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Distribution of nuclear matter and radiation in the fragmentation region
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We study the fragmentation (far forward/backward) region of heavy-ion collisions by considering an at-rest
nucleus which is struck by a relativistic sheet of colored glass. By means of a simple classical model, we calculate
the subsequent evolution of baryons and the associated radiation. We confirm that the struck nucleus undergoes
a compression and that the dynamics of the early times of the collision are best described by two separate fluids
as the produced radiation’s velocity distribution is very different to the velocity distribution of the matter in the
struck nucleus.
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I. INTRODUCTION

The fragmentation (very forward/backward) region of
heavy-ion collisions is interesting as it is the only baryon-rich
[1] part of phase space in the presence of strong gluon fields.

It was first observed in [2] that, upon interaction with a
relativistic heavy-ion projectile, the target will undergo some
compression and that this in turn will increase the baryon and
energy density in the fireball. A fully quantum calculation of
the distribution of baryons in the fireball was done in [3], but
the result is difficult to interpret at early times. By means
of a classical model of the target we would like to achieve
two goals: the first is to reevaluate the compression of the
nucleus to include the effects of saturation in the framework
of the color-glass condensate (CGC) (see, e.g., [4–6]), and our
second goal is to develop an intuitive picture of the early-
time dynamics of both the struck particles and the resultant
radiation.

Our model of the target assumes the nucleus is made of
uniformly distributed constituent quarks with negligible inter-
actions. We will focus on the z component (beam direction) of
the evolution of the distribution of quarks and radiation so that
the majority of the calculation is performed in (1+1) dimen-
sions [(1+1)D]. We will work in the target’s rest frame1 where
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1In contrast to the approach followed in [7] which deals with the
problem in the center-of-mass frame and computes the radiation that

the collision will be a sequence of independent successive
interactions of a sheet of colored glass with each quark. We
will treat these interactions entirely classically, and so each
quark follows the trajectory of a free classical particle after it
is struck.

The problem of a single classical color-charged point parti-
cle interacting with a sheet of colored glass has recently been
considered [8,9], where it was discovered that the quark recoil
needs to be taken into account when the transverse momentum
of the radiated gluon is high.

In the current paper we will use the classical quark-CGC
interaction of [8,9] to treat the evolution of the quarks while
approximating the gluon radiation spectrum by a flat distribu-
tion. This approximation aligns well with experiment, which
shows a slowly varying rapidity distribution [10], and suits
our purposes better than the more detailed first-principles
treatments found in the literature [8,9,11–14].

Some attempts have been made to study the hydrodynam-
ical evolution of the forward-moving baryon-rich fluid in a
heavy-ion collision [15,16]. Our results will have implications
for the use of (3+1)-dimensional, baryon-rich hydrodynami-
cal transport equations [17–20] in the fragmentation region as
we will argue that the two fluids (the baryon-rich nucleonic
matter and the baryon-free produced matter) have very differ-
ent velocities and do not equilibrate in the early stages of the
collision. An interesting prospect would be to apply models
such as three-fluid hydrodynamics [21,22] to the fragmenta-
tion region.

This paper is organized as follows: In Sec. II we present a
brief review of the equations of motion describing a classical

results from colliding two infinitesimally thin sheets. That approach
naturally yields a longitudinally invariant gluon distribution, which is
not the case in the present paper since we do not have a longitudinally
invariant initial distribution of matter. As such, the two results are not
related by a simple Lorentz transformation.
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particle interacting with a sheet of colored glass. We then use
these equations of motion to derive a momentum distribution
of the struck quark after averaging over the classical sources.
We will use the McLerran-Venugopalan (MV) model [23] so
that the averaging is performed over a Gaussian distribution
of sources.

In Sec. III we start to develop our model by deriving the
phase-space densities for the struck nucleons (hereinafter the
“matter” particles) as well as the phase-space density for the
resulting radiation (hereinafter the “radiation”). Armed with
the phase-space density, we then compute the number and
energy densities in a manner that is straightforward but yields
interesting physics.

We then move on to compute the average velocity and, by
extension, the average momentum-space rapidity of both the
matter and the radiation in Sec. IV. It is the results in this
section that allow us to come to an important realization; we
find that the matter and the radiation behave very differently at
early times, suggesting that a full, hydrodynamical treatment
of the problem requires initial conditions that contain the
physics of two fluids with very different properties that do not
equilibrate soon after the collision.

We summarize and discuss the above results in Sec. V
where we highlight the realization of our two goals.

II. REVIEW: MOMENTUM KICK OF A CLASSICAL
PARTICLE INTERACTING WITH A SHEET

OF COLORED GLASS

Let us review some results from [8,9] describing the in-
teraction of a sheet of colored glass with a classical point
particle. In the MV model [23], gluon fields, generated by
classical color sources, are governed by the classical Yang-
Mills equation

DμFμν = Jν (2.1)

where the current associated with a sheet of colored glass is

Jμ
a = δμ+δ(x−)ρa(x⊥). (2.2)

The four-momentum of a point charge interacting with this
sheet evolves according to

d pμ

dτ
= gT · Fμνuν, (2.3)

where T is the classical color charge vector associated with
the point particle. In the A+ gauge, we have F+i = −∂ iA+
and so the “−” component of Eq. (2.3) has the simple form

d p−

dτ
= 0. (2.4)

The above equation Eq. (2.4) tells us that p− is unchanged by
the interaction so

pbefore = (m/
√

2, m/
√

2, 0⊥), (2.5)

pafter = (p+, m/
√

2, pT). (2.6)

This then means pT and pz after the collision are related.
To see this, note that imposing the mass-shell condition on

Eq. (2.6) gives

p+ = m2 + p2
T√

2m
, (2.7)

∴ pz = p+ − p−
√

2
= p2

T

2m
. (2.8)

It also follows from Eqs. (2.3) and (2.4) that the particle
gets a transverse momentum kick:

∂ pi

∂x− = gT · F+i, (2.9)

so that

pi(x⊥) = gT a ∂ i

∇2
T

ρa(�x⊥). (2.10)

According to the MV model the charge density ρa is sam-
pled from a Gaussian distribution:

W[ρ] = 1

N
exp

{
− 1

2μ2
A

∫
d2xρa(�x⊥ )ρa(�x⊥ )

}
. (2.11)

We can therefore extract the following probability distribu-
tion over �pT :

dP( �pT )

d2 pT

= 2

(gT a)(gT a)μ2
A ln Qs

�

× exp

(
− 2π p2

T

(gT a)(gT a)μ2
A ln Qs

�

)
. (2.12)

Since we have established that pz and pT are related, we have
that

dP(pz )

d pz
= 1

p0
e− pz

p0 (2.13)

where

p0 =
(gT a)(gT a)μ2

A ln
( Qs

�QCD

)
4πm

� Q2
s /2m. (2.14)

We have used a definition of Qs consistent with [5].2 One
may estimate the value of Qs [24] in the fragmentation region
at RHIC and the LHC to find that Qs ∼ 1–2.5 GeV at RHIC
and Qs ∼ 2.5–7 GeV at the LHC. The details of this derivation
have been relegated to Appendix A.

III. PHASE SPACE, NUMBER DENSITY,
AND ENERGY DENSITY

The fundamental object we will deal with is the phase-
space density which we will first derive separately for the
nucleons (or quarks) and the radiation. We will then compute

2Following [5] we interpret (gT a)(gT a ), the square of the classical
color charge carried by the particle, given by the quadratic Casimir
(gT a )(gT a) = g2CR of the chosen representation. The saturation
scale as defined in [5] involves gluons and so the adjoint represen-
tation (CR = CA = Nc) is used. For our purposes it only matters that
the charges are classical and so we leave the exact representation
ambiguous.
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FIG. 1. Longitudinal kinematics of the process in (1+1)D, a
string of stationary quarks that are struck by a relativistic (v = 1)
sheet of colored glass, causing the quarks to move off with varying
momenta.

the number and energy densities directly from the phase-space
density.

We are interested in the single-particle distribution for
quarks inside a nucleus that is struck by a sheet of colored
glass. In (1+1)D, we consider N uniformly distributed quarks
of the target nucleus, arranged in a line of length R. In the
target’s rest frame, the quarks all have zero initial velocity and
are then struck, one after the other, by a sheet of colored glass
moving along x− = 0. The struck quarks will then radiate
additional particles. The geometry of the process is shown in
Fig. 1.

A. Phase space: Radiation

Since we will employ a simple model for the production
of the radiation, it is pedagogically simpler to consider the
radiation first. We will consider a situation in which the
production distribution of the radiation is flat as a function
of the rapidity F (y) = F , and the multiplicity is “fitted” to
experimental data. The flatness assumption is justified by the
experimental observation that the meson distribution varies
slowly with pseudorapidity [10]. We assume a picture where
the radiated particles are produced at the initial positions of
the quarks, z ∈ (0, R), at the time each of the quarks is hit by
the sheet.

One may include the effects of a formation time, but the
additional complexity reduces the clarity of the analytic re-
sults. One may also consider a limit to the beam rapidity, yb.
In practice this limit serves as a useful regulator, but it has
little effect on the final result. At LHC energies, the beam
rapidity (in the rest frame of the target nucleus) is around 16,
so that tanh yb ∼ 1. Since the result is analytical and easily
interpreted, we will present here only the derivation without
formation time or beam rapidity limit. The density distribu-
tion of the radiation with formation time is derived in full in
Appendix C.

We start by considering the phase-space density of the
radiation produced by a single struck particle, situated at the
origin:

f 0(z, t, y) = F 	(t ) δ(z − t tanh y). (3.1)

A single particle at an arbitrary position zi will radiate
radiation with a phase-space density given by

f zi = F 	(t − zi ) δ[z − zi − (t − ti ) tanh y]. (3.2)

Suppose now that the total number of quarks N is dis-
tributed along (0, R) uniformly so that there are Ni = N/R

quarks at each zi, each of which radiates radiation with phase-
space density given by Eq. (3.2). The full phase-space density
is then given by

f (z, t, y) =
∑

i

f zi (z, t, y). (3.3)

We may go to the continuum limit, taking careful note of
the fact that the integral over quark positions needs to be split
in order to ensure that only those locations that contain at least
one quark are integrated over. The phase-space density of the
radiation from an at-rest nucleus struck by a relativistic sheet
of colored glass is then given by

f (z, t, y) =F N

R

[
	(R − z)I rad

f (z) + 	(z − R)I rad
f (R)

]
, (3.4)

where

I rad
f (a) =

∫ a

0
dz′	(t − z′)δ[z′(tanh y − 1) + z − t tanh y]

= 1

1 − tanh y
	(z − t tanh y)	

× [t tanh y − z − a(tanh y − 1)]. (3.5)

We will need to make some numerical estimates: A central
lead-lead collision at the LHC typically produces on the order
of 2000 charged particles per unit of pseudorapidity [25,26],
spanning about ten units of pseudorapidity, and, since the
total number of particles produced (including neutral parti-
cles) is around twice that, one expects that around 40 000
particles are produced in such collisions. We can then estimate
that the amount of radiation per valence quark to be around
40 000/400/3 ∼ 30, so that we will take F ∼ 30.

B. Phase space: Matter

In deriving the phase-space density of the matter distribu-
tion, we will follow a similar process as for the derivation
of the radiation, but we will make sure to incorporate the
physics of Sec. II in the momentum distribution. Assuming
no interaction among the quarks, one arrives at the following
single-particle distribution for the matter, the derivation of
which is described in Appendix B:

f (x, p) = N

R
θ (t − z)θ

(
z − t p

p + m

)

× θ

(
p(t − R)

p + m
+ R − z

)(
1 + p

m

) 1

p0
e−p/p0

+ N

R
θ (z − t )θ (z)θ (R − z)δ(p), (3.6)
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where θ is the usual Heaviside-theta function, x = (t, z), m is
the quark mass, p0 is the typical momentum given to a struck
quark, and we have suppressed the z superscript so that p is
the z component of the quark’s momentum.3

The distribution f (x, p) of Eq. (3.6) above has two terms:
one term with the prefactor θ (t − z) and another term with
θ (z − t ), describing the distribution of the quarks behind the
sheet and those ahead of the sheet, respectively. One can see
that before the collision, t < 0, the particles are described
entirely by the θ (z − t ) term, involving only a δ(p) which
describes a distribution of stationary particles. As the sheet
progresses through the nucleus, the quarks behind the sheet
are left with a momentum distribution that depends on the
physics of Sec. II, until the sheet has passed through the nu-
cleus (t > R), whereafter the distribution is described entirely
by the momentum distribution of struck quarks. The theta
function θ [z − pt/(p + m)] behind the sheet simply means
that a particle at (z, t ) has a velocity (z component) less than
z/t . This makes sense since z/t is the velocity of a quark that
was struck at z = 0, t = 0, and particles located at (z, t ) are all
those that the initial quark from the origin has caught up with,
all of which must obviously be slower moving. The remaining
theta function of the behind-the-sheet term similarly sets a
minimum velocity for motion beyond the initial bounds of the
nucleus, i.e., z > R.

We will make a number of numerical estimates: we will
consider a lead nucleus as our target nucleus which then has
a diameter (not radius) of R ∼ 2 × 1.1 fm × A1/3 ∼ 14 fm;
we will consider N = 600 ∼ 3 × 208 quarks in our target
nucleus, each quark with a mass of 300 MeV � 938 MeV/(3
valence quarks in the proton). The parameter p0 scales like
Q2

s /m. We will take Qs ∼ 1 GeV (corresponding to RHIC
energies) so that p0/m ∼ Q2

s /m2 ∼ (1 GeV)2/(300 MeV)2 ∼ 10.

C. Number density

Armed with the phase-space density, one may straight-
forwardly compute the spatial distribution of the matter and
the radiation at a fixed time by integrating the momentum
dependence:

dN

dz
=
∫ ∞

0
d p f (x, p). (3.7)

The spatial distribution of quarks at a fixed time, t , is
therefore given by integrating the momentum dependence of
Eq. (3.6), giving

dNmat

dz
=
∫ ∞

0
d p f (x, p)

= N

R
θ (t − z)

[
Imat
0

(
z

t

)
− θ (z − R)Imat

0

(
z − R

t − R

)]

+ N

R
θ (z − t )θ (R − z)θ (z), (3.8)

3From here on we will continue to suppress the superscript on pz.

where

Imat
0 (w) = −

( w

1 − w
+ 1 + p0

m

)
exp

(
− m

p0

w

1 − w

)

+ 1 + p0

m
. (3.9)

Changing variables to η = 1
2 log ( t+z

t−z ) and τ 2 = t2 − z2

(see Appendix D), one finds

dNmat

dη
= dz

dη

dNmat

dz

= N

R

τ

cosh η
θ (τ )

[
1 + p0

m
− 1

2

(
2p0

m
+ e2η + 1

)

× exp

(
− m

2p0
(e2η − 1)

)
− θ (τ sinh η − R)

×
{

1 + p0

m
− 1

2

(
2p0

m
+ e2η + 1 − 2Reη/τ

)

× exp

(
− m

2p0
(e2η − 1 − 2Reη/τ )

)}]

+ N

R

τ

cosh η
θ (−τ )θ (R − τ sinh η)θ (τ sinh η).

(3.10)

The distribution of the radiation is similarly obtained by
integrating Eq. (3.4):

dN rad

dz
=
∫ ∞

0
dy f (z, t, y)

= F N

R
	(t − z)

[
	(R − z)I rad

N (0)

+	(z − R)I rad
N

(
z − R

t − R

)]
, (3.11)

where

I rad
N (a) =

∫ tanh−1 z
t

tanh−1 a
dy

1

1 − tanh y

= 1

4

(
2 tanh−1 z/t − 2 tanh−1 a

− e2 tanh−1 a + e2 tanh−1 z/t
)
. (3.12)

We may, once again, do a coordinate transformation to
(η, τ ) space (see Appendix D), but we will not reproduce the
explicit formula here. In Fig. 2 we present plots of Eqs. (3.8)
and (3.11) at two different times, scaled by Qs and R so as to
consider dimensionless variables.

At early times, the peak in the matter distribution, shown
in Fig. 2(a), indicates that the (z, t ) distribution of the matter
particles exhibits the expected compression as a result of the
collision. Figure 2(b) shows that the matter will continue to
expand after the shockwave has passed (the probability den-
sity falls off).

Since the problem is framed relativistically, the com-
pression naturally has a component that is simply due
to Lorentz contraction. However, one may boost into a
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FIG. 2. Distribution of matter and radiation (without formation time) when the shockwave has (a) traversed part of the stationary matter
distribution and (b) moved beyond the initial matter distribution. Both figures use N = 600 matter particles, p0

m = 10, and F = 30.

“comoving frame”4 (of constant ηs corresponding to a con-
stant z/t ) where one will find that the density of particles at a
given ηs is constant in the spatial region of the initial matter
distribution, and falls off beyond R. To see this effect, we
present Fig. 3(a), in which the thin vertical lines are lines
of constant z

t = 0.85, and the different solid curves show
the probability density at progressively higher t . Notice in
Fig. 3(a) that, for the first two solid curves (where t < R),
the two points in the same comoving frame (the intersec-
tion of the vertical lines with the colored curves) are at the
same height, while the points in this same comoving frame
at later times are at lower probability density. The probability
density for constant z

t = 0.85 is shown as a function of z in
the dashed red curve. The absolute density depends on the

4At early times it is hard to interpret this frame as a genuinely
comoving frame since the fluid has many components all moving
at different velocities, and it is not clear what the frame is comoving
with. However, at late times (once the sheet has passed through the
nucleus), any frame at rapidity ηs will be moving along with a fluid
the average velocity of which is 〈y〉 = ηs.

choice of comoving frame, with frames closer to the frame
of the shockwave (z/t → 1) presenting higher densities than
those frames that lag behind. Although the radiation curve in
Fig. 3(b) also exhibits a falloff in density at a fixed ηs beyond
z = R, the density in the comoving frame climbs throughout
z < R, since new radiation is added successively as the sheet
passes through the matter.

The divergence observed in the radiation is an artifact of
the flat production distribution, meaning that a large number
of particles are radiated at relativistic speeds. This effect is
apparent already in Eq. (3.12) where a divergence occurs as
z → t . Alternatively, the divergence is an artifact of the choice
of frame and disappears when one considers the radiation
in a comoving frame. Consider, for instance, the frame with
ηs = 1.25 (corresponding to z/t = 0.85), plotted as a dashed
red curve in Fig. 3(b), showing that the number density of the
radiation in a comoving frame will build up while the frame is
moving through the target nucleus, before dropping off (due
to expansion) beyond the nucleus. We have not plotted the
radiation with formation time here as the formation does not
have an observable effect in (z, t ) space. The matter distribu-
tion does not suffer from the same effect since we have used

t / R = 0.4
t / R = 0.9
t / R = 2
t / R = 3
z
t

= 0.85

0 0.5 1 1.5 2 2.5 3
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N d
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[f
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−1
]

Matter

(a)
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[f
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−1
]

Radiation × 30−1

(b)

FIG. 3. dN
dz as a function of time for (a) the matter distribution and (b) the radiation (with formation time) distribution. The red curves

connect points on the (continuous set in t) (z, t ) curves that have z/t = 0.85. The faint vertical lines are at z values that correspond to z
t = 0.85

for each t curve. R = 14 fm/c, N = 600, F = 30, Qs = 1 GeV.
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a more realistic distribution of the momenta imparted to the
matter particles.

Both the matter and the radiation curves in Fig. 2(b) exhibit
a “kink” at z = R. We may understand the kink as resulting in
the following way; since the shockwave imparts a distribution
of velocities to the matter particles situated at z � R, some
pileup may occur as particles accorded higher velocities at
earlier times catch up with those particles that obtained lower
velocities at later times. However, once the shockwave passes
the limits of the nucleus, no further pileup will occur. The
particles will then successively leave the region of initial dis-
tribution as time passes, while particles with higher velocities
will move off more rapidly (causing a lower particle density
beyond the range of the initial matter distribution).

If one includes a formation time for the radiation of the
form

N0(1 − e−τ/τ0 )
τ�τ0−→ N0, (3.13)

and a limit to the beam rapidity of yb, one can follow the
same process and arrive at a result for the number density of
particles radiated with a formation time of τ f ∼ 1/Qs by at-rest
quarks that are struck by a relativistic sheet of colored glass
with rapidity yb. The full result, derived in detail in Appendix
C1, resembles Eq. (3.11) in form but requires a slightly more
involved integral:

I rad
N,τ f

(a) =
∫ tanh−1(z/t )

tanh−1(a)
dy

vb

vb − tanh y

×
(

1 − exp

{
− Qs(z − tvb)

tanh y − vb
sechy

})
. (3.14)

The integral in Eq. (3.14) has a closed form but it is not
illuminating. In Fig. 4 we show the effect of the formation
time, which we have taken to scale with the inverse of the
saturation scale τ f ∼ Q−1

s . The solid green curves show the
radiation density without formation time while the orange
dashed curves show the radiation with formation time. Each
panel has a different value of Qs for the formation time with
decreasing Qs (increasing τ f ) downwards. The solid green
curves are then identical in all three plots. Each panel shows
four curves, each representing the density at a different time
with lighter curves (further to the left of each plot) at later
times. One notices immediately that at late times (light curves)
the formation time plays no role—the dashed curves lie on
top of the solid curves. We also see that a larger formation
time (panels lower down) means that the dashed curves take
longer to resemble the solid curves. Equivalently, larger for-
mation times restrict the production of radiation for longer, as
expected.

D. Energy density

The energy density associated with a distribution of parti-
cles can be extracted from the phase-space density f (x, p) in
the following way:

dE (x)

dz
=
∫

d p f (x, p)E (p), (3.15)
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FIG. 4. The radiation profile at various τ without formation time
(solid curves) and with formation time (dashed curves), described
by appropriately transformed Eq. (3.11). Progressively lighter curves
are at later times. R = 14 fm/c, N = 600, F = 30.

where E (p) is the energy of a particle carrying a z compo-
nent of momentum pz = p. The matter and the radiation have
different dispersion relations.

Note that the full energy should be relativistically divergent
in the laboratory or rest frame of the target nucleus. The full
energy should diverge as Qs cosh ηs. One may boost into a
frame which has a particular rapidity ηs in the laboratory
frame, but it is difficult to interpret this frame as a “comoving”
frame at early times, since it is only at late times that all
the particles at a particular ηs are moving with the same y
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such that 〈y〉 = ηs. We will therefore call such a frame an
ηs-moving frame. Boosting to an ηs-moving frame simply
involves dividing by the Lorentz-γ factor, γ = cosh ηs. In
this way then, we will not do a full Lorentz boost of the
current-density four-vector. The transverse energy is Lorentz
invariant.

In the case of the matter distribution the energy is given by

E (p) =
√

p2 + p2
T + m2 = p + m (3.16)

and the transverse energy is

ET (p) =
√

p2
T + m2

= m

√
1 + 2p

m
, (3.17)

where we have made use of the following relationship be-
tween the transverse and longitudinal momentum of the struck
matter particle:5

p2
T = 2mp. (3.18)

Using Eq. (3.15) we arrive at the following result for en-
ergy density of the matter distribution:

dEmat(x)

dz
=
∫

d p f (x, p)(p + m)

= N

R
θ (z − t )θ (z)θ (R − z)m + N

R
θ (t − z)

×
{

Imat
E

(
z

t

)
− θ (z − R)Imat

E

(
z − R

t − R

)}
, (3.19)

where

Imat
E (w) =

∫ w
1−w

m

0
d p

(p + m)2

mp0
e− p

p0 (3.20)

= m + 2p0 + 2p2
0

m
−
(

m

(1 − w)2
+ 2p0

1 − w
+ 2p2

0

m

)

× exp

(
− m

p0

w

1 − w

)
. (3.21)

The transverse energy has a similar formula:

dEmat
T (x)

dz
=
∫

d p f (x, p)
√

2mp + m2

= N

R
θ (z − t )θ (z)θ (R − z)m + N

R
θ (t − z)

×
{

Imat
ET

(
z

t

)
− θ (z − R)Imat

ET

(
z − R

t − R

)}
, (3.22)

where

Imat
ET

(w) =
∫ w

1−w
m

0
d p

1

p0
(p + m)

√
1 + 2p

m
e− p

p0 . (3.23)

In the case of the radiation, we will assume that the trans-
verse momentum is entirely a result of the momentum transfer

5Also given in Eq. (2.8).

from the sheet of colored glass and is therefore on the order
of Qs so that k⊥ ∼ Qs. Since y = 1

2 ln k+
k− , we have that

E (y) =
√

k2
⊥ + k2

z = Qs cosh y = Qsγ . (3.24)

The energy density of the radiation (without formation time
or beam rapidity limit) is therefore given by

dE rad

dz
= Qs

R
F N 	(t − z)

[
	(R − z)I rad

E (0)

+	(R − z)I rad
E

(
z − R

t − R

)]
, (3.25)

where

I rad
E (a) =

∫ tanh−1 z
t

tanh−1 a
dy

cosh y

1 − tanh y
. (3.26)

In an ηs-moving frame, the energy density is given by

1

cosh η

dE rad

dη
= 1

cosh η

τ

cosh η

dE rad

dz

(
z(η, τ ), t (η, τ )

)
.

(3.27)

The transverse energy for the radiation is simply given by

dE rad
T

dz
= Qs

dN rad

dz
, (3.28)

with dN rad/dz given by Eqs. (3.11) and (3.12).

E. Late-time distributions

At late times, τ � R > 0, the region for which the
τ sinh η − R < 0 is ever shrinking and the increasingly im-
portant region, in η space, is that for which η > sinh−1(R/τ ).
We therefore have that (3.10), describing the distribution of
matter, becomes

dNmat

dη
→ m

p0
N exp

{
2η −

(
m

2p0

)
e2η +

(
m

2p0

)}
. (3.29)

The late-time matter distribution for the matter (3.29) has a
peak at η = 1

2 log 2p0

m , with a height given by

dNmat

dη

∣∣∣∣
max

= 2Ne
(

m
2p0

−1
)
. (3.30)

This means that baryons lose a rapidity of log Qs

m , which is
one to two units of rapidity at RHIC energies, and two to three
units of rapidity at the LHC. It is interesting to see that this is
in agreement with the results of [27,28], where very different
methods are used. In Fig. 5(a) we present an investigation of
the influence of p0/m on the position and height of the peak in
Eq. (3.29).

We may also consider the late-time distribution of the
radiation, which is almost trivial since we started out with
the assumption that the momentum-space rapidity distribution
of the radiation is flat. Since the momentum-space rapidity is
equal to the position-space rapidity at late times, we therefore
expect the late-time position-space rapidity of the radiation to
be flat as well. In this limit, the radiation distribution becomes
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FIG. 5. The late-time distribution of the (a) number density and (b) transverse energy density for the matter, using R = 14 fm, N = 600
matter particles, and p0

m = 10.

(after expansion around τ → ∞)

dN rad

dη

∣∣∣∣
τ→∞

= lim
τ→∞

{
R

τ
eη − 1

2
ln

[
1 − 2R

τ
e−η

]}

× τ

cosh η

NF

2R
= NF. (3.31)

At late times then, the radiation is constant in space-time
rapidity, ηs, provided their production is flat in momentum
rapidity y.

In an exactly analogous manner, one may study the late-
time distribution of the energy density. For the radiation this
is a trivial exercise of multiplying the number density by Qs—
each radiated particle carries a transverse energy of around
Qs. A far more interesting exercise is to consider the late-time
distribution of the matter. The same process of expanding
Eq. (3.27) around τ → ∞ yields the following late-time ex-
pression:

dEmat
T

dη
→ Nm2

p0

sech3η

(1 − tanh η)3
exp

[
− m

p0

tanh η

1 − tanh η

]
,

(3.32)

which has a peak at η = log
√

3p0

m with height

dEmat
T

dη

∣∣∣∣
max

= 3
√

3p0m N exp

[
−1

2

(
3 − m

p0

)]
. (3.33)

The late-time distribution of the energy density for the
matter is shown in Fig. 5(b). Notice that the distribution of

matter is peaked in (η, τ ) space at late times, the peak be-
ing described by Eq. (3.30). This peak is characteristic of
the distribution and is related to saturation physics through
p0/m ∼ Q2

s /m2 . The position of the peak moves along η as
ln Q2

s /m2 while the height of the peak scales with exp (m2/Q2
s
),

which may be seen from the relations in Appendix B and
the fact that μ2 ∼ Q2

s . The dependence on p0/m is plotted in
Fig. 5(a).

One may note that the position of the peak for the late-time
number density distribution in Eq. (3.30) is different from
the position of the peak for the late-time energy density in
Eq. (3.33). The difference is only by a constant, dimensionless
number which is small (≈3) in comparison with typical values
of p0/m � 10.

IV. AVERAGE VELOCITY
AND MOMENTUM-SPACE RAPIDITY

Information about the local velocity of the quarks should
be contained in the quark phase-space density f (x, p) given
by Eq. (III B). We extract it by first constructing a probability
density in p for a given z, t . Now, the total number of particles
at (z, t ) is given by

dN (z, t ) =
(∫ ∞

0
d p f (x, p)

)
dz. (4.1)

The number of particles at (z, t ) with momentum p′ is
f (x, p′) dzd p′, so the probability distribution is

dPr(p′|z, t ) = f (x, p′)dzd p′[∫∞
0 d p f (x, p)

]
dz

⇒ dPr(p′|z, t )

d p′ = f (x, p′)∫∞
0 d p f (x, p)

. (4.2)

This probability density can be written explicitly as

dPr(p|z, t )

d p
= θ (t − z)

{
θ (R − z)θ

(
zm
t−z − p

)
θ (p)

Imat
0

(
z
t

) p + m

mp0
e− p

p0 + θ (z − R)θ
(

zm
t−z − p

)
θ
(
p − z−R

t−z m
)

Imat
0

(
z
t

)− Imat
0

(
z−R
t−R

) p + m

mp0
e− p

p0

}

+ θ (z − t )
θ (z)θ (R − z)m

(p + m)2
δ

(
p

p + m

)
. (4.3)
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We calculate the averages of momentum and velocity over the above probability density, getting

〈y〉mat(z, t ) =
∫

d p
1

2
ln

(
p+

p−

)
dPr(p|z, t )

d p

= θ (t − z)

{
θ (R − z)

Imat
y

(
z
t

)
Imat
0

(
z
t

) + θ (z − R)
Imat
y

(
z
t

)
− Imat

y

(
z−R
t−R

)
Imat
0

(
z
t

)− Imat
0

(
z−R
t−R

) }, (4.4)

〈v〉mat(z, t ) =
∫

d p
pz

p0

dPr(p|z, t )

d p

= θ (t − z)

{
θ (R − z)

Imat
v

(
z
t

)
Imat
0

(
z
t

) + θ (z − R)
Imat
v

(
z
t

)− Imat
v

(
z−R
t−R

)
Imat
0

(
z
t

)− Imat
0

(
z−R
t−R

)}, (4.5)

where we have made use of the integrals

Imat
y (w) =

∫ w
1−w

m

0
d p

p + m

mp0

1

2
ln

(
2p + m

m

)
e− p

p0

= 1

2

{
− exp

(
− m

p0

w

1 − w

)
ln

1 + w

1 − w
+ e

m
2p0 Ei

(
m

2p0

1 + w

1 − w

)
− e

m
2p0 Ei

(
m

2p0

)}
, (4.6)

Imat
v (w) =

∫ w
1−w

m

0
d p

p

mp0
e− p

p0

= p0

m
−
( p0

m
+ w

1 − w

)
exp

(
− m

p0

w

1 − w

)
, (4.7)

Imat
0 (w) = 1 + p0

m
−
( w

1 − w
+ 1 + p0

m

)
exp

(
− m

p0

w

1 − w

)
. (4.8)

The average velocity of the radiated particles may be de-
rived by considering where and when a particle needed to
have been produced in order to be at a particular position at
a later time. This derivation is performed in Appendix C 2.
The derivation involves simply counting all the particles that
were produced with velocities that allowed them to be at a
given (z, t ), giving the following result:

〈v〉rad =	(tvb − z)

[
1

z
	(R − z)I rad

v (z)+ 1

R
	(z − R)I rad

v (R)

]
,

(4.9)

where

I rad
v (a) =

∫ a

0
dz′	(z − z′)	(tvb − z′)

z − z′

t − z′/vb

. (4.10)

A similar formula exists for the average momentum-space
rapidity, also given in Appendix C 2. The average velocity
and average momentum-space rapidity of the radiation are
shown in Fig. 6. A striking feature is that, although the average
velocity of the matter is not very different from that of the
radiation, the average rapidity of the matter is dramatically
different from that of the radiation. This difference in average
rapidity holds even without the inclusion of a formation time
and even at relatively late times.

V. SUMMARY AND DISCUSSION

In this paper we have considered the collision of a sheet
of colored glass and a nucleus at rest. We have performed a

simple classical calculation, considering a relativistic sheet
incident upon stationary matter particles in one dimension,
as well as a simple realization of the resultant radiation. Our
main analytical results, Eqs. (3.8) and (3.11), give an intu-
itive picture of the dynamics of both the struck quarks and
the resultant radiation. This paper had two main goals: (1)
to reframe the predictions of [2] within the context of the
CGC, particularly to consider the compression of the target
nucleus, and (2) to understand the early-time dynamics of the
fragmentation region of a heavy-ion collision.

The very simple setup explored in this paper allows us to
address our first goal directly: how much is the nuclear matter
compressed by the shockwave, and how does this compression
depend on the saturation scale Qs? To answer this, we consider
the local density of the matter in a comoving frame, where

the boost factor is given by 1/γ =
√

1 − 〈v〉2
mat(z, t ) . The

relevant quantity is then

dN ′mat

dz′ = 1

γ

dN

dz

∣∣∣∣
t<R,z<t

= N

R

√
1 −

(
Imat
v

(
z
t

)
Imat
0

(
z
t

))2

Imat
0

( z

t

)

= N

R

√[
Imat
0

( z

t

)
− Imat

v

( z

t

)][
Imat
0

( z

t

)
+ Imat

v

( z

t

)]
.

(5.1)

It is interesting to note that the comoving density given
by Eq. (5.1) depends only on z/t . Since Imat

0 ( z
t ) − Imat

v ( z
t ) and

Imat
0 ( z

t ) + Imat
v ( z

t ) are increasing and positive for 0 < z/t < 1,
it follows that the density is highest precisely on the light
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FIG. 6. The average v and y for the matter [solid blue curves, given by Eqs. (4.4) and (4.5)] and radiation (warm colored curves, see
Appendix C2) particles at different proper times as a function of space-time rapidity. Here again p0

m = 10, and F = 30. The solid warm colors
are the radiation without formation time while the dashed lines include a formation time of τ−1

f = Qs = 1 GeV.

front z = t . From Eqs. (4.7) and (4.8), one can read off the
maximum density:

max

{
dNmat

dz′

}
= N

R

√
1 + 2p0

m
. (5.2)

The baryon density is therefore enhanced by a factor of
≈ √

p0/m ∼ Qs/m. This means the baryons are compressed
by a factor of 5–10 at RHIC; again it is reassuring that this is
in agreement with [27,28]. We have plotted Eq. (5.1) in Fig. 7.

Figure 8 addresses our second goal by showing the number
density (left column) and the average momentum rapidity
(right column) for the matter (solid blue curves), the radi-
ation without formation time (solid orange curves), and the
radiation with formation time (dashed orange curves), as a
function of the space-time rapidity, for proper time progress-
ing from top to bottom. Notice that, for early times, the
average momentum-space rapidity of the matter is very differ-
ent from that of the radiation. This is even true for times that
are late enough to reduce the effect of the formation time, say
τ ∼ 3Q−1

s . If we believe that much of the relevant physics is
captured in our simple treatment, then the fact that the matter
and the radiation have very different rapidity distributions at

Mat.(fm−3)
N
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FIG. 7. Comoving density profile of nuclear matter as the color-
glass shockwave traverses the nucleus. The dotted line shows the
initial density of matter before the sheet strikes the target nucleus.

early times suggests that a full treatment of the early-time dy-
namics in the fragmentation region must necessarily include
the dynamics of two fluids.

We offer a final piece of insight: Although we realize that,
in truth, the system we are considering is not yet thermalized,
one may gain some intuition of the properties the system
might have if it should thermalize, by considering an ideal
gas of (two flavor) quarks, antiquarks, and gluons, described
by the thermodynamic pressure [29,30]:

Pqq̄g = 37

90
π2T 4 + μ2T 2 + 1

2π2
μ4. (5.3)

From the pressure we may compute [31] the number den-
sity of the quarks nq = ∂P/∂μq , the entropy density s = ∂P/∂T ,
and the energy density ε = −P + T s + nqμq. We can then use
the expressions derived in this paper for the number density
of the matter, along with the sum of the energy density of
the radiation and the matter, to invert the thermodynamical
quantities in order to obtain μB = 3 μq, and T . We present, in
Fig. 9, the temperature-scaled baryon chemical potential, and
the temperature, both as a function of the space-time rapidity
for various proper times. We note that the baryon chemical
potential falls off with time in accordance with the 1/τ ex-
pansion, as does the temperature. The qualitative behavior of
the chemical potential is naturally dominated by the number
density of the matter distribution, so that the shape of the curve
in Fig. 9(a) resembles the shape of the corresponding curve in
Fig. 5(a). Furthermore, the energy density of the fireball is
dominated by the energy density of the radiation, so that the
qualitative behavior of Fig. 9(b) resembles that of Fig. 4.

We note that, for large enough values of η and τ (such that
〈y〉 ∼ η and the system is therefore thermal), one may really
consider the curves in Fig. 9 to represent the rest frame of the
matter.
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FIG. 8. The number density (left column) and the average momentum rapidity (right column) for the matter (solid blue curves), the
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APPENDIX A: MOMENTUM DISTRIBUTION OF A
CLASSICAL PARTICLE INTERACTING WITH A SHEET

OF COLORED GLASS

It can be shown that, upon interacting with a sheet of color
glass, a classical color-charged point particle gets a transverse
momentum kick [8,9]:

∂ pi

∂x− = gT · F+i, (A1)
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FIG. 9. (a) The baryon chemical potential and (b) the temperature, as a function of the space-time rapidity for an ideal gas of quarks,
antiquarks, and gluons, at various proper times.

where Fμν is the field associated with the sheet. In A+ gauge,
we have F+i = −∂ iA+, and also

A+ = 1

∇2
T

ρ(x−, xT ) = 1

∇2
T

ρ(�xT )δ(x−)

⇒ −pi(x⊥) = −gT a ∂ i

∇2
T

ρa(�x⊥).

The operator ∂ i

∇2
T

is defined with the help of the Green’s func-
tion of the two-dimensional Laplacian:(

∂ i

∇2
T

f

)
(�x⊥ ) = ∂

∂xi

∫
d2y

1

2π
ln |�x⊥ − �y⊥| f (�y⊥ ) (A2)

= 1

2π

∫
d2y

xi − yi

|�x⊥ − �y⊥|2 f (�y⊥ ), (A3)

and the above integral is only meaningful with the inclusion of
an infrared and ultraviolet cutoff. Setting our classical particle
at �x⊥ = 0 we get

pi = g

2π
T a
∫

d2xT

xi

x2
T

ρa(�xT ). (A4)

Putting this into the path integral of the MV model, we can
extract a probability distribution over �pT :

dP( �pT )

d2 pT

= 1

N

∫
D[ρ] exp

(
− 1

2μ2

∫
d2xρaρa

)

× δ(2)

(
�pT − g

2π
T a
∫

d2x
�x
x2

ρa

)

= 1

N

∫
d2λ

(2π )2
ei�λ· �pT

∫
D[ρ]

× exp

(
− 1

2μ2

∫
d2xρaρa

× −i
g

2π
T a
∫

d2x
�λ · �x
x2

ρa

)
(A5)

where

N =
∫

D[ρ] e
− 1

2μ2

∫
d2xρaρa

and the subscript T (which stands for “transverse”) has been
omitted for brevity. We complete the square in the argument of
the rightmost exponential in (A5) and then shift the integration
variable ρ, giving

dP( �pT )

d2 pT

= 1

N

∫
d2λ

(2π )2
exp

(
−mp0

2
�λ2 + i�λ · �pT

)
N

= 1

(2π )2

∫
d2λe− 1

2 mp0 �λ2+i�λ· �pT

= 1

2π

1

mp0
exp

(
− p2

T

2mp0

)
(A6)

with mp0 = (gT a )(gT a )μ2 ln Qs
�

4π
. We have made use of the follow-

ing fact: ∫
d2x

xix j

x4
= 1

2
δi j
∫

d2x
1

x2
T

= δi jπ ln
xIR

xUV

where xUV = 1/Qs and infrared cutoff xIR is the QCD scale
�QCD.

Doing the angular integration over (A6), we get the follow-
ing probability distribution over p2

T:

dP(p2
T
)

d p2
T

= 1

2mp0
exp

(
− p2

T

2mp0

)

= 2π

(gT a)(gT a)μ2 ln Qs

�

exp

(
− 2π p2

T

(gT a)(gT a)μ2 ln Qs

�

)
.

(A7)

This is an exponential distribution in the variable p2
T

with the
following expectation value:

〈
p2

T

〉 = 2mp0 = (gT a)(gT a)μ2 ln Qs

�

2π
. (A8)
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This also determines the distribution of pz because the equa-
tions of motion tell us that p− is unchanging [8,9], so we get
the following probability distribution over pz:

dP(pz )

d pz
= d p2

T

d pz

dP
(
p2

T

)
d p2

T

= 2m
1

2mp0
exp

(
− 2mpz

2mp0

)

= 1

p0
e− pz

p0 . (A9)

APPENDIX B: DERIVATION
OF THE MATTER DISTRIBUTION

The goal is to derive the one-particle distribution for the
system of particles described in Sec. III B, that is, an initially
uniform one-dimensional array of particles that is struck by a
sheet of colored glass. Let us consider first the case of a single
particle at rest at the origin for all time. The corresponding
distribution is obviously given by

f (x, v) = dN

dvdz
= δ(z)δ(v), (B1)

where v = vz and x = (t, z). We have chosen to work with
velocity instead of momentum for the moment, since it makes
equations less cumbersome. We will revert to f (x, p) at the
end of the derivation.

Next we consider a particle sitting at the origin at rest for
t < 0 that is struck and picks up velocity v′ at t = 0 and moves
freely from then on. In this case we get

f (x, v) = θ (−t )δ(z)δ(v) + θ (t )δ(z − vt )δ(v − v′). (B2)

We now introduce a velocity distribution by imagining N0

particles sitting at the origin at rest for t < 0. They then are
struck at t = 0, picking up a range of velocities v′

1, v
′
2 . . . ,

with a fraction ρ(v′
i ) of them picking up velocity v′

i . They
move freely from then on, in which case we get the following
distribution:

f (x, v) = N0θ (t )
∑

i

δ(z − vt )δ(v − v′
i )ρ(v′

i )

+ N0θ (−t )δ(z)δ(v), (B3)

with
∑

i ρ(v′
i ) = 1. Passing to the continuum, v′

i → v′, we get

∴ f (x, v) = N0θ (t )
∫ 1

0
dv′δ(z − vt )δ(v − v′)ρ(v′)

+ N0θ (−t )δ(z)δ(v)

= N0θ (t )δ(z − vt )ρ(v) + N0θ (−t )δ(z)δ(v). (B4)

Now we step away from the origin and consider Nj particles
with position z = z j sitting at rest for t < t j . They are struck at
t = t j by a lightlike sheet of colored glass, picking up a range
of velocities 0 < v′ < 1 weighted by a distribution ρ(v′) mov-
ing freely thereafter. We now get the following distribution:

f (x, v) = Njθ (t − t j )δ[z − z j − v(t − t j )]ρ(v)

+ Njθ (t j − t )δ(z − z j )δ(v)

= Njθ (t − z j )δ[z − z j − v(t − z j )]ρ(v)

+ Njθ (z j − t )δ(z − z j )δ(v) (B5)

with ∫ 1

0
dvρ(v) = 1.

Finally, we consider a chain of these particles, and the cor-
responding distribution entails summing Eq. (B5) over the
positions of the particles z j , giving

f (x, v) =
∑

j

Njθ (t − z j )δ[z − z j − v(t − z j )]ρ(v)

+
∑

j

Njθ (z j − t )δ(z − z j )δ(v). (B6)

Henceforth, the total number of particles will be denoted
N =∑ j Nj . We can write Nj terms of a line density Nj =
λ(z j )� z, and passing to the continuum for a chain of length
R we get

f (x, v) =
∫ R

0
dz′λ(z′)θ (z′ − t )δ(z − z′)δ(v)

+
∫ R

0
dz′λ(z′)θ (t − z′)δ[z − z′ − v(t − z′)]ρ(v)

= λ(z)θ (z − t )θ (z)θ (R − z)δ(v)

+ θ (z − vt )θ [(1 − v)R − (z − vt )]λ
( z − vt

1 − v

)

× θ

(
t (1 − v) − z + vt )

1 − v

)
ρ(v)

1 − v
. (B7)

We assume a uniform initial distribution, λ = N/R, therefore
we get

f (x, v) = N

R
θ (z − t )θ (z)θ (R − z)δ(v) + N

R
θ (t − z)θ

× (z − vt )θ [v(t − R) + R − z]
ρ(v)

1 − v
. (B8)

Now we have built up a single-particle distribution f (x, v) in
1+1 dimensions for arbitrary velocity distribution ρ(v). Let
us take a look at the specific ρ(v) resulting from the MV
model. To derive this, we use the probability distribution in
(A7) even though it applies to full (3+1)-dimensional motion;
we will just focus on the z component. Using Eq. (2.6), we
have

p0 = p+ + p−
√

2
= 1√

2

(
m2 + p2

T√
2m

+ m√
2

)

= p2
T

2m
+ m = pz + m = p + m

∴ v = vz = pz

p0
= p

p + m

and

p = v

1 − v
m, (B9)

∴ d p

dv
= m

(1 − v)2
= (p + m)2

m
. (B10)
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This allows us to change from the velocity distribution, ρ(v),
to momentum distribution:

ρ(v) = dP(v)

dv
= d p

dv

dP(p)

d p

= (p + m)2

m

1

p0
e− p

p0 (B11)

where

p0 = g2T 2μ2 ln Qs

�

4πm
. (B12)

We have dropped the superscript in pz, and we will do
so henceforth unless it causes confusion. Finally we write
the one-particle distribution in terms of p with the help of
Eqs. (B8) and (B11):

f (x, p) = dNmatter

dzd p
= dv

d p

dN

dzdv

= N

R

{
θ (z − t )θ (z)θ (R − z)δ

(
p

p + m

)
m

(p + m)2

+ θ (t − z)θ

(
z − pt

p + m

)
θ

(
p(t − R)

p + m
+ R − z

)

× p + m

mp0

e
− p

p0

}
. (B13)

APPENDIX C: ERIVATION
OF RADIATION DISTRIBUTION

1. Number density with formation time and beam rapidity

Following the same processes as in the text, we may add a
formation time of the form

N0(1 − e−τ/τ0 )
τ�τ0−→ N0, (C1)

as well as a beam rapidity yb. We will take the characteristic
formation time to go like 1/Qs , and note that the above expres-
sion holds for the proper time, so that τ = t 1

γ
= t

√
1 − v2.

The phase-space density of the produced particles radiated

from a single matter particle at the origin is then be given by

f 0(z, t, y) = F 	(t )δ(z − t tanh y)(1 − exp{−Qs

√
t2 − z2}).

(C2)

We now consider a single nucleon at rest, but with an
arbitrary position given by z = zi and t = ti. We may then
write

f zi (z, t, y) = F 	(t − ti )δ[z − zi − (t − ti ) tanh y]

× [1 − exp{−Qs

√
(t − ti )2 − (z − zi )2}]. (C3)

Since we would like to impose a beam rapidity yb such that
vb = tanh yb, we also have that zi = tivb, so that

f zi (z, t, y) = F 	
(

t − zi

vb

)
δ

[
z − zi −

(
t − zi

vb

)
tanh y

]

×
(
1 − exp

{
−Qs

vb

√
(tvb − zi)2− v2

b (z − zi )
2
})

.

(C4)
We suppose now that there are Ni nucleons at each zi

such that
∑

i �z = R and
∑

i Ni = N . In the limit �z → 0,
equivalent to the limit of a uniform line density of matter
particles of N/R, we have that

f (z, t, y) =
∫ R

0
dz′ F N

R
	

(
t − z′

vb

)
δ

×
[

z′
(

tanh y

vb
− 1

)
+ z − t tanh y

]

×
(

1− exp

{
− Qs

vb

√
(tvb − z′)2− v2

b (z− z′)2

})
.

(C5)

As in the case of the matter distribution, we realize here
that the integral over z′ has two possibilities: one in which
z < R, where the upper limit on the z′ integral should be z, and
one in which R < z, where the upper limit on the z′ integral
should be R:

f (z, t, y) = F N

R
	(tvb − z)	(z − t tanh y)

[
	(R − z)I rad

f,τ f
(z) + 	(z − R)I rad

f,τ f
(R)
]
, (C6)

where

I rad
f,τ f

(a) =
∫ a

0
dz′	(R − z)	

(
t − z′

vb

)
δ

[
z′
(

tanh y

vb
− 1

)
+ z − t tanh y

](
1 − exp

{
− Qs

vb

√
(tvb − z′)2 − v2

b (z − z′)2

})

=vb	(tvb − z)

vb − tanh y
	(z − t tanh y)	

[
tanh y

(
t − a

vb

)
+ a − z

](
1 − exp

{
−Qs(z − tvb)

tanh y − vb
sechy

})
. (C7)

The theta functions in Eq. (C7) will determine the integration limits in the integrals that follow. The number density is then
given by

dN rad

dz
=
∫ ∞

0
dy f (z, t, y)

=F N

R
	(tvb − z)

∫ ∞

0
dy 	(z − t tanh y)

[
	(R − z)I rad

f,τ f
(z) + 	(z − R)I rad

f,τ f
(R)
]

=F N

R
	(tvb − z)	(z − t tanh y)

[
	(R − z)I rad

N,τ f
(0) + 	(z − R)I rad

N,τ f

( z − R

t − R

)]
, (C8)
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where

I rad
N,τ f

(a) =
∫ tanh−1(z/t )

tanh−1(a)
dy

vb

vb − tanh y

(
1 − exp

{
−Qs(z − tvb)

tanh y − vb
sechy

})
. (C9)

Lastly, the total energy density may be computed, once again making use of the argument presented in Sec. III D that E (y) =
Qs cosh y:

dE rad

dz
= Qs

R
F N	(tvb − z)	(z − t tanh y)

[
	(R − z)I rad

E,τ f
(0) + 	(z − R)I rad

E,τ f

( z − R

t − R

)]
, (C10)

where

I rad
E,τ f

(a) =
∫ tanh−1(z/t )

tanh−1(a)
dy

vb cosh y

vb − tanh y

(
1 − exp

{
−Qs(z − tvb)

tanh y − vb
sechy

})
. (C11)

2. Radiation average velocity

We present here the derivation of the radiation without
using a phase-space density.

a. Single nucleon at the origin

We start by thinking about a single particle of matter, say
a quark, at the origin, radiating a single particle of radiation,
perhaps a gluon with velocity v at time t = 0. That radiated
gluon then has a position at a later time t given classically by
z = tv. Therefore, at a given time (z, t ), there is exactly one
particle, and it has position z = tv, and velocity v.

If the single quark at the origin radiated two gluons, each
with a distinct velocity, say v1 and v2, then there are two
particles in total at a later time t , but they have different
locations z1 = v1t and z2 = v2t . This situation is illustrated
in Figs. 10(a) and 10(b). As an exercise, we may ask what the
average velocity is of a particle at a given (z, t ). Of course, in
the current setup there will only ever by at most one gluon at
(z, t ) and the average velocity will therefore be the velocity of
that particle. The only particle that will ever have arrived at
(z, t ) is precisely the particle that was radiated from the origin
with velocity v = z/t . We therefore have that the average
velocity (or simply the velocity in this case) is given by

〈v〉 =
⎧⎨
⎩

v1 if z
t = v1

v2 if z
t = v2

0 else.
(C12)

In fact, even if the quark at the origin radiates N gluons
with a uniformly distributed velocity, the average velocity at
(z, t ) will always be z/t . This must of course also be true even
if multiple gluons are emitted at a given velocity.

b. Single nucleon at zi

Suppose now that the two gluons are radiated from a quark
situated at an arbitrary position zi. At this point it is also
convenient to introduce a beam rapidity so that the beam
velocity will be called vb. This will mean that a quark sitting
at position zi will radiate gluons at time ti = zi/vb . The only
particles that will arrive at a given point (z, t ) are those radi-
ated with precisely the correct velocity to allow them to travel
to this point. That is, any particle emitted at point zi at a time

ti = zi/vb must be emitted with a velocity

v = z − zi

t − zi
vb

. (C13)

This situation is illustrated in Fig. 10(c).
The average velocity of particles at (z, t ) that were emitted

from (zi, ti ) is then

〈v〉 = 	(z − zi )	(t − ti )	

(
vb − z − zi

t − zi/vb

)
z − zi

t − zi
vb

, (C14)

and the average rapidity is simply, by definition of the
momentum-space rapidity,

〈y〉 = 1

2
log

{
t + z − zi(1 + 1/vb )

t − z − zi(1 − 1/vb )

}

× 	(z − zi )	
(

t − zi

vb

)
	(t vb − z). (C15)

c. Multiple nucleons

The difficulty arises from multiple quarks at different po-
sitions radiating multiple gluons at different velocities. In this
situation there are multiple gluons at position (z, t ) with var-
ious different velocities that one would like to average. This
situation is illustrated in Fig. 11.

If multiple gluons are emitted by each nucleon, we require
some kind of distribution of their velocities or rapidities, F (y).
We will assume that this distribution is flat and is appropri-
ately normalized so that

F (y) = F

yb
. (C16)

We will also assume that the nucleons are distributed uni-
formly between z = 0 and z = R, so that, if the nucleons
are placed at distances �zi apart for �zi = R/n, there are
Ni = N/n nucleons in each interval. The average velocity is
then

〈v〉 =
n∑

i=1

yb

NiFn
× FNi

yb

z − zi

t − zi/vb

(C17)

= 1

n

n∑
i=1

z − zi

t − zi/vb

(C18)

n→∞→ 1

h

∫ h

0
dz′ z − z′

t − z′/vb

, (C19)
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z

t

v2

v1
v2t

v1t

t’

(a)

N

z

t

1

v1t v2t

(b)

z

t

v2

v1

vb

v2t + zi

v1t + zi

t’ti

zi

(c)

FIG. 10. (a), (b) Two gluons radiated from a quark at the origin, with velocities v1 and v2. (c) Two gluons radiated from a quark at position
(zi, zi /vb).

where we made the substitution 1/n = �zi/R, and h =
min{z, R} so that only the correct nucleons contribute to the
average. This integral is straightforward to compute. Defining

Iv (a) =
∫ a

0
dz′	(z − z′)	(tvb − z′)

z − z′

t − z′/vb

, (C20)

we can write

〈v〉 = 	(tvb − z)

[
1

z
	(R − z)Iv (z) + 1

R
	(z − R)Iv (R)

]
.

(C21)

To get the average rapidity we need only do a slight redef-
inition:

Iy(a) =
∫ a

0
dz′	(z − z′)	(tvb − z′)

1

2
ln

{1 + z−z′

t−z′
/vb

1 − z−z′

t−z′
/vb

}
,

(C22)

Thus, the average rapidity is

〈y〉 =	(tvb − z)

[
1

z
	(R − z)Iy(z) + 1

R
	(z − R)Iy(R)

]
.

(C23)

It is also possible to introduce a formation time by intro-
ducing a factor of (1 − exp{τ /τ f }), which becomes(

1 − exp

{
−Qs(t − ti )

√
1 −

( z − zi

t − ti

)2
})

. (C24)

z

t

v2
v1

z = t vb

ti

zi

tj

zj

z

t

FIG. 11. Gluons radiated from different nuclei with different ve-
locities arrive at the same point in (z, t ) and their velocities are to be
averaged.

The process described above may then be used with only
minor modifications to Iv (a) and Iy(a):

Iv
τ f

(a) =
∫ a

0
dz′	(z − z′)	(tvb − z′)

z − z′

t − z′/vb

×
⎡
⎣1 − exp

⎧⎨
⎩−Qs(t − z′/vb )

√
1 −

(
z − z′

t − z′/vb

)2
⎫⎬
⎭
⎤
⎦,

(C25)

Iy
τ f

(a) =
∫ a

0
dz′	(z − z′)	(tvb − z′)

1

2
ln

⎧⎨
⎩

1 + z−z′

t−z′
/vb

1 − z−z′

t−z′
/vb

⎫⎬
⎭

×
⎡
⎣1− exp

⎧⎨
⎩−Qs(t − z′/vb )

√
1 −

(
z − z′

t − z′/vb

)2
⎫⎬
⎭
⎤
⎦.

(C26)

APPENDIX D: RELATIVISTIC COORDINATES AND
BOOSTS

1. Transformation to (η, τ) space

We would like to transform from (z, t ) space to (η, τ )
space, where η = 1

2 ln t+z
t−z and τ = √

t2 − z2, with inverse
transformations z = 1

2τ (eη − e−η ) and t = 1
2τ (eη + e−η ). We

consider the distributions in this paper to be a probability
density function in z but not in t , which is to say that they are
the distributions in z at a given, or constant, t . Note therefore
that

dN = ∂N

∂z
dz + ∂N

∂t
dt

⇒ dN

dη
= ∂N

∂z

dz

dη
. (D1)

The relevant Jacobian for the coordinate transformation we
would like to do is therefore

dz

dη
= t2 − z2

t
= τ

cosh η
. (D2)

A consequence of performing the calculation at t = c, for
some constant c, is that one must be careful in (η, τ ) space
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FIG. 12. The start of the collision in three different frames. Boosting from the rest frame of one nucleus, to the center-of-mass frame, and
on to the rest frame of the other nucleus.

since τ is no longer independent of η. To see this, note that

τ =
√

c2 − t2 =
√

c2 − τ 2 sinh2 η

⇒ τ = csechη. (D3)

2. Boosting to the center-of-mass frame

Since the audience for this paper primarily does research
related to heavy-ion collisions in collider experiments, we
present in this Appendix a pedagogical exploration of compar-
isons between the fragmentation region that the present paper
is performed in, and the rest frame of the center of mass (c.m.)
in which many standard heavy-ion collision calculations are
performed.

The first important point to make is that, generally, those
working in the c.m. frame work in the limit that the colliding
nuclei are infinitely thin. This limit implies that the nuclei are
moving asymptotically close to the speed of light and that the
collision of the two nuclei happens on asymptotically small
timescales. In order to be able to make a comparison to the
present paper, one must relax this assumption somewhat and
consider perhaps nuclei with a thickness of ε, so that the
collision occurs from t = −ε to t = ε.

More rigorously, we consider a nucleus A with a length RA

in the rest frame of A (hereinafter F A). In F A, the left-moving
nucleus, nucleus B, is boosted from its rest frame by a velocity
which is the relativistic addition of two beam velocities. That
is, the velocity vB of B in F A, and rapidity ψB, are given by

vB = 2vb

1 + v2
b

, (D4)

ψB = 1

2
ln

∣∣∣∣1 + vB

1 − vB

∣∣∣∣, (D5)

where vb is the beam velocity in the c.m. frame (here-
inafter F c.m.). We choose to take ψB to be a positive
number so that we may boost to a forward-moving frame by
[z+, z−] → [z+eψB , z−e−ψB ], and to a backward moving frame
by [z+, z−] → [z+e−ψB , z−e+ψB ], but of course the same is
achieved without the absolute value by using a negative ve-
locity. In the present paper, we consider the problem from the
rest frame of B (hereinafter F B), in which nucleus A is the
right-moving projectile. See Fig. 12 for a cartoon describing
the relative frames.

With these conventions in place we may draw the space-
time diagram in Fig. 13(a) containing the trajectories of the

left- and right-hand edges of nucleus A, labeled XA,L and
XA,R, respectively, as well as the left- and right-hand edges of
nucleus B, labeled XB,L and XB,R, respectively. For the figure
we have chosen an unrealistically low value for vb; at LHC or
RHIC energies the boosted lines would be indistinguishable
from the z+ and z− coordinates. We may parametrize the
straight lines in Fig. 13(a) as follows in light-cone coordi-
nates:6

XA,L = [z+, e−2ψA z+ +
√

2 RAe−ψA ],

XA,R = [z+, z+e−2ψA ],

XB,L = [z+, z+],

XB,R = [z+, z+ −
√

2 RB]. (D6)

We define the origin in frames F c.m. and F A such that the
collision “starts” (the front edges of the two nuclei coincide)
at (t = 0, z = 0) in both frames. The nuclei separate when
the left-hand edge of nucleus A coincides with the right-hand
edge of nucleus B, and in F c.m. this separation happens at
(t = t0,c.m., z = 0). This is the time at which calculations of
the evolution of the matter produced in heavy-ion collisions
are generally started, and the separation event lies on the
hyperbola defined by proper time τ0 = t0,c.m.. Some manip-
ulation of the parametrization in Eq. (D6) will reveal that

τ0 = R

sinh ψb
= R

vb

√
1 − v2

b . (D7)

It follows that in the limit of infinite beam rapidity we have
τ0 → 0. One may perform the algebraic exercise of boosting
the parametrization in Eq. (D6) to F c.m. and again finding
the intersection of X ′

B,R and X ′
A,L, which must correspond to

the same value of τ0 as it did in F B. Note that in F B the
separation happens at a different point, z = R instead of z = 0.
An illuminating exercise is to compute the separation time in
F B and compare it to t0,c.m.. As must be the case, one finds
that the separation time in F B (denoted t0,B) is the time-dilated
equivalent of t0,c.m.:

t0,B = R

tanh ψb
, (D8)

6The second factor of eψA results from reparametrizing the boosted
light-cone vector by shifting the + component.
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FIG. 13. The space-time trajectories of the left (dark) and right (light) edges of nuclei A (green) and B (red) in the rest frame of (a) nucleus
B and (b) the center of mass. Superimposed (blue) is the line of constant proper time corresponding to the end of the collision.

t0,c.m. = R

sinh ψb
= R

tanh ψb

1

cosh ψb
= t0,B

cosh ψb
. (D9)

We may now consider the limit in which vb → ∞. We see
that the time that it takes for the collision to occur in F B, given

by Eq. (D8), goes to R, while the time for the collision to occur
in F c.m. goes to zero. One of the main goals of the present
paper is precisely to develop an intuition for the physics of
a heavy-ion collision that is obscured in the center-of-mass
frame in the limit of very high beam velocities.
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