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Application of the uniformized Mittag-Leffler expansion to �(1405)
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We study the pole properties of �(1405) in a model-independent manner by applying the uniformized Mittag-
Leffler expansion proposed in our previous paper. The resonant energy, width and residues are determined by
expanding the observable as a sum of resonant-pole pairs under an appropriate parametrization which expresses
the observable to be single valued, and fitting it to experimental data of the invariant-mass distribution of π+�−,
π−�+, π 0�0 final states in the reaction γ p → K+π� and the elastic and inelastic cross section K− p → K− p,
K̄0n, π+�−, π−�+. As we gradually increase the number of pairs from one to three, the first pair converges
while the second and third pairs emerge further and further away from the first pair, implying that the uniformized
Mittag-Leffler expansion with three pairs is almost convergent in the vicinity of the �(1405). The broad peak
structure between the π� and K̄N thresholds regarded to be �(1405) is explained by a single pair with a resonant
energy of 1420 ± 1 MeV, and a half- width of 48 ± 2 MeV, which is consistent with the single-pole picture of
�(1405). We conclude that the uniformized Mittag-Leffler expansion turns out to be a very powerful and simple
method to obtain resonance energy, width, and residues from the near-threshold spectrum.
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I. INTRODUCTION

In recent years many hadron resonances, in particular,
candidates of exotic hadrons have been found near the thresh-
olds of hadronic channels [1,2]. Due to the threshold effects,
their spectra are significantly distorted from the Breit-Wigner
form [3],

A(
√

s) ∝ �R√
s − MR − i�R/2

, (1)

making it challenging to extract information of resonances
such as the resonance energy and width from the observed
spectra in a model-independent manner.

In our previous paper [4], we proposed the uniformized
Mittag-Leffler expansion approach, a model-independent ap-
proach that incorporates the resonant and threshold behavior
appropriately. We showed that when choosing an appropriate
parametrization [5,6], the S matrix is a meromorphic function
and can be expressed by the Mittag-Leffler expansion [7–10],
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as shown in Fig. 1. It is explicitly written by the positions and
residues of the bound and resonant poles. The symmetry con-
dition of the pole properties of the S matrix forces the series
to obey the proper threshold behavior. Following our proposi-
tion, we demonstrated the method by using data of a double-
channel model calculation, with isospin I = 0, K̄N , and π�

channels.
The next step would naturally be the demonstration of the

method to actual hadronic spectra. In the present paper, we ap-
ply the uniformized Mittag-Leffler expansion to experimental
data of the spectrum around �(1405); a resonance situated
between the π� and K̄N threshold [11,12], which has been a
topic of interest in studies involving baryons with strangeness
[13–15]. It has been naturally described as a hadronic molec-
ular state generated from hadronic degrees of freedom [1],
while hardly interpreted as an excitation in the standard three-
quark description. Moreover, calculations in the chiral-unitary
model, such as [16–21], display a double-pole structure in
the region of �(1405), contrary to phenomenological local
potential models, such as in Refs. [22–25], which predict
a single-pole structure. To settle the debate between the
single-pole or double-pole structure of �(1405), a model-
independent analysis is strongly in need. Owing to these
circumstances, the �(1405) resonance serves as an ideal tar-
get for the application of our method.

We apply the uniformized Mittag-Leffler expansion ap-
proach to the scattering processes of K− p elastic and inelastic
cross sections [26–32], and the invariant-mass distributions
of π� final states in the reaction, γ p → K+π�, measured
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FIG. 1. (a) Schematic figure of the spectral representation, and the uniformized Mittag-Leffler expansion, of the S matrix in the case of a
double-channel two-body system. ε1, ε2 are the threshold energies of the two channels. The continuum contribution along the unitary cuts in
panel (a), can be decomposed into resonant contributions from poles in the unphysical domain (blue) in panel (b).

with CLAS at Jefferson Lab [33]. Under the assumption
that the spectrum is dominantly generated from the coupled-
channel dynamics of the π�-K̄N system, we determine the
resonance energy, width, and residues of �(1405) in a model-
independent manner.

II. UNIFORMIZED MITTAG-LEFFLER EXPANSION
APPROACH

Here we will briefly review our approach proposed in
Ref. [4] for a better understanding of its application to actual
experimental data in the following section and to clarify our
conventions.

From the Cauchy integration principle, a meromorphic
function f (z) can be written as

f (z) = 1

2π i

∮
γ

dw
f (w)

w − z
+

∑
n

cn

z − zn
, (2)

where zn, cn are the poles and residues of f , and γ is a circular
contour around the origin with a radius taken to infinity. If the
integral term in Eq. (2) vanishes as we take the radius of γ to
infinity, the meromorphic function f can be written as

f (z) =
∑

n

cn

z − zn
, (3)

which is a Mittag-Leffler expansion of f . Note that this form
is explicitly written by a simple series of the pole position and
the residue of f .

When the integral term in Eq. (2) does not vanish, or
diverges, we can always consider a subtraction, so that the
integral takes a form with better convergence to zero [34].
For example, let us consider g(z) = [ f (z) − f (0)]/z instead of
f (z) in Eq. (2). If the integral term in Eq. (2) for g(z) vanishes,

the once-subtracted form of Eq. (3) can be written as

f (z) = f (0) +
∑

n

[
cn

z − zn
+ cn

zn

]
, (4)

which differs from Eq. (3) by a constant that corresponds to
the subtraction.

Now, let us consider a two-body system. Observables, such
as two-body cross sections, σ , or the distributions of two-body
final states with invariant mass M, in some reactions (e.g.,
π� final states in the reaction, γ p → K+π�, schematically
shown in Fig. 2), dσ/dM are related to the T matrix T and
Green’s function G as [35–37]

σ = 1

16π2s

k f

ki
Im T , (5)

or

dσ

dM
= ImF†GF , (6)

FIG. 2. A schematic diagram of the process ‘γ p → K+Y ∗ →
K+π�’ measured in the CLAS experiment [33].
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(a) (b)

FIG. 3. (a) Analytic structure of the double-channel S matrix in the
√

s plane, and (b) the uniformized z plane. In the
√

s plane, the unitary
cuts run along the real axis from ε1 to ∞ (blue) and from ε2 to ∞ (green), and the four Riemann sheets of the

√
s plane correspond to each

region in z labeled as (±±). The red line shows the physical region accessible by experiment.

where s is the center-of-mass energy squared, k f , ki are the
final and initial momenta in the center-of-mass frame, respec-
tively, and F represents the vertex producing two-body final
states. For our convenience let A represent either T or F†GF .
A has the same analytic structure as the S matrix.

From the unitary condition, the S matrix has a branch
cut running from each threshold along the positive real axis
in the

√
s plane to infinity, known as unitary cuts. Thus, in

the variable
√

s, A is not meromorphic, and Eq. (3) or (4)
cannot be applied directly. To explicitly write A in the form
of a Mittag-Leffler expansion, one must choose an appropri-
ate parametrization so that A becomes meromorphic. This
process is called uniformization [5]. Once uniformization is
performed, A can be decomposed into a series of the form
of Eq. (3) or (4). In addition, the unitarity of the S matrix
also imposes a symmetry condition on the position of the pole
positions and the residues of A. The poles are positioned sym-
metric about the imaginary axis in the uniformized z plane,
and the residues cn(zn) satisfy the following relationship:

cn(zn) = −c∗
n (−z∗

n ). (7)

Note that, when considering the pole symmetry condition, the
subtraction constant in Eq. (4) is real, and thus the imaginary
part of Eqs. (3) and (4) take the same form.

To summarize, by an appropriate choice of variable z, the
imaginary part of A can be written as

ImA(z) = Im
∑

n

(
cn

z − zn
− c∗

n

z + z∗
n

)
, (8)

which we will call the uniformized Mittag-Leffler expan-
sion. Expressing observables in the form of the uniformized
Mittag-Leffler expansion and comparing them with the ac-
tual experimental data, we can obtain the pole positions
and residues of the observables from experimental data in a
model-independent manner. Let us call this the uniformized
Mittag-Leffler expansion approach.

Explicit procedures are as follows:

(i) Find an appropriate kinetic variable z which uni-
formizes the S matrix.

(ii) Truncate the uniformized Mittag-Leffler expansion
and approximate A(z) by a few (m) pairs of the pole
terms as

ImA(z) = Im
m∑

n=1

(
c(m)

n

z − z(m)
n

− c(m)∗
n

z + z(m)∗
n

)
. (9)

(iii) Determine the complex pole positions z(m)
n and

residues c(m)
n (n = 1, . . . , m) by fitting A to the ex-

perimental data.
iv Regard converged z(m)

n , c(m)
n as the actual pole posi-

tions and residues.

The two-body double-channel S matrix can be expressed
as a four-sheeted Riemann surface with unitary cuts running
from each threshold ε1, ε2 to ∞ along the real axis, in the
parametrization of the center-of-mass energy

√
s. The thresh-

old energy εi is

εi = Mi + mi, (10)

TABLE I. Results for the pole positions by the uniformized Mittag-Leffler expansion with m = 3. zn is the dimensionless pole position on
the z plane and

√
sn in units of GeV on the

√
s plane.

Pole 1 Pole 2 Pole 3

z(3)
n 0.5243+0.3159i ± 0.0062 ± 0.0058i 1.6402−1.042i ± 0.0684 ± 0.0904i 2.3227 − 0.0687i ± 0.0033 ± 0.0031i√
s

(3)
n 1.4203−0.0475i ± 0.0011 ± 0.0015i 1.4283−0.074i ± 0.01 ± 0.0037i 1.5138 − 0.0068i ± 0.0003 ± 0.0003i
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FIG. 4. Results for the invariant-mass distributions of π+�− in the reaction γ p → K+π� in nine bins of center-of-mass energy W . The
(blue) dots with bars are the experimental data. The (orange) bands represent the 2σ -confidence interval of the fit by the uniformized Mittag-
Leffler expansion with m = 3. The (green) dashed, (red) dot-dashed, and (purple) dotted lines represent the contributions from individual
resonant-pole pairs of 1 + 1∗, 2 + 2∗, and 3 + 3∗, respectively.

where Mi and mi are the masses of the two particles in chan-
nels i = 1 and 2, respectively. The four sheets in the

√
s plane

can be uniquely labeled by the sign of the imaginary part of
q1 and q2, given by

qi =
√

s − ε2
i , (11)

which has a one-to-one correspondence with channel mo-
menta. In this paper we label the four sheets by (σ (q1)σ (q2))
where

σ (qi ) = sgn(Im qi ). (12)

The physical sheet corresponds to sheet (++).
By the parametrization z [6],

z = 1 + √
u

1 − √
u
,

where

u = q1 − 	

q1 + 	
and 	 =

√
ε2

2 − ε2
1 , (13)

the four-sheeted Riemann surface can be uniformized into
a single complex plane so that S (z) is meromorphic. The
correspondence between the

√
s plane and z plane is shown

in Fig. 3. The two thresholds,
√

s = ε1 and
√

s = ε2 are
transformed to points on the unit circle z = i and z = 1, re-
spectively. The imaginary axis above i, the unit circle between
i and 1, and the real axis above 1 correspond to the physically
accessible region of

√
s < ε1, ε1 <

√
s < ε2 and

√
s < ε2,

respectively.
The contribution of a single resonant-pole pair An is given

in the vicinity of
√

s = ε1 as

ImAn(z) =
{

0 (
√

s < ε1)
−Im 2cn

(zn−i)2
k1
	

+ O
(
k2

1

)
(
√

s > ε1), (14)

and in the vicinity of
√

s = ε2 as

ImAn(z) =
⎧⎨
⎩

Im 2cn
1−z2

n
− Re 4cnzn

(1−z2
n )2

k̃2
	

+ O
(
k̃2

2

)
(
√

s < ε2)

Im 2cn
1−z2

n
− Im 2cn(1+z2

n )

(1−z2
n )2

k2
	

+ O
(
k2

2

)
(
√

s > ε2),

(15)
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FIG. 5. Results for the invariant-mass distributions of π−�+. Details are the same as in Fig. 4.

where k1 and k2 are the momenta in channel 1 and 2, re-
spectively, and k̃2 is defined by k2 = ik̃2. Equations (14) and
(15) describe the proper threshold behaviors. Therefore, we
will always take into account pairs of poles together in the
uniformized Mittag-Leffler expansion. It should be noted,
however, that the conjugate poles do not affect the structure of
resonances well above the lowest threshold, because they are
more distant as the energy becomes higher above the lowest
threshold.

If a pole is located close to the physical region and
sufficiently away from the threshold, its contribution is
approximately given by Eq. (1) with a complex residue
as

Im
cn

z − zn
≈ Im

c̃n√
s − √

sn

= A cos θ
�n/2

(
√

s − εn)2 + �2
n/4

+ A sin θ

√
s − εn

(
√

s − εn)2 + �2
n/4

, (16)

where
√

sn = εn − i�n/2 and c̃n = cn[dz/d
√

s]−1√
s=√

sn
= Aeiθ

are, respectively, the position and residue of the pole in the
parametrization,

√
s, corresponding to zn. The standard Breit-

Wigner form corresponds to the particular case of θ = 0.
Note that the approximation in the first line of Eq. (16) only
holds for narrow resonances distant from the threshold. On
some local coordinate system, the mapping between

√
s and

z is a conformal map, thus preserving the local geometric
structure, meaning when |z − zn| is small and away from
critical points, z = i and 1, 1/(z − zn) ≈ α/(

√
s − √

sn). In
the neighborhood of the thresholds, or in the region of large
�, the mapping between

√
s and z is warped significantly, so

that the approximation breaks down.

III. APPLICATION TO THE EXPERIMENTAL
SPECTRUM OF �(1405)

We now apply our method to the experimental spectrum
of �(1405), regarding �(1405) as a resonance in the coupled
I = 0 two channels, π� and K̄N .
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FIG. 6. Results for the invariant-mass distributions of π0�0. Details are the same as in Fig. 4. In the π 0�0 channel the 2σ -confidence
interval is wider than that in the π+�− and π−�+ channels due to large experimental errors.

A. Fitting procedure

We fit the uniformized Mittag-Leffler expansion with m
resonant-pole pairs to the invariant-mass distributions of
π+�−, π−�+, and π0�0 final states in the reaction, γ p →
K+π�, measured with CLAS at Jefferson Lab for center-of-
mass energies 1.95 < W < 2.85 GeV [33] as

dσW

dM
= Im

m∑
n=1

(
cW (m)

n

z − z(m)
n

− cW (m)∗
n

z + z(m)∗
n

)
, (17)

and the K− p elastic and inelastic cross sections, K− p →
K− p, K̄0n, π+�−, π−�+ [26–32] as

σ i f = 1

16π2s

k f

ki
Im

m∑
n=1

(
ci f (m)

n

z − z(m)
n

− ci f (m)∗
n

z + z(m)∗
n

)
. (18)

In Eq. (17), dσW /dM is the distribution of the π� invari-
ant mass M, with center-of-mass energy W of the reaction
γ p → K+π�. In Eq. (18), σ i f is the cross section of the scat-
tering process, i → f , s is the center-of-mass energy squared
and ki (k f ) is the momentum of the initial (final) state in
the center-of-mass frame. The invariant-mass distribution was

measured in nine different center-of-mass energies W in the
range 1.95–2.85 GeV for each channel, π+�−, π−�+, and
π0�0. Each dataset of dσW /dM and σ i f is fit with different
residues but common pole positions. Therefore, in the case
of m resonant-pole pairs and N data sets we have m and
mN complex parameters for the pole positions and residues,
respectively. The behavior of the π� invariant-mass distri-
butions in the reaction γ p → K+π� is sensitive to the π�

threshold energies, which are slightly different for the π+�−,
π−�+, and π0�0 channels. Therefore, we take into account
the difference of the threshold energies with minimum modifi-
cations, although we basically regard �(1405) as a resonance
in the coupled two channels, π� and K̄N with isospin as an
approximately good quantum number. Namely, we define z
differently for each of the π+�−, π−�+, and π0�0 chan-
nels with slightly different π� threshold energies in the fit
of the π� invariant-mass distributions. We neither take into
account the difference of K̄N threshold energies in the π�

invariant-mass distributions nor the difference of π� and
K̄N threshold energies in the K− p elastic and inelastic cross
sections because it is simply unnecessary. As explained above,
each dataset of dσW /dM and σ i f is fit with different residues
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FIG. 7. Results for the cross sections K− p → K− p, K̄0n, π+�−, π−�+. Details are the same as in Fig. 4.

but common pole positions such that all pole positions are
common on the

√
s plane. This means that the pole positions

on the z plane are slightly different for the π+�−, π−�+, and
π0�0 invariant-mass distributions. When we show the pole
positions in the z plane, z is defined for the π+�− channel.
The differences, however, are small and will be ignored in the
following discussions.

We start from one resonant-pole pair m = 1 and gradually
increase the number of pairs up to m = 3. The reduced chi-
squared values are 5.74, 2.65, and 1.18 for cases, m = 1, 2,
and 3, respectively, and the case m = 3 best fit the spectrum
among them. We present the results of the case m = 3 in detail
in Sec. III B and discuss the convergence of the uniformized
Mittag-Leffler expansion from m = 1 to m = 3 in Sec. III C.

B. Results of uniformized Mittag-Leffler expansion with m = 3

Figs. 4–6 show the fitted invariant-mass distributions of
π+�−, π−�+, π0�0 in the reaction γ p → K+π� and Fig. 7
shows the elastic and inelastic cross sections K− p → K− p,
K̄0n, π+�−, π−�+. Since m = 3 and N = 31, we have 3 and
93 complex parameters for the pole positions and residues,
respectively. The uniformized Mittag-Leffler expansion with
m = 3 fits experimental data very well, which is confirmed
also by the reduced chi-squared value 1.18. The spectrum
between the π� and K̄N thresholds is mostly given by the
resonant-pole pair 1 + 1∗, while the spectrum above the K̄N

FIG. 8. Results for the pole positions on the z plane by the uni-
formized Mittag-Leffler expansion with m = 3. Let us denote z(m)

n∗ =
−z(m)∗

n . Two dotted lines around the poles represent the 70% and 95%
confidence intervals of the position of the poles, respectively, from
inside to outside. The (red) thick line represents the physical region
accessible in the experiment and the labels π� and K̄N represent the
corresponding thresholds.
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FIG. 9. Results for the pole positions on the
√

s plane. Details are the same as in Fig. 8.

threshold is given by the sum of 1 + 1∗ and 2 + 2∗ except for
the narrow structure around 1520 MeV, which is explained by
the contribution of 3 + 3∗. The contribution of 3 + 3∗ can be
considered as the remnant of �(1520), which was not exactly
subtracted from the bare experimental data [33]. Also, an
extra structure is observed in the invariant-mass distributions
of π−�+ around 1350 MeV. To explain such a structure, it
may be necessary to consider contributions from additional
resonant-pole pairs in the isospin I = 1 sector.

The positions of poles are tabulated in Table I and are
shown on the z plane and

√
s plane in Figs. 8 and 9, respec-

tively. In Fig. 9, (sgn(Im q1) sgn(Im q2)) labels the four sheets
of the

√
s plane, where q1 (q2) corresponds to the relative

momentum in the π� (K̄N) channel. Sheet (−+) is located
adjacent to the physical energy between the π� and K̄N
thresholds while sheet (−−) is above the K̄N threshold. Pole
1 is positioned on sheet (−+) right below the K̄N threshold
at the complex energy of 1420 − 47i MeV. Poles 2 and 3
are positioned on sheet (−−), at the complex energies of
1428 − 74i and 1514 − 7i MeV, respectively. Seen only from
the perspective of complex energy, pole 2 might seem close

to the K̄N threshold, which makes counterintuitive the fact
that 2 + 2∗ mainly contributes to the tail of the spectrum
much above the K̄N threshold. Pole 2, however, is not close
to the K̄N threshold because it is positioned on Riemann
sheet (−−), not (−+). In Fig. 8, on the z plane, one can
immediately see that the physical domain closest to pole 2
is much above the K̄N threshold.

In Tables II–V, the residues of the poles are presented,
which contain the information of wave function and formation
processes.

C. Convergence of uniformized Mittag-Leffler
expansion from m = 1 to m = 3

Figure 10 shows a typical invariant-mass distribution
of π+�− in the reaction γ p → K+π� [2.55 < W < 2.65
(GeV)] from [33], fit by the uniformized Mittag-Leffler ex-
pansion in cases m = 1, 2, and 3. As one can observe, the
case m = 1 fails to reproduce the broad peak structure below
the K̄N threshold, whereas the case m = 2 reproduces most of
the spectrum below and above the K̄N threshold. Comparing

FIG. 10. Results for the invariant-mass distribution of π+�− in the reaction γ p → K+π� by the uniformized Mittag-Leffler expansion
with m = 1, 2, and 3 from left to right.
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TABLE II. Results for the residues of the invariant-mass distributions of π+�− in units of μb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.3486 + 0.3026i ± 0.0154 ± 0.0149i 0.2487 − 0.122i ± 0.053 ± 0.0342i −0.0016 − 0.0029i ± 0.0013 ± 0.0014i
2.05–2.15 −0.3809 + 0.3245i ± 0.0156 ± 0.0135i 0.1451 − 0.1877i ± 0.0442 ± 0.0225i −0.0175 − 0.0081i ± 0.0034 ± 0.0023i
2.15–2.25 −0.2662 + 0.1989i ± 0.0121 ± 0.0096i 0.0294 − 0.0919i ± 0.028 ± 0.0183i −0.0108 − 0.0133i ± 0.0029 ± 0.0021i
2.25–2.35 −0.2539 + 0.208i ± 0.013 ± 0.0106i 0.0165 − 0.0339i ± 0.0318 ± 0.0227i 0.0014 − 0.0122i ± 0.0023 ± 0.0021i
2.35–2.45 −0.2016 + 0.2142i ± 0.0131 ± 0.0104i 0.0864 − 0.0442i ± 0.0306 ± 0.0189i −0.004 − 0.0105i ± 0.0021 ± 0.0019i
2.45–2.55 −0.1595 + 0.1369i ± 0.0097 ± 0.008i 0.0423 − 0.0179i ± 0.0219 ± 0.0151i −0.0038 − 0.0091i ± 0.0018 ± 0.0017i
2.55–2.65 −0.1072 + 0.0925i ± 0.008 ± 0.006i 0.025 − 0.0066i ± 0.0169 ± 0.0119i −0.0043 − 0.0065i ± 0.0016 ± 0.0014i
2.65–2.75 −0.0891 + 0.057i ± 0.0065 ± 0.0046i 0.0189 + 0.0133i ± 0.0139 ± 0.01i −0.0039 − 0.0062i ± 0.0014 ± 0.0012i
2.75–2.85 −0.0657 + 0.0466i ± 0.0056 ± 0.0042i 0.0161 − 0.0066i ± 0.0115 ± 0.008i −0.0053 − 0.0051i ± 0.0013 ± 0.0011i

TABLE III. Results for the residues of the invariant-mass distributions of π−�+ in units of μb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.2247 + 0.542i ± 0.0319 ± 0.0262i 0.358 − 0.2978i ± 0.0864 ± 0.0491i −0.0013 − 0.0038i ± 0.0017 ± 0.0017i
2.05–2.15 −0.1119 + 0.7353i ± 0.035 ± 0.0301i 0.0861 − 0.542i ± 0.0823 ± 0.0456i −0.0165 − 0.0155i ± 0.0035 ± 0.0033i
2.15–2.25 0.1962 + 0.4702i ± 0.02 ± 0.0162i 0.2154 − 0.1012i ± 0.0524 ± 0.0325i 0.002 − 0.0171i ± 0.0027 ± 0.0026i
2.25–2.35 0.0662 + 0.3112i ± 0.0144 ± 0.0129i 0.1313 − 0.0568i ± 0.0374 ± 0.0233i 0.0081 + 0.001i ± 0.0014 ± 0.002i
2.35–2.45 −0.0017 + 0.3091i ± 0.0116 ± 0.0116i 0.2839 + 0.0335i ± 0.0461 ± 0.0327i 0.0028 − 0.0026i ± 0.0018 ± 0.0016i
2.45–2.55 −0.0119 + 0.2237i ± 0.009 ± 0.0088i 0.2132 + 0.017i ± 0.0346 ± 0.0236i 0.0004 − 0.006i ± 0.0014 ± 0.0012i
2.55–2.65 −0.0189 + 0.1726i ± 0.0075 ± 0.0073i 0.1377 − 0.0008i ± 0.0248 ± 0.0162i −0.0006 − 0.0038i ± 0.001 ± 0.0011i
2.65–2.75 −0.0123 + 0.1263i ± 0.0062 ± 0.0055i 0.1136 − 0.0044i ± 0.02 ± 0.0131i −0.0029 − 0.0035i ± 0.001 ± 0.0009i
2.75–2.85 −0.0173 + 0.0932i ± 0.0055 ± 0.005i 0.0859 − 0.0121i ± 0.016 ± 0.0096i −0.0021 − 0.0028i ± 0.0009 ± 0.0007i

TABLE IV. Results for the residues of the invariant-mass distributions of π0�0 in units of μb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.6515 + 0.3471i ± 0.2256 ± 0.1211i 0.5316 − 1.2492i ± 0.7596 ± 1.3581i 1.3537 − 0.6183i ± 2.7107 ± 1.0427i
2.05–2.15 −0.3179 + 0.5296i ± 0.0374 ± 0.06i −0.3174 − 0.6043i ± 0.1764 ± 0.1197i −0.011 + 0.0019i ± 0.0104 ± 0.0121i
2.15–2.25 −0.1085 + 0.3535i ± 0.0209 ± 0.0333i −0.0763 + 0.0737i ± 0.1051 ± 0.0997i −0.0015 − 0.009i ± 0.0108 ± 0.0099i
2.25–2.35 −0.053 + 0.2798i ± 0.0154 ± 0.0245i 0.0799 + 0.2387i ± 0.0854 ± 0.0871i 0.0081 − 0.0087i ± 0.0086 ± 0.0082i
2.35–2.45 0.0027 + 0.2895i ± 0.0139 ± 0.0227i 0.1853 + 0.2406i ± 0.0828 ± 0.0885i 0.0052 − 0.001i ± 0.0079 ± 0.0073i
2.45–2.55 0.0223 + 0.2323i ± 0.0097 ± 0.0164i 0.1871 + 0.2054i ± 0.0618 ± 0.0691i −0.0038 − 0.0032i ± 0.0061 ± 0.0063i
2.55–2.65 0.0088 + 0.1641i ± 0.0084 ± 0.0141i 0.1101 + 0.1044i ± 0.0479 ± 0.0491i −0.0051 − 0.0098i ± 0.0054 ± 0.0042i
2.65–2.75 −0.0018 + 0.1221i ± 0.0076 ± 0.0126i 0.0883 + 0.1107i ± 0.0414 ± 0.0428i −0.0026 − 0.0058i ± 0.0047 ± 0.0038i
2.75–2.85 0.0089 + 0.094i ± 0.0058 ± 0.009i 0.0417 + 0.0439i ± 0.0317 ± 0.0294i 0.0018 − 0.0052i ± 0.0025 ± 0.0032i

TABLE V. Results for the residues of the cross sections K− p → K− p, K̄0n, π+�−, π−�+ in units μb/GeV2 by the uniformized Mittag-
Leffler expansion with m = 3.

Pole 1 Pole 2 Pole 3

K− p → K− p −5579 + 21810i ± 28869 ± 8950i 6572 − 5272i ± 6311 ± 4234i −99.33 + 32.89i ± 39.09 ± 44.88i

K− p → K
0
n 76090 − 9251i ± 25010 ± 6306i −1596 + 6936i ± 3447 ± 3629i −188.2 + 64.44i ± 13.5 ± 15.32i

K− p → π+�− 18960 − 96.75i ± 6251 ± 1890i −125.0 + 677.6i ± 1223.3 ± 936.0i −105.7 + 35.68i ± 7.2 ± 8.39i
K− p → π−�+ −4998 + 3449i ± 5546 ± 1850i 82.03 + 26.41i ± 1316.93 ± 837.59i −120.9 + 26.07i ± 8.7 ± 9.86i
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TABLE VI. Results for the pole positions by the uniformized Mittag-Leffler expansion with m = 1, 2, and 3. zn (n = 1, 2, 3) is the
dimensionless pole position on the z plane and

√
sn (n = 1, 2, 3) is the pole position on the

√
s plane with units of GeV.

m = 1 m = 2 m = 3

z(m)
1 0.52 + 0.012i ± 0.01 ± 0.009i 0.551 + 0.323i ± 0.007 ± 0.008i 0.524 + 0.316i ± 0.006 ± 0.006i√
s

(m)
1 1.478 − 0.003i ± 0.004 ± 0.002i 1.420 − 0.042i ± 0.001 ± 0.002i 1.420 − 0.048i ± 0.001 ± 0.002i

z(m)
2 2.62 − 0.75i ± 0.09 ± 0.06i 1.64 − 1.04i ± 0.07 ± 0.09i√
s

(m)
2 1.53 − 0.083i ± 0.01 ± 0.004i 1.43 − 0.074i ± 0.01 ± 0.004i

z(m)
3 2.323 − 0.069i ± 0.003 ± 0.003i√
s

(m)
3 1.5138 − 0.0068i ± 0.0003 ± 0.0003i

the cases m = 1 and 2, it is clear that we need at least two
resonant-pole pair contributions to successfully reproduce the
broad peak structure below the K̄N threshold and the con-
tinuous spectrum above the K̄N threshold. By the addition
of the third resonant-pole pair contribution, the narrow peak
structure around 1520 MeV can also be taken into account,
resulting in a satisfying approximation of the actual spectrum.

Table VI and Fig. 11 display the fit pole positions for
cases, m = 1, 2, and 3. The position of pole 1 significantly
shifts as we increase the number of terms from m = 1 to
m = 2, whereas it hardly moves when increasing from m = 2
to m = 3. This implies that the convergence of pole 1 is almost
realized for the case m = 3. The convergence of pole 2 cannot
be seen up to m = 3 but pole 2 and pole 3 are positioned
further and further away from pole 1.

These behaviors imply that the expansion with m = 3 is
almost convergent in the vicinity of pole 1.

FIG. 11. Results for the pole positions on the z plane by the
uniformized Mittag-Leffler expansion with m = 1, 2, and 3.

D. Discussion

As stated above, we found only a single pair of poles,
1 + 1∗, on the (−+) sheet of the complex

√
s plane, which

sufficiently explains the broad peak structure between the
π� and K̄N thresholds. Its contribution to the uniformized
Mittag-Leffler expansion converges up to m = 3. This leads
us to identify pole 1 as �(1405). Also, it is natural to identify
pole 3 as �(1520) due to its small width, even though the
convergence of 3 + 3∗ has not been confirmed up to m = 3.
The interpretation of pole 2 is less intuitive, which cannot be
identified with any physical resonance. The contribution of
2 + 2∗ gives the continuous spectrum above the K̄N threshold
together with the tail of the contribution of 1 + 1∗. It should be
also noted that the contribution of 2 + 2∗ is mostly negative.

Usually, the observed spectrum is naively interpreted as
the sum of physical resonances and background contribu-
tions. However, there is no well-defined criterion when a pole
should be identified as a physical resonance or not. In the
uniformized Mittag-Leffler expansion, the observed spectrum
is represented as a sum of pole contributions, which is well
defined. There is no need to identify a pole as a physical
resonance or not. Obviously, all the pole contributions in the
uniformized Mittag-Leffler expansion cannot be interpreted as
resonance contributions in the usual sense.

The results obtained in a model-independent manner by
the use of the uniformized Mittag-Leffler expansion support a
single-pole picture of �(1405). To solidify this claim, it may
be useful to take into account more than three resonant-pole
pair terms in the uniformized Mittag-Leffler expansion.

IV. SUMMARY AND CONCLUSION

In this paper we applied the uniformized Mittag-Leffler
expansion, proposed in our previous paper, to the �(1405)
resonance. We expanded the observable as a sum of resonant-
pole pairs with a variable which expresses the observable
to be single valued, and fit it to experimental data of the
invariant-mass distribution of π+�−, π−�+, π0�0 final
states in the reaction γ p → K+π� and the elastic and inelas-
tic cross sections K− p → K− p, K̄0n, π+�−, π−�+. Thus,
we determined the resonant energy, width, and residues in a
model-independent manner.
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We started from one pair and gradually increased the
number of pairs up to three. We observed that the first pair
converges while the second and third pairs emerge further
and further away from the first pair, which implies that the
uniformized Mittag-Leffler expansion with three pairs is al-
most convergent in the vicinity of �(1405). The reduced
chi-squared values are 5.74, 2.65, and 1.18 for the number of
pairs, one, two, and three, respectively, and the uniformized
Mittag-Leffler expansion with three pairs satisfactorily fits
experimental data. The broad peak structure between the π�

and K̄N thresholds regarded to be �(1405) is explained by
the first pair, while the continuous spectrum above the K̄N
threshold is given by the first and second pairs except for the
narrow structure around 1520 MeV, which is explained by
the third pair. The results are consistent with the single-pole
picture of �(1405) with a resonant energy of 1420 ± 1 MeV,
and a half-width of 48 ± 2 MeV.

In conclusion, the uniformized Mittag-Leffler Expansion
approach turns out to be a very powerful and simple method.
If experimental data have enough statistics, one can determine

the information of near-threshold resonances in a model-
independent way. This is extremely important in order to
achieve unbiased understanding of near-threshold resonances.

As an extension of the present work, we can proceed in two
directions. One is the application of the present uniformized
Mittag-Leffler expansion to other hadron resonances, which
are positioned near two two-body thresholds. The other is the
extension of the present uniformized Mittag-Leffler expansion
to the case with three or more two-body thresholds or cases
with three-body thresholds. Both possibilities are presently
under our consideration.
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