1 varies in the range
(2.6–4.9) m−1

N and h̄1 varies in the range (−2.2–4.2) m−1
N if

one translates them using Eq. (48)] because they are calcu-
lated within different schemes.

The fit results for the multipoles at order q3 (ε3) in the
�-less (�-full) case are presented in Fig. 2 (Fig. 3) with
the bands indicating the truncation errors. Also shown are
the results at order q1 and q2 (ε1 and ε2) to demonstrate the
convergence rate in various channels. As expected, including
explicit � degrees of freedom significantly improves the con-
vergence for the M3/2

1+ multipole.
In order to see that our choice of the renormalized � mass

m� is consistent with the �-resonance contribution to the
πN elastic channel, we plotted the imaginary parts of the

TABLE II. Low-energy constants obtained from a �-full fit to
the photoproduction multipoles using the partial-wave analysis of
Ref. [87]. The LECs di are given in units of GeV−2 while b̄1 and
h̄1 are in units of m−1

N .

d̄8 d̄9 d̄20 d̄21;22 b̄1 h̄1

Order-ε3 fit value: −0.19(3) 0.03(2) −3.0(1) 2.7(1) 5.4(1) 1.0(1)
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FIG. 3. �-full fits to the real parts of the s- and p-wave photoproduction multipoles. The solid, dashed, and dotted lines denote the ε3,
ε2, and ε1 calculations, respectively. The bands indicate the estimated truncation errors at order ε3. The filled circles show the results of the
MAID partial wave analysis from Ref. [87], while the squares (diamonds) are the results of the energy-dependent (energy-independent) SAID
analysis from Refs. [88,89] (Ref. [90]).

E3/2
1+ and M3/2

1+ multipoles (see Fig. 4), since the phase of
the photoproduction amplitude is determined by the elastic
πN phase shifts. Indeed, the agreement with the results of
the partial wave analyses for these channels is reasonable. In
particular, the E2/M1 ratio

REM = ImE3/2
1+

ImM3/2
1+

∣∣∣∣∣√
s=123 2MeV

≈ −0.032 ± 0.003 (61)

appears consistent with the PDG value −0.030 � REM �
−0.020 [92].

The discrepancy observed at threshold energies is caused
by our usage of the complex-mass scheme. Using the constant
width of the � in the pole diagrams violates unitarity at the

orders they first appear. Of course, unitarity is perturbatively
restored at higher orders. We expect the effect of this artifact
on radiative pion photoproduction to be small for the follow-
ing reasons:

(1) The real part of the M1+ multipole, which is well
reproduced, dominates the photoproduction amplitude
in the threshold region.

(2) The part of the threshold region that corresponds to
ultrasoft emitted photons Eγ ′ < 30 MeV is cut off in
the radiative photoproduction experiment; see Sec. II.

(3) The region of soft emitted photons in the analysis
of radiative photoproduction is statistically suppressed
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FIG. 4. �-full results at order ε3 for the imaginary parts of the E 3/2
1+ and M3/2

1+ multipoles. The notation is as in Fig. 3.

due to larger theoretical uncertainties; see Fig. 5 in
Sec. VII D.

It is instructive to analyze the difference between the
�-full and �-full LECs (di’s) from the point of view of
the �-resonance saturation in pion photoproduction; see
Refs. [93,94] for a similar discussion of the πN LEC. If we
consider the heavy-baryon limit for the ε2 �-pole diagrams
and, in addition, go to the limit of � ≡ m� − mN → ∞, then
their effect proportional to 1/� will be given by the following
shifts in the photoproduction LEC:

d̄8(�) = −d̄21;22(�) = −hAb1

9�
� −3.3 GeV2,

d̄9(�) = d̄20(�) = 0. (62)

The actual differences in the d̄8 and d̄21;22 obtained from the
fits are

d̄ /�
8 − d̄�

8 � −4.6 GeV2, d̄ /�
21;22 − d̄�

21;22 � 6.5 GeV2,

(63)

which are, indeed, to a large extent saturated by the shifts from
Eq. (62). Moreover, in the �-full scheme, the di’s appear to be
smaller in absolute value and more natural.

Last but not least, we emphasize that the considered LECs
also contribute to the longest range two-nucleon electromag-
netic current [95–97] and are thus of considerable interest
for calculations in the few-nucleon sector. These studies are,
however, carried out in the heavy-baryon approach. The de-
termination of the LECs in the heavy-baryon convention and
the extension to the fourth chiral order will be presented in a
separate publication.

VII. RESULTS AND DISCUSSION

In this section, we present the numerical results of our
calculation. The results are obtained using our own code
written in MATHEMATICA [98], FORM [99], and FORTRAN. For
the numeric evaluation of loop integrals, the MATHEMATICA

packages Package-X [100] and LoopTools [101] have been
used.

A. Low-energy constants

The radiative-pion-photoproduction amplitude, at the or-
der we are working, depends only on the free parameters
related to the dipole magnetic moment of the � resonance,
i.e., on μ�+ for the neutral channel and μ�+ and μ�0 for
the charged channel. There are no free parameters in the �-
less case. The numerical values of all remaining LEC from
the effective Lagrangian in Eq. (19), which appear in the
radiative-pion-photoproduction amplitude after the renormal-
ization procedure described in Sec. V, are taken from other
sources. The values of the particle masses and the coupling
constants from the leading-order effective Lagrangian are col-
lected in Table III. For the �, the pole mass is used (following
the complex-mass scheme) and for the hA coupling, the value
extracted from the � width is adopted [49]. This value practi-
cally coincides with the one extracted from the ε3 analysis of
the πN scattering in Ref. [48], from which we also take the
value of the π�� coupling g1.

Below, we list other LECs from higher order terms in
the Lagrangian. The purely mesonic LECs l5 and l6 ap-
pear, in our calculation of the charged-pion-photoproduction
amplitude, only as a linear combination l̃5;6 = l̄5 − l̄6. This
quantity can be extracted from the decay π+ → e+νγ ; see,
e.g., Refs. [103,104]: l̃5;6 = −3.0. The LECs c̄6 and c̄7 are
fixed by the magnetic moment of the nucleon; see Sec. V E
and PDG [92]: c̄6 = 3.706 and c̄7 = −1.913.

As described in Sec. VI, we extracted the constants b̄1,
h̄1, d̄8, d̄9, d̄20, and d̄21;22, corresponding to the leading and
subleading γ N� couplings and the γ N → πN contact terms,
from the fit to the pion-photoproduction multipoles. Note also
that the neutral-pion-photoproduction amplitude depends only
on the linear combination of d̄8 and d̄9: d̄89 = d̄8 + d̄9.

B. Fitting procedure

In order to determine the �+ MDM, we fit the radiative
neutral-pion-photoproduction observables by minimizing the
χ2

χ2 =
∑

i

(Oexp
i − O(n)

i

δOi

)2

, (64)
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FIG. 5. Differential cross sections and the ratio R (defined in text) for the reaction γ p → γ pπ0. The dashed-double-dotted lines correspond
to the �-less order-q3 calculation. The solid lines denote the NLO �-full fit with the bands indicating the truncation errors. The double-dashed
lines stand for the results of Ref. [34]. The data are from Refs. [26] (filled circles) and [22] (diamonds).

TABLE III. Particle masses (in MeV) and leading-order coupling constants used in this work. Unless specified, the values are taken from
PDG [92]. The � mass is determined in Sec. VI from the fit to pion photoproduction.

Mπ mN m� e Fπ [MeV] gA hA g1

138.03 938.27 1219.3–53.7 i 0.303 92.1 1.289 [102] 1.43 [48,49] −1.21 [48]
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where the summation runs over all available observables
(dσ/dEγ ′ ) and all kinematical data points. Here, Oexp

i is
the experimental value of a relevant observable at a chosen
kinematical data point and O(n)

i is the corresponding theo-
retical value calculated at order n (in the case of radiative
neutral-pion photoproduction n = 2 or 3). The uncertainty δO
(we omit the index i in what follows) originates from two
independent sources: the experimental error δOexp and the
error related with the truncation of the small scale expansion
at order n, δO(n); see Sec. VII C. Therefore, we add them
quadratically:

δO =
√

(δOexp)2 + (δO(n) )2. (65)

Apart from the statistical error of μ�+ extracted from the fit,
there are errors originating from the uncertainties of the input
parameters. In most cases, they are rather small and have
no significant impact on the result, which we have verified
explicitly. The only exceptions are the uncertainties of the
LECs determined from pion photoproduction. In particular,
the radiative-pion-photoproduction amplitude is rather sensi-
tive to the leading γ N� coupling b̄1 and, to a lesser extent, to
the subleading γ N� coupling h̄1. Ideally, one should perform
a combined fit to observables of both reactions γ N → πNγ

and γ N → πN to extract the whole set of parameters. How-
ever, we follow here a simpler and more pragmatic approach
and adopt the reasonable assumption that b̄1 and h̄1, as well
as d̄8, d̄9, d̄20, and d̄21;22 and their uncertainties, can be de-
termined from pion photoproduction with a good accuracy
without additional information from radiative pion photopro-
duction. This is motivated by the fact that the � couples
directly to the γ N and πN systems and only very weakly
to the πNγ system. Therefore, we fit μ�+ to the radiative-
pion-photoproduction data with b̄1, h̄1, d̄8, d̄9, d̄20, and d̄21;22

as input parameters. The condition of minimal χ2 defines
indirectly the function μ�+ (b̄1, h̄1, d̄8, d̄9, d̄20, d̄21;22), and the
errors of the parameters determined from pion photoproduc-
tion are propagated through this function. This is essentially
equivalent to the following procedure, which we implement:
After finding the best value of μ�+ , we combine the χ2 for
the reaction γ p → γ pπ0 with χ2

3/2 and χ2
1/2 from the fits

to the photoproduction multipoles with isospins I = 3/2 and
I = 1/2, respectively (see Sec. VI), to define the total χ2

tot:

χ2
tot(z) = χ2(z) + χ2

3/2(y) + χ2
1/2(y, d̄9) with

y = (b̄1, h̄1, d̄8, d̄20, d̄21;22), z = (μ�+ , y, d̄9). (66)

As has been explained above, we assume that χ2
tot takes its

minimal value at z = z̄, where ȳ is determined from the pho-
toproduction I = 3/2 fit, the central value for d̄9 from the
photoproduction I = 1/2 fit, and the central value for μ�+

from the radiative-pion-photoproduction fit. In the vicinity of
the minimum, we approximate the χ2 by the Taylor expansion
up to quadratic terms:

χ2
tot ≈ χ2

tot(z̄) + Hi j (zi − z̄i )(z j−z̄ j ), Hi j = 1

2

∂2χ2
tot

∂zi∂z j

∣∣∣∣
z=z̄

,

(67)

where we explicitly assume that linear terms ∼∂χ2
tot/∂zi can

be neglected; i.e., there are no additional shifts in the central
values of the parameters already determined from the photo-
production fit, as has been discussed above. The errors of the
input parameters are propagated to μ�+ through the mixed

derivatives ∂2χ2
tot

∂μ�+ ∂yi
and ∂2χ2

tot

∂μ�+ ∂ d̄9
. Finally, the error of μ�+ is

given by the diagonal element of the covariance matrix:

δμ�+ = [Cov(μ�+ , μ�+ )]
1
2 , Cov(zi, z j ) = H−1

i j . (68)

C. Truncation errors

The truncation errors for all considered processes (radiative
neutral- and charged-pion photoproduction and ordinary pion
photoproduction) are calculated utilizing the Bayesian model
considered in Refs. [105,106] based on the ideas developed in
Refs. [107,108].

An analyzed observable O is represented as an expansion
with dimensionless coefficients ci:

O = O(1) + �O(2) + �O(3) + · · ·
= Oref (c1Q + c2Q2 + c3Q3 + · · · ), (69)

where �O(i) = O(i) − O(i−1) and the superscript i denotes the
order in the small-scale expansion. The expansion parameter
Q and the reference value Oref are chosen to be

Q = Eγ

�b
, Oref = max

( |O(1)|
Q

,
|�O(2)|

Q2
,

|�O(3)|
Q3

)
.

(70)

In order to estimate the truncation error at order k, δO(k) ≡∑
i>k �O(i), it is assumed that all coefficients ci are dis-

tributed according to the Gaussian prior pr(ci|c̄):

pr(ci|c̄) = 1√
2π c̄

e−c2
i /(2c̄2 ), (71)

except cm = 1, which defines the overall scale, where m is
the number of a maximal argument in the max function in
Eq. (70). In turn, the parameter c̄ is assumed to obey a log-
uniform probability distribution

pr(c̄) = 1

ln(c̄>/c̄<)

1

c̄
θ (c̄ − c̄<) θ (c̄> − c̄). (72)

The cutoffs c̄< and c̄> reflect the constraints imposed by the
naturalness assumption. Following Refs. [105,106], we set
c̄< = 0.5, c̄> = 10. After performing marginalization over h
chiral orders k + 1, . . . , k + h assumed to dominate the trun-
cation error, the resulting posterior probability distribution for
the dimensionless quantity

�k =
∞∑

n=k+1

cnQn ≈
k+h∑

n=k+1

cnQn, (73)
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given the knowledge of {ci�k} is given by

prC
h (�|{ci�k}) = 1√

π q̄2c2
k

(
c2

k

c2
k + �2/q̄2

)

×
�

(
k
2 , 1

2c̄2
>

(
c2

k+�2

q̄2

))−�
(

k
2 , 1

2c̄2
<

(
c2

k+�2

q̄2

))
�

(
k−1

2 ,
c2

k
2c̄2

>

)−�
(

k−1
2 ,

c2
k

2c̄2
<

) ,

�(s, x) =
∫ ∞

x
dt t s−1e−t , (74)

where q̄2 = ∑k+h
i=k+1 Q2i, c2

k = ∑
i∈A c2

i , and A = {n ∈ N0|n �
k ∧ n �= 1 ∧ n �= m}. The 1σ truncation error δO(k) is de-
fined in such a way that the integral from the probability
distribution prC

h (� over the region |�| < δO(k)/Oref is equal
to the confidence level 0.68. Following Refs. [105,106,108],
we choose h = 10. The breakdown scale is assumed to be
�b = 700 MeV. It is chosen to be somewhat larger than the
value used in Refs. [62,63,107] (�b = 600 MeV) because
we explicitly include the � degrees of freedom, and the
� pole should not affect the convergence rate of the chiral
expansion.

Notice that for radiative neutral-pion photoproduction, our
analysis includes only two different orders (LO and NLO)
in the small-scale expansion. This makes our probabilistic
Bayesian approach to the uncertainty estimation not quite
reliable. In order to increase the reliability of the estimated
truncation errors, one has to calculate higher order contribu-
tions to the amplitude explicitly.

D. Radiative neutral-pion photoproduction

We start the discussion of the results with the reaction
γ p → γ pπ0. This channel is of particular interest since it is
sensitive to the value of the dipole magnetic moment of the
�+ particle, and there is sufficient amount of experimental
data for analysis.

Within the �-full approach at order ε3
eff (NLO), we fit the

available experimental data for three observables dσ
d�γ ′ ,

dσ
d�π

,

and dσ
dEγ ′ (see Sec. II for definitions) and three incident ener-

gies
√

s = 1240, 1277, and 1313 MeV. The results of the fit
are shown in Fig. 5 by the solid lines with the bands indicating
the truncation errors corresponding to 68% degree-of-belief
intervals. As one can see, the results of the fit are in good
agreement with the data within the error bars. The fit quality
is given by χ2/ndof = 1.00, which indicates, in particular, that
the assumed value for the breakdown scale �b = 700 MeV is
reasonable. For comparison, we have also considered the �-
less approach. Although one should not expect convergence
of �-less χPT in the considered energy region where the
�-pole contributions are most prominent, we have performed
the corresponding calculations to demonstrate explicitly that
such an approach is much less efficient and, in fact, fails to
reproduce the experimental data for all analyzed energies; see
Fig. 5. Therefore, in what follows, we focus entirely on the
�-full scheme.

We also compare our results with the study [34] based
on �-full χPT with δ counting. The double-dashed lines

in Fig. 5 correspond to the central value of the �+ mag-
netic moment μ�+ = 3(mN/m�)μN ≈ 2.3μN

9 suggested by
the authors. One observes a somewhat better agreement of
our calculation with the data as compared to Ref. [34], which
might be an indication that the power counting scheme based
on the modified small-scale expansion that we adopt here is
more efficient for radiative pion photoproduction. We recall
that in the δ-counting scheme, the pion-nucleon q3 loops and
nucleonic q3 tree-level diagrams are not included at NLO; see
Sec. IV B for discussion. However, we find that their contri-
butions are significant and help to improve the description of
the data; see the discussion of convergence below. Another
approximation used in Ref. [34], namely the expansion in the
photon energy Eγ ′ , makes the results less reliable when going
to higher energies, especially for

√
s = 1313 MeV.

Following Ref. [27], we also analyze the ratio R of the
differential cross sections for radiative and ordinary pion pho-
toproduction; see Sec. II for the definition. As can be seen
from Fig. 5, our results for this ratio are also in reason-
able agreement with the data. Moreover, the soft-photon limit

R
Eγ ′→0−→ 1 is reproduced exactly, which serves as an additional

cross-check for our calculation.
Next, we look at the convergence properties of the

(modified) small-scale expansion for radiative neutral-pion
photoproduction. In Fig. 6, the dashed lines represent the
results at leading (ε2

eff) order, whereas the solid lines denote
the results at next-to-leading (ε3

eff) order (NLO). The NLO
contributions are, in general, reasonably small compared to
the LO result, which indicates a good convergence. Moreover,
taking them into account improves the description of the data
considerably.

We also show how sensitive the analyzed observables are
to the value of the �+ magnetic moment by setting μ�+ = 0
(c̄�

6 = 3, c̄�
7 = −1); see the dash-dotted lines in Fig. 6. The

contribution of terms proportional to μ�+ is generally rather
small. In fact, it is almost negligible at

√
s = 1240 MeV and

rises with energy. Nevertheless, statistically, it turns out to be
sufficiently important for a reliable and accurate extraction of
the �+ magnetic moment as long as higher energies are taken
into account.

We have considered three different fit configurations: Apart
from the already mentioned set of observables for three en-
ergies, we also analyzed the cross-section data at only the
two lowest energies,

√
s = 1240 and 1277 MeV, and also

performed a fit to the lowest energy
√

s = 1240 MeV only.
It is not obvious a priori that adding higher energies to the
fit would necessarily improve the statistical uncertainty of our
extraction, especially if the perturbative (small-scale) expan-
sion fails to converge in that higher energy region. For the
fit to the lowest energy only, the χ2 function is not clearly
peaked, and a reliable extraction of μ�+ is impossible in
this case. This can be expected given a weak sensitivity of
the considered observables to the magnetic moment at this

9The authors of Ref. [34] take into account loop corrections to
μ�+ generating also its imaginary part, which are of higher order
according to the power counting that we implement.
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FIG. 6. Convergence of the small-scale expansion for the reaction γ p → γ pπ0 and sensitivity of observables to the value of μ�+ . The
dashed (solid) lines correspond to the leading (next-to-leading) order result. The dash-dotted lines denote the result of the calculation with
μ�+ = 0. The data are from Refs. [26] (filled circles) and [22] (diamonds).

energy, as discussed above. The results of the two other fits are
summarized in Table IV. They are consistent with each other
for what concerns the resulting value of μ�+ (within the error
bars). The fits to the sets of two and three energies yield values
of χ2/ndof consistent with one within the standard deviation
σstat = √

2/ndof . However, the fit to the set of all three energies
has the smallest μ�+ uncertainty. Therefore, we choose this
result as our best estimate:

μ�+ = (1.5 ± 0.2) μN . (75)

TABLE IV. Results of the fit to various sets of energies for μ�+ .

√
s [MeV] μ�+ [μN ] ndof χ 2/ndof σstat

1240 to 1313 1.5 ± 0.2 283 1.00 0.08
1240, 1277 1.3 ± 0.4 182 0.93 0.10

This result agrees with the current PDG value within the
errors, but the accuracy is improved. Notice that less then 5%
of the error comes from the uncertainties in the determination
of the LECs from pion photoproduction. We, however, em-
phasize that the quoted error does not take into account the
uncertainty in the � pole position employed in our analysis,
which is probably sizable.

It is interesting to see how sensitive some other observ-
ables are to the value of μ�+ even though no experimental
information on them is available yet. We choose the same
set of observables and the same energy

√
s = 1277 MeV as

considered in Ref. [34] for ease of comparison. In Fig. 7,
we show the results for the double differential cross section
Eγ ′dσ/d�π dEγ ′ , the linear photon polarization asymmetry
�π , and the circular photon polarization asymmetries �π

circ
and �

γ

circ for specific angles of the outgoing pion or photon;
see Sec. II for the definitions. For the linear asymmetry, one
can compare the results in the soft-photon limit Eγ ′ → 0 with
the corresponding asymmetry data for the reaction γ p → π0 p
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FIG. 7. Double differential cross section and polarization asymmetries for the reaction γ p → γ pπ0 as functions of the outgoing photon
energy at

√
s = 1277 MeV. The dashed and solid lines correspond to the predictions at order ε2

eff (LO) and ε3
eff (NLO), respectively. The

bands denote the truncation errors. The double-dashed lines denote the results of Ref. [34], while the dash-dotted lines denote the result of our
calculation with μ�+ = 0. The data points correspond to the linear photon polarization asymmetry in the reaction γ p → π0 p [109,110], as
provided in Ref. [34].

from Refs. [109,110],10 and we observe an agreement of our
calculation in this energy regime with the data within the
errors. We show the leading-order (ε2

eff) results (dashed lines)
and the next-to-leading-order (ε2

eff) results (solid lines) with
the truncation error bands as well as the results with the �+
magnetic moment set to zero (dash-dotted lines). The sensi-
tivity of the double differential cross section Eγ ′dσ/d�π dEγ ′

to the value of μ�+ is similar to the case of the unpolarized
single differential cross sections. Our results for this observ-
able practically agree with Ref. [34] within the error bands for
the pion angles ϑπ = 30◦ and ϑπ = 90◦. For ϑπ = 150◦, the

10We have extracted those data points from Ref. [34].

agreement is slightly worse. The convergence pattern follows
essentially the one of dσ

d�π
.

The magnetic-moment contribution to the polarization ob-
servables is in general more pronounced; see Fig. 7. On the
other hand, the convergence is rather poor in some cases,
which is no surprise since there are subtle cancellations
among various contributions typical for polarization asymme-
tries. This can explain the disagreement with the results of
Ref. [34]. In order to improve the description of these observ-
ables, one should obviously include higher order terms in the
small-scale expansion. In this case, a more accurate treatment
of pion photoproduction will be also necessary including a
more rigorous approach to uncertainties. In particular, one
might need to perform a combined fit to the photoproduction
and radiative-photoproduction observables.
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FIG. 8. Differential cross sections for the reaction γ p → γ nπ+. The dash-double-dotted lines correspond to the �-less q3 calculation. The
dotted, dashed, and solid lines denote the LO, NLO, and N2LO �-full results, respectively, with the bands indicating the truncation errors. The
dash-dotted lines denote the result of the calculation with μ�+ = μ�0 = 0.

E. Radiative charged-pion photoproduction

For the charged-pion channel, we repeat the calculations
we have done for the neutral channel and provide our pre-
dictions for the same set of observables and for the same set
of energies. Unfortunately, no experimental data are available
for this channel. Therefore, it is instructive to analyze the
sensitivity of various observables to the � magnetic moment
for future experiments.

The γ p → γ nπ+ amplitude depends on the magnetic mo-
ment of �+ and �0 (or, equivalently, on c̄�

6 and c̄�
7 ). We fix

the value of μ�+ from the fit to the neutral channel; see the
previous subsection. We adjust the remaining linear combi-
nation of c̄�

6 and c̄�
7 to the value of μ�++ extracted from the

reaction π+ p → π+ pγ [37,38]:

μ�++ = 6.14(51)μN , (76)

which yields

c̄�
6 = −14.9(21) and c̄�

7 = 9.0(15). (77)

The LO, NLO, and N2LO results of our �-full calculation
for the single differential unpolarized observables for three
energies

√
s = 1240, 1277, and 1313 MeV are shown in Fig. 8

with the bands indicating the truncation errors. Also shown are
the N2LO results obtained in the �-less scheme. The differ-
ence between the �-less and �-full approaches is sizable and
increases with energy very rapidly. The convergence of the
EFT expansion as one goes from LO to N2LO is satisfactory
for the lowest energy, but it becomes less convincing for the
energies

√
s = 1277 and 1313 MeV.

The unpolarized observables are practically insensitive to
the value of the � magnetic moment, as can be seen by
looking at the dotted curves in Fig. 8 corresponding to μ�+ =
μ�0 = 0, which almost coincide with the full results. This
is due to the fact that the leading-order amplitude for the
charged channel is not 1/mN suppressed, in contrast to the
neutral channel. As a result, the absolute values of the cross
sections in the charged channel are an order of magnitude
larger.
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FIG. 9. Double differential cross section and polarization asymmetries for the reaction γ p → γ nπ+ as functions of the outgoing photon
energy at

√
s = 1277 MeV. The dotted, dashed, and solid lines denote the LO, NLO, and N2LO �-full results, respectively, with the bands

indicating the truncation errors. The dash-dotted lines denote the results of the calculation with μ�+ = μ�0 = 0. The double-dashed lines
denote the results of Ref. [34]. The data points correspond to the linear photon polarization asymmetry in the reaction γ p → π+n [109], as
provided in Ref. [34].

The results of the N2LO �-full calculation for the double
differential cross section Eγ ′dσ/d�πdEγ ′ and the polariza-
tion asymmetries �π , �π

circ, and �
γ

circ are depicted in Fig. 9.
As in the case of the neutral channel, our calculation of the
linear asymmetry �π in the ultrasoft-photon limit agrees with
the experimental data for the reaction γ p → π+n.

The most sensitive to the �-magnetic-moment contribution
are the circular photon polarization asymmetries �π

circ and
�

γ

circ.11 This confirms the findings of Ref. [34]. However, our
results, in general, do not agree with the results of Ref. [34]
(double-dashed lines in Fig. 9) within the errors. Analogously

11Notice that the contribution of μ�0 is several times smaller com-
pared to μ�+ in agreement with our power-counting analysis in
Sec. IV B.

to the neutral channel, this is seemingly a consequence of
the slow convergence and subtle cancellations, especially for
the polarization asymmetries. Therefore, as in the case of
the radiative π0 photoproduction, in order to be able to per-
form a reliable analysis of the polarization asymmetries, one
should presumably go to higher orders in the small-scale
expansion.

VIII. SUMMARY AND OUTLOOK

We have studied radiative pion photoproduction in the �

region within covariant chiral perturbation theory including
the �(1232) resonance as an explicit degree of freedom.
Specifically, we have analyzed the reactions γ p → γ pπ0

(neutral channel) and γ p → γ nπ+ (charged channel). The
reaction amplitude has been calculated up to next-to-leading
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order for the neutral channel and up to next-to-next-to-leading
order for the charged channel in the small-scale expansion,
modified for the case of the � region. These contributions
include the full set of pion-nucleon order-q3 loop diagrams
as well as certain �-pole tree-level graphs, including the loop
corrections to them.

Several low-energy constants entering as input parameters
for our calculation have been obtained from a fit to the pion-
photoproduction multipoles in the threshold and � regions
using the scheme consistent with our treatment of radiative
pion photoproduction, but with a simplified treatment of ex-
perimental uncertainties.

The main goal of our study was an indirect determination
of the dipole magnetic moment of the �+ particle by fitting it
to the available experimental data for the unpolarized differen-
tial cross sections in the reaction γ p → γ pπ0 for three values
of initial energy. The obtained fit is in good agreement with
the data within errors. Given the observed satisfactory conver-
gence of the small-scale expansion for these observables, this
has allowed us to perform an accurate extraction of μ�+ with
the resulting value

μ�+ = (1.5 ± 0.2) μN . (78)

In comparison with previous extractions based on phe-
nomenological models, our result relies on a systematic EFT
approach, whereas in comparison with earlier EFT studies,
our scheme provides a more reliable estimate of theoretical er-
rors by means of the Bayesian approach. Note that one should
be cautious when interpreting the truncation uncertainties that
we provide as they are estimated based on the information on
only two orders in the EFT expansion.

We also performed the calculations within the �-less
scheme. As expected for such an energy regime, the �-less
approach turns out to be much less efficient than the �-full
framework, and it fails to reproduce the experimental data at
the considered order.

We also made predictions for several other observables,
including the linear and circular photon polarization asym-
metries in order to check their sensitivity to the � magnetic
moment. Some of the polarization observables appear to be
more sensitive to the value of μ�+ than the unpolarized
differential cross sections. However, the convergence of the
small-scale expansion in these cases is rather poor. Therefore,
a reliable analysis of these observables would require going to
higher orders.

We also analyzed the same set of observables for the
charged channel, for which no experimental data are available
at present. We used the value of μ�+ from our fit to the
neutral channel and the value of μ�0 extracted from the re-
action π+ p → π+ pγ . We found that only the circular photon
polarization asymmetries possess sizable sensitivity to the �

magnetic moment, however, with the same convergence issues
as in the case of the neutral channel.

Our results suggest that going to higher orders in the
small-scale expansion and using a more rigorous uncertainty-
estimation procedure for pion photoproduction may allow one
to further improve the accuracy of the presented analysis.
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APPENDIX A: FEYNMAN DIAGRAMS FOR RADIATIVE
PION PHOTOPRODUCTION

In this section, we present all considered Feynman dia-
grams for radiative pion photoproduction.

The leading-order O(q1) tree diagrams are given in Fig. 10.
The order-q2 tree-level diagrams are shown in Fig. 11. The
order-q3 tree-level diagrams are shown in Figs. 12 and 13.
The diagrams in Fig. 12 are obtained from the leading-order
tree diagrams of Fig. 10 by either replacing a leading-order
vertex with a subleading one or by inserting a nucleon or pion
self-energy vertex. Figure 13 contains additional q3 tree-level
topologies. Pion-nucleon loop diagrams appear at order q3.
We split them into seven sets, which are shown in Figs. 14–20.
The first four sets in Figs. 14–17 are obtained from the four
rows of tree-level diagrams in Fig. 10 by attaching a pion
loop, wherever possible. The diagrams in Fig. 18 are obtained
from the leading-order nucleon pole graphs in the pion-
photoproduction amplitude (first two diagrams in Fig. 26)
by attaching a pion loop, wherever possible, and attaching a
photon to the pion inside the loop. The diagrams in Fig. 19
are obtained in the same way from the leading-order pion
pole graph and the contact graph in the pion-photoproduction
amplitude (last two diagrams in Fig. 26). Figure 20 contains
all diagrams with two photons coupled to the pion inside a
loop. Note that every diagram depicted in Fig. 14 actually
stands for six diagrams that can be obtained by permutations
of the external boson (photon and/or pion) lines as in the first
row of Fig. 10. In other figures, when specified in a figure
caption, crossed diagrams (corresponding to crossing photon
and nucleon lines) are not shown.

Tree-level diagrams with � lines of order ε2 and ε3 are
shown in Figs. 21 and 22, respectively. The loop corrections to
the �-pole graphs of order ε3 considered in this work are pre-
sented in Figs. 23–25, where the last set (Fig. 25) contributes
only to radiative charged-pion photoproduction. The diagrams
relevant for both reaction channels (γ p → γ pπ0 and γ p →
γ nπ+) are split into the set that contains loop corrections to
the electromagnetic N� transition form factor as a subgraph
(Fig. 23) and the remaining graphs (Fig. 24).

APPENDIX B: FEYNMAN DIAGRAMS FOR PION
PHOTOPRODUCTION

In this section, we present all considered Feynman dia-
grams for pion photoproduction.

045203-23



J. RIJNEVEEN et al. PHYSICAL REVIEW C 103, 045203 (2021)

FIG. 10. Leading-order O(q1) tree-level radiative-pion-photoproduction diagrams. All vertices are of the lowest order, i.e., from L(1)
πN and

L(2)
ππ .

The leading-order, i.e., order-q1, tree-level diagrams are
shown in Fig. 26. The order-q2 tree-level diagrams are shown
in Fig. 27, and the order-q3 tree-level diagrams appear in
Fig. 28. Pion-nucleon loop diagrams appear at order q3. We
split them into four sets, which are shown in Figs. 29–32.
The first two sets in Figs. 29 and 30 are obtained from the
first two diagrams in Fig. 26 by attaching a pion loop to
the nucleon line, wherever possible. The third set in Fig. 31
is obtained in the same way from the last two diagrams in
Fig. 26. The remaining graphs are shown in Fig. 32. The
tree-level diagrams involving � lines of order ε2 and ε3 are
shown in Figs. 33 and 34, respectively. The loop corrections
to the �-pole graphs of order ε3 considered in this work are
presented in Fig. 35.

APPENDIX C: COUNTER TERMS

In this Appendix, we present the expressions for the renor-
malized quantities and the counter terms. To keep the notation
compact, we define the mass ratios α = Mπ

mN
and β = m�

mN
.

a. Pion mass and field renormalization. To the order we are
working, the expression for the pion mass reads

M2 = M2
π + δM (4) + · · · ,

δM (4) = M2
π

(
A0

(
M2

π

) − 4l3M2
π

)
2F 2

π

, (C1)

FIG. 11. Tree-level radiative-pion-photoproduction diagrams of order q2. The open circles represent second-order vertices from L(2)
πN .

Diagrams with crossed photon lines and the second-order corrections to the nucleon self-energy are not shown.
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FIG. 12. Third-order tree-level radiative-pion-photoproduction topologies. The open circles, the filled circles, and the squares represent
vertices from L(2)

πN , L(3)
πN , and L(4)

ππ , respectively. Diagrams with crossed photon lines are not shown.
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FIG. 13. Further tree-level radiative-pion-photoproduction topologies of order q3. The filled circles are vertices from L(3)
πN ; the square

represents the vertex from L(4)
WZW.

FIG. 14. First set of radiative-pion-photoproduction loop diagrams. Diagrams that can be obtained by permutations of the external boson
(photon and/or pion) lines are not shown.
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FIG. 15. Second set of radiative-pion-photoproduction loop diagrams. Crossed diagrams are not shown.

where the dots stand for higher order terms. For the Z factor and pion decay constant, we have

Zπ = 1 + δZ (4)
π + · · · ,

δZ (4)
π = (1 − 10απ )A0

(
M2

π

) − 2l4M2
π

F 2
π

, (C2)

and

F = Fπ + δF (4) + · · · ,

δF (4) = −A0
(
M2

π

) − l4M2
π

Fπ

, (C3)

respectively. Here, απ is the pion field parameter from Eq. (20).
The expressions for the loop integrals are provided in Appendix D.
b. Nucleon mass and field renormalization. For the nucleon mass, we obtain

m = mN + δm(2) + δm(3) + · · · ,

δm(2) = 4c1M2
π ,

δm(3) = −3g2
AmN

2F 2
π

[
A0

(
m2

N

) + M2
πB0

(
m2

N , M2
π , m2

N

)]
, (C4)

while the expression for the nucleon Z factor reads

ZN = 1 + δZ (3)
N + · · · ,

δZ (3)
N = 3g2

A

F 2
π (α2 − 4)

(
M2

π

16π2
+ A0

(
M2

π

)
(5α2 − 12)

4
− α2A0

(
m2

N

) − M2
π (α2 − 3)B0

(
m2

N , M2
π , m2

N

))
. (C5)

c. � mass and field renormalization. The � mass and field are renormalized as

m̊� = m� + δm(2)
� + · · · ,

δm(2)
� = 4c�

1 M2
π , (C6)

and

Z� = 1 + · · · . (C7)
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FIG. 16. Third set of radiative-pion-photoproduction loop diagrams. Crossed diagrams are not shown.

FIG. 17. Fourth set of radiative-pion-photoproduction loop diagrams. Diagrams with crossed photon lines are not shown.
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FIG. 18. Fifth set of radiative-pion-photoproduction loop diagrams. Crossed diagrams are not shown.

FIG. 19. Sixth set of radiative-pion-photoproduction loop diagrams. Diagrams with crossed photon lines are not shown.
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FIG. 20. Seventh set of radiative-pion-photoproduction loop diagrams. Diagrams with crossed photon lines are not shown.

d. Pion-nucleon coupling constant. For the pion-nucleon coupling constant, we find the following result:

g = gA + δg(3) + · · · ,

δg(3) = 4(d18 − 2d16)M2
π + gA

F 2
π

(
− 3g2

AM2
π

16π2(α2 − 4)
+

(
3g2

Aα2

α2 − 4
+ 2

)
A0

(
m2

N

) +
(

g2
A(10 − 4α2)

α2 − 4
− 1

)
A0

(
M2

π

)
(C8)

− g2
Am2

N B0
(
M2

π , m2
N , m2

N

) + M2
π

(
3g2

A(α2 − 3)

α2 − 4
+ 2

)
B0

(
m2

N , M2
π , m2

N

) − g2
Am2

N M2
πC0

(
m2

N , M2
π , m2

N , M2
π , m2

N , m2
N

))
.

e. Nucleon magnetic moments. The expressions for the LECs c6, c7 related to the nucleon magnetic moments (see Sec. V)
have the form

c6 = c̄6 + δc(3)
6 + · · · ,

δc(3)
6 = g2

A

(α2 − 4)F 2
π

(
m2

N (4 − 3α2)

16 π2
+ (

20 − 6α2
)
A0

(
M2

π

)
− 2(8 − 3α2)A0

(
m2

N

) + 2m2
N (8 − 13α2 + 3α4)B0

(
m2

N , M2
π , m2

N

))
, (C9)

and

c7 = c̄7 + δc(3)
7 + · · · ,

δc(3)
7 = g2

A

(α2 − 4)F 2
π

(
− m2

N

2 π2
− 4A0

(
M2

π

) + 8A0
(
m2

N

) − 4m2
N (2 − α2)B0

(
m2

N , M2
π , m2

N

))
. (C10)

f. Pion-nucleon-� coupling constant. For the pion-nucleon-� coupling constant, we obtain

h = hA + δh(2)
A + . . . , δh(2)

A = b3(mN − m�) + b6
M2

π + m2
N − m2

�

2mN
. (C11)
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FIG. 21. Tree-level radiative-pion-photoproduction diagrams with � lines of order ε2. The open circle denotes the second-order vertex
from L(2)

πN�. Diagrams with crossed photon lines are not shown.

g. Electromagnetic N� transition form factors. The auxiliary coefficients ai, bi, and ci used below to shorten the notation are
not related to LECs of the Lagrangian with similar names:

b1 = b̄1 + δb(3)
1 + · · · ,

δb(3)
1 = Re

[
a0 + a1A0

(
M2

π

) + a2A0
(
m2

N

) + b3B0
(
m2

N , M2
π , m2

N

) + b4B0
(
m2

�, M2
π , m2

N

)
+ c5C0

(
0, m2

�, m2
N , M2

π , M2
π , m2

N

) + c6C0
(
m2

N , 0, m2
�, M2

π , m2
N , m2

N

)]
,

a0 = 4h15mN (β − 1) + h16mN (β2 − 2) + gAhAmN (β(β − 3) + 2α2)

16π2F 2
π (1 − β2)

,

a1 = gAhA

(β − 1)mN F 2
π

,

a2 = gAhA(1 − 3β )

(β2 − 1)mN F 2
π

,

b3 = −gAhAmN [α2(−1 − 2β − 2β2 + β3) + 2β(2 − β + β2)]

(β2 − 1)2F 2
π

,

b4 = −gAhAmNβ[−1 + β − 5β2 + β3 + α2(3β + 1)]

(β2 − 1)2F 2
π

,

c5 = −2gAhAm3
Nα2(−1 + α2 + β2)

(β2 − 1)F 2
π

,

c6 = 2gAhAm3
Nβ(2 − α2 − β + β2)

(β2 − 1)F 2
π

; (C12)

h1 = h̄1 + δh(3)
1 + · · · ,

δh(3)
1 = Re

[
a0 + a1A0

(
M2

π

) + a2A0
(
m2

N

) + b3B0
(
m2

N , M2
π , m2

N

) + b4B0
(
m2

�, M2
π , m2

N

)
+ c5C0

(
0, m2

�, m2
N , M2

π , M2
π , m2

N

) + c6C0
(
m2

N , 0, m2
�, M2

π , m2
N , m2

N

)]
,

a0 = 4h15mN + gAhAmN (β − α2)

4π2(β − 1)2(β + 1)F 2
π

,

a1 = 2gAhA

(β − 1)2mN F 2
π

+ 5g1hA

324(β − 1)2β6(β + 1)mN F 2
π

,

a2 = − 4gAhAβ

(β − 1)2(β + 1)mN F 2
π

,

b3 = −2gAhAmN [α2(−1 − 2β − 2β2 + β3) + β(3 + β2)]

(β − 1)3(β + 1)2F 2
π

,
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FIG. 22. Tree-level radiative-pion-photoproduction diagrams with � lines of order ε3. The open circles denote second-order vertices from
L(2)

πN , L(2)
πN�, and L(2)

π�. The filled circle is the vertex from L(3)
πN�; the square represents the vertex from L(4)

WZW. Diagrams with crossed photon
lines are not shown.

b4 = 2gAhAmNβ[1 + 3β2 − α2(1 + 3β )]

(β − 1)3(β + 1)2F 2
π

,

c5 = −2gAhAm3
Nα2(−1 + 2α2 + β2)

(β − 1)2(β + 1)F 2
π

,

c6 = −2gAhAm3
N [α2(1 + β ) − β(3 + β2)]

(β − 1)2(β + 1)F 2
π

. (C13)

APPENDIX D: LOOP INTEGRALS

The loop integral functions are defined as

A0
(
m2

0

) = 1

i

∫
dd l

(2π )d

μ4−d

l2 − m2
0

,

B0
(
p2

1, m2
0, m2

1

) = 1

i

∫
dd l

(2π )d

μ4−d(
l2 − m2

0

)[
(l + p1)2 − m2

1

] ,

C0
(
p2

1, p2
2, (p1 − p2)2, m2

0, m2
1, m2

2

) = 1

i

∫
dd l

(2π )d

μ4−d(
l2 − m2

0

)[
(l + p1)2 − m2

1

][
(l + p2)2 − m2

2

] . (D1)

The renormalization scale μ in all integrals is set to μ = mN .
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FIG. 23. First set of loop corrections to the �-pole radiative-pion-photoproduction graphs of order ε3. Diagrams with crossed photon lines
are not shown.
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FIG. 24. Second set of loop corrections to the �-pole radiative-pion-photoproduction graphs of order ε3. Diagrams with crossed photon
lines are not shown.
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FIG. 25. Third set of loop corrections to the �-pole radiative-pion-photoproduction graphs of order ε3. Diagrams with crossed photon lines
are not shown.

FIG. 26. Leading-order, i.e., order-q1, tree-level pion-photoproduction diagrams. All vertices are of the lowest order, i.e., from L(1)
πN and

L(2)
ππ .

FIG. 27. Tree-level pion-photoproduction diagrams of order q2. The open circles represent second-order vertices from L(2)
πN . Diagrams with

the second-order corrections to the nucleon self-energy are not shown.
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FIG. 28. Third-order tree-level pion-photoproduction diagrams. The filled circles and the squares represent vertices from L(3)
πN and L(4)

ππ ,
respectively.

FIG. 29. First set of pion-photoproduction loop diagrams.
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FIG. 30. Second set of pion-photoproduction loop diagrams.

FIG. 31. Third set of pion-photoproduction loop diagrams.
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FIG. 32. Fourth set of pion-photoproduction loop diagrams.

FIG. 33. Tree-level pion-photoproduction diagrams involving � lines of order ε2. The open circle denotes the second-order vertex from
L(2)

πN�.

FIG. 34. Tree-level pion-photoproduction diagrams involving � lines of order ε3. The filled circle denotes the vertex from L(3)
πN�.

FIG. 35. Loop corrections to the �-pole pion-photoproduction graphs of order ε3.
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