
PHYSICAL REVIEW C 103, 044907 (2021)

Effective shear and bulk viscosities for anisotropic flow
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We evaluate the viscous damping of anisotropic flow in heavy-ion collisions for arbitrary temperature-
dependent shear and bulk viscosities. We show that the damping is solely determined by effective shear and
bulk viscosities, which are weighted averages over the temperature. We determine the relevant weights for
nucleus-nucleus collisions at

√
sNN = 5.02 TeV and 200 GeV, corresponding to the maximum Large Hadron

Collider (LHC) and Relativistic Heavy Ion Collider (RHIC) energies, by running ideal and viscous hydrody-
namic simulations. The effective shear viscosity is driven by temperatures below 210 MeV at RHIC and below
280 MeV at the LHC, with the largest contributions coming from the lowest temperatures, just above freeze-out.
The effective bulk viscosity is driven by somewhat higher temperatures, corresponding to earlier stages of the
collision. We show that at a fixed collision energy, the effective viscosity is independent of centrality and system
size, to the same extent as the mean transverse momentum of outgoing hadrons. The variation of viscous damping
is determined by Reynolds number scaling.

DOI: 10.1103/PhysRevC.103.044907

I. INTRODUCTION

Determining the transport coefficients of the quark-gluon
plasma, such as its shear (η) and bulk (ζ ) viscosities, is one
of the goals of heavy-ion physics. One of the motivations is
the early recognition that the quark-gluon plasma produced
in heavy-ion collisions has a very low shear viscosity over
entropy (η/s) ratio [1], implying the formation of a strongly
coupled fluid [2]. Shear viscosity is now included in the
vast majority of state-of-the art hydrodynamic simulations of
heavy-ion collisions [3]. It has been shown that bulk viscosity
must also be taken into account in order to quantitatively
explain experimental data [4].

Theoretical calculations of transport coefficients are noto-
riously difficult. Perturbative results [5,6] are accurate only
at temperatures much higher than those achieved in the lab-
oratory. Ab initio calculations of transport coefficients with
lattice techniques pose serious numerical and theoretical chal-
lenges [7]. Results have been obtained only for the gluon
plasma without quarks, both for shear viscosity [8,9] and for
bulk viscosity [10,11]. To include quarks, one must resort to
functional techniques [12] or effective models [13]. There is a
theoretical consensus that both η/s and ζ/s depend strongly
on temperature (η/s typically increases as a function of T
above 160 MeV, while ζ/s decreases). Over the past decade,
several efforts have been made to incorporate this temperature
dependence into hydrodynamic calculations [14–17].

An important question is how the temperature depen-
dence of η/s and ζ/s can be constrained using experimental
data [18,19]. A recent study shows that η/s is most con-
strained in the temperature range T ≈ 150–220 MeV [20].
The phenomenon that allows one to best constrain transport

coefficients is anisotropic flow [3], by which the distribu-
tion of outgoing particles breaks azimuthal symmetry. The
azimuthal anisotropy, which is characterized by Fourier co-
efficients vn, builds up gradually as a result of the collective
expansion [21]. Viscosity makes the expansion less collective,
thus reducing vn.

We carry out a systematic investigation of this decrease
for the two largest harmonics, v2 [1] and v3 [22]. Our study
is limited to the integrated anisotropic flow (averaged over
transverse momenta) because, as will be argued below, its
determination in viscous hydrodynamics is more robust than
that of differential flow. In Sec. II, we show that the re-
duction in vn due to viscosity can be written as a weighted
integral of the temperature-dependent η/s and ζ/s. We de-
fine effective viscosities, which encapsulate the information
on viscosity that one can gain from anisotropic flow. In
Sec. III, we determine the weights that define the effective
viscosities by running hydrodynamic simulations of central
Pb + Pb collisions at

√
sNN = 5.02 TeV. In Sec. IV, we

check that the order of magnitude of viscous damping is
compatible with expectations from dimensional analysis. In
Sec. V, we show that the effective viscosity is an excellent
predictor of the viscous suppression of vn for a wide range of
temperature-dependent shear and bulk viscosities. In Sec. VI,
we check that the centrality and system-size dependence of
the viscous damping follows the 1/R scaling expected from
dimensional analysis, where R is the transverse size. The
dependence on collision energy is illustrated in Sec. VII,
where we carry out calculations at

√
sNN = 200 GeV, corre-

sponding to the top Relativistic Heavy Ion Collider (RHIC)
energy.
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II. EFFECTIVE VISCOSITY

We define effective bulk and shear viscosities of hot quark
and gluon matter, which determine the damping of anisotropic
flow.

A hydrodynamic simulation starts from an initial condi-
tion, corresponding typically to the entropy density profile at
an early time. One then solves the equations of hydrodynam-
ics, which model the expansion of the system into the vacuum.
We study the effect of viscosity by evolving the same ini-
tial profile through ideal hydrodynamics (η/s = ζ/s = 0) and
viscous hydrodynamics. The fluid eventually fragments into
individual hadrons, and we evaluate vn from the distribution of
outgoing particles in both cases. We use the following quantity
as a measure of the viscous damping:

�n ≡ ln

(
vn(viscous)

vn(ideal)

)
. (1)

If |�n| � 1, then �n is the relative change of vn due to
viscosity, �n � vn(viscous)/vn(ideal) − 1. One typically ex-
pects viscosity to reduce vn [1], resulting in a negative �n.

Our study is limited to v2 and v3 because their dependence
on the initial density profile is, to a good approximation [23], a
linear response to the corresponding initial anisotropy εn [24],
both in ideal and viscous hydrodynamics, so that the depen-
dence cancels when taking the ratio in Eq. (1). Therefore, even
though we evaluate �n with a specific, smooth density profile,
which will be specified in Sec. III, we expect the result to be
universal to a good approximation. This should, however, be
checked explicitly when initial-state fluctuations are present
[25–27]. We plan to do this in a future work.

We now derive the general expression of �n in the limit of
small viscosities. �n is a functional of (η/s)(T ) and (ζ/s)(T ),
which vanishes by construction if (η/s)(T ) = (ζ/s)(T ) =
0. Transport coefficients enter the relativistic Navier-Stokes
equations (which represent the first-order correction due to
viscosity) as two separate linear contributions [28]. Therefore,
for small (η/s)(T ) and (ζ/s)(T ), �n must be a linear func-
tional of these quantities [29]:

�n =
∫ ∞

Tf

η

s
(T )w(η)

n (T )dT +
∫ ∞

Tf

ζ

s
(T )w(ζ )

n (T )dT, (2)

where Tf is the lowest value of the temperature, called the
freeze-out temperature, and w(η)

n (T ) and w(ζ )
n (T ) are weight

functions for shear and bulk viscosity. These weight functions
quantify the effect of viscosity on anisotropic flow at a given
temperature.

Note that the separation of shear and bulk viscosity in
Eq. (2) strictly holds only to first order in η and ζ . To sec-
ond order, one expects on purely mathematical grounds an
additional term coupling shear and bulk in the form of a dou-
ble integral

∫
η(T1)ζ (T2) f (T1, T2)dT1dT2. Such a coupling is

naturally expected in second-order viscous hydrodynamics,
where shear and bulk viscosities are intertwined via their
relaxation equations (Eqs. (3) and (4) of Ref. [30]). It is not
studied in this paper.

We define the effective shear and bulk viscosities relevant
for vn by

(η

s

)
n,eff

=
∫ ∞

Tf
(η/s)(T )w(η)

n (T )dT∫ ∞
Tf

w
(η)
n (T )dT

,

(
ζ

s

)
n,eff

=
∫ ∞

Tf
(ζ/s)(T )w(ζ )

n (T )dT∫ ∞
Tf

w
(ζ )
n (T )dT

. (3)

Then, Eq. (2) expresses the damping of vn as

�n = W (η)
n

(η

s

)
n,eff

+ W (ζ )
n

(
ζ

s

)
n,eff

, (4)

where

W (η,ζ )
n ≡

∫ ∞

Tf

w(η,ζ )
n (T )dT . (5)

Equation (4) implies that for any temperature-dependent vis-
cosity, the damping of vn is solely determined by the effective
shear and bulk viscosities defined by Eq. (3). This result holds
in the limit of small viscosity. Note, however, that the validity
of hydrodynamics itself requires that viscosity has a small
relative effect on observables, since viscous hydrodynamics
is the first term in a systematic gradient expansion [31]. We
therefore postulate that our result is general and that the damp-
ing of vn is always determined by the effective viscosities.
This will be checked explicitly in Sec. V.

The effective viscosity (3) is a weighted average of the
temperature-dependent viscosity. It is similar to the quantity
recently introduced by Paquet et al. [29], but applied to differ-
ent observables (anisotropic flow, as opposed to entropy), so
that weights are different. We determine the relevant weights
for the integrated anisotropic flow in Sec. III. We then test the
validity of Eq. (4) in Sec. V.

III. DETERMINING THE WEIGHTING FUNCTIONS

In this section, we determine the weighting functions
w(η)

n (T ) and w(ζ )
n (T ), which define the effective viscosity (3),

for central Pb + Pb collisions at the top Large Hadron Collider
(LHC) energy

√
sNN = 5.02 TeV. We carry out two separate

sets of hydrodynamic simulations, one with only shear vis-
cosity and one with only bulk viscosity. In order to isolate
the effect of the viscosity in a specific temperature range, we
implement a viscosity profile which is a narrow window of
width σ , centered around a temperature T0:

η

s
(T ) =

(
η

s

)
max

exp

(
− (T − T0)2

2σ 2

)
, (6)

where (η/s)max the maximum value of η/s. We carry out
simulations for a large number of values of T0, which span
the range of temperatures in a heavy-ion collision. The exact
same procedure is repeated for bulk viscosity, replacing η/s
with ζ/s.

The first thought would be to use a window as narrow as
possible. If σ is too small, however, there are large errors for
the following reason: The viscosity varies steeply with the
temperature, which itself depends on space-time coordinates.

044907-2



EFFECTIVE SHEAR AND BULK VISCOSITIES FOR … PHYSICAL REVIEW C 103, 044907 (2021)

FIG. 1. Effect of a temperature-dependent shear (η) or bulk (ζ )
viscosity on v2 and v3 in central Pb + Pb collisions at

√
sNN =

5.02 TeV. Shear corresponds to the left panels (a) and (c), and bulk to
the right panels (b) and (d). The upper panels display the (η/s) and
(ζ/s) profiles used in our calculation. They are defined by Eq. (6),
with σ = 16 MeV, (η/s)max = 0.04 (a) and (ζ/s)max = 0.02 (b), and
each curve corresponds to a different value of T0. The vertical lines
indicate the freeze-out temperature Tf = 156.5 MeV. The symbols in
panels (c) and (d) display the corresponding values of �n, defined by
Eq. (1), as a function of T0. Lines are fits using Eqs. (2) and (8).

This results in large pressure gradients, while they should
always be small in hydrodynamics [31]. These gradients are
proportional to (η/s)max/σ . When gradients are too large, we
find that instabilities occur, which appear as numerical errors
(e.g., vn jumping up and down upon small variations of T0).
We have adjusted the values of parameters so that results are
stable. Our simulations are carried out with σ = 16 MeV,
(η/s)max = 0.04 [Fig. 1(a)] and (ζ/s)max = 0.02 [Fig. 1(b)].

Our hydrodynamic simulation uses boost-invariant [32]
initial conditions, with a starting time τ0 = 0.6 fm/c. The
transverse velocity at τ0 is set to zero; that is, initial flow
[33,34] is neglected. The initial entropy density profile is a
deformed Gaussian [22]:

s(x, y) = s(r cos φ, r sin φ)

= s0 exp

[
− r2

R2
0

(
1 + ε2 cos 2φ + 4

5
ε3 cos 3φ

)]
. (7)

In this equation, ε2 and ε3 are the initial eccentricities [35],1

which produce elliptic flow and triangular flow after hydrody-
namic expansion.

We run ideal and viscous hydrodynamics with the same
values of R0, ε2, and ε3, not with the same normalization
s0. The reason is that the normalization is typically adjusted
so as to match the observed multiplicity. It seems natural
to compare ideal and viscous hydrodynamics at the same

1ε2 and ε3 in Eq. (7) correspond to the usual eccentricities [36] only
in the limit where they are much smaller than unity, more precisely,
to first order in ε2 and ε3.

FIG. 2. Initial entropy density profile used in our ideal hydro-
dynamic calculation, defined by Eq. (7), with parameters tuned to
match Pb + Pb collisions at

√
sNN = 5.02 TeV. (a) 0–5% centrality

window (Secs. III–V): s0 = 438 fm−3, R0 = 4.18 fm, ε2 = 0.085,
ε3 = 0.075. (b) 20–30% centrality window (Sec. VI): s0 = 337 fm−3,
R0 = 2.97 fm, ε2 = 0.35, ε3 = 0.12. The profile is identical for the
viscous hydrodynamic calculation, except for the overall normaliza-
tion (see text).

multiplicity. Now, the multiplicity is proportional to the final
entropy, which is larger than the initial entropy in viscous
hydrodynamics [37]. Therefore, the normalization s0 must be
lowered in viscous hydrodynamics.2

We fix the parameters of Eq. (7) as follows: We evaluate R0

by matching the rms radius to a model of initial conditions that
reproduces well the mean transverse momentum 〈pt 〉 [38],
since 〈pt 〉 is determined by the initial radius in ideal hydro-
dynamics [39,40].3 We then fix the normalization constant
s0 in such a way that the multiplicity matches that measured
in Pb+Pb collisions at

√
sNN = 5.02 TeV [41]. Finally, we

evaluate ε2 and ε3 from a model of initial conditions [42],
which reproduces well the measured values of v2 and v3.4 The
resulting density profile is represented in Fig. 2(a) for central
collisions.

We then evolve this initial condition using the MUSIC hy-
drodynamic code [30,43,44] with a realistic equation of state
inspired by lattice QCD [45]. We evaluate v2 and v3 at the
freeze-out temperature Tf = 156.5 MeV [46]. The viscous
corrections to the momentum distribution at freeze-out are
evaluated using the usual quadratic ansatz [47,48]. We take
into account hadronic decays, but we neglect rescatterings in
the hadronic phase. For the sake of simplicity, we evaluate
v2 and v3 (averaged over all transverse momenta pt ), in the
same pseudorapidity window |η| < 0.5 used to measure the
multiplicity [41]. The fact that experiments use different pseu-
dorapidity cuts [49] matters little, since these kinematic cuts

2In practice, we choose s0 for viscous hydrodynamics so that the
final multiplicity is close to the expected value. For efficiency, we
then estimate vn for the corresponding multiplicity in ideal hydrody-
namics from an array of ideal hydrodynamics calculations by linear
interpolation.

3Note that we compare viscous and ideal hydrodynamics with the
same value of multiplicity and R0. It could have been better to fix
〈pt 〉, rather than R0. However, viscosity has a smaller relative effect
on 〈pt 〉 than on vn, so that the final results would likely be similar.

4This is not crucial as our final results are independent of ε2 and ε3.
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typically multiply vn by a constant factor, which cancels when
evaluating �n using Eq. (1).

The values of �n are displayed in Figs. 1(c) and 1(d) for
shear and bulk viscosity, as a function of the temperature T0

in Eq. (6). �n is mostly negative, which means that viscosity
decreases anisotropic flow [1]. �2 and �3 have similar vari-
ations as a function of T0, but the overall magnitude of �3 is
larger, both for shear and bulk viscosity: As expected, damp-
ing is stronger for higher harmonics [22,50]. Large negative
values of �n are obtained for values of T0 around 200 MeV,
corresponding to the late stages of the hydrodynamic evolu-
tion. For T0 > 300 MeV, corresponding to a viscosity which
is only present during the early stages, �n is much smaller. In-
terestingly, for shear viscosity, �n changes sign and becomes
positive for T0 > 330 MeV [see the enlargement in Fig. 1(c)].
This implies that shear viscosity at high temperature increases
vn, although by a very modest amount. The physical inter-
pretation is that when the longitudinal expansion dominates,
shear viscosity reduces the longitudinal pressure and increases
the transverse pressure, leading to an increased transverse flow
in general and anisotropic flow in particular.

Using the results for �n, we then infer w(η,ζ )
n (T ) defined by

Eq. (2). One would naively expect w(η,ζ )
n (T ) to be a smooth

function of T . However, one must remember that viscosity
enters a hydrodynamic simulation in two different places:
(1) in the equations of hydrodynamics themselves and (2) at
the final stage when the fluid is transformed into particles.
The effect of viscosity on the hydrodynamic flow [51] builds
up throughout the expansion, and one expects the resulting
contribution to w(η,ζ )

n (T ) to be smooth. On the other hand, the
viscous correction to the momentum distribution at freeze-out
[47,48,52] only involves the viscosity at Tf . Therefore, we
decompose w(η,ζ )

n (T ) as the sum of a smooth function, which
we approximate by a rational function (Padé approximant)
and a discrete contribution in the form of a Dirac peak at Tf :

w(T ) = w f δ(T − Tf ) + a0 + a1T + a2T 2

1 + b1T + b2T 2 + b3T 3
, (8)

where we have used the shortcut w(T ) for w(η,ζ )
n (T ). The

parameters w f , ai, and bi are fitted to the �n results using
Eq. (2). The fits are shown as lines in Figs. 1(c) and 1(d). In
order to better constrain the relative magnitudes of the dis-
crete and the smooth contributions, we have carried out a few
simulations where T0 is lower than the freeze-out temperature
Tf [see Figs. 1(a) and 1(b)]. In these simulations, the discrete
term dominates the viscous correction.

The smooth parts of the weighting functions w(η,ζ )
n (T ) are

displayed in Fig. 3.5 For shear viscosity, the lowest values

5Note that the variation of w(η,ζ )
n (T ) as a function of T follows that

of �n in Fig. 1 as a function of T0, except for the values of T0 close to
the freeze-out temperature. This can be understood easily: In the limit
where T0 − Tf 
 σ , by inserting Eq. (6) into Eq. (2) and assuming
that w(η,ζ )

n (T ) varies little over a temperature range of order σ , one
can approximate w(η,ζ )

n (T ) � w(η,ζ )
n (T0 ), and one obtains

w(η)
n (T0) � �n(T0)

(η/s)maxσ
√

2π
, (9)

FIG. 3. Weights w
ζ

2 (T ) (full line), w
ζ

3 (T ) (dashed line), w
η

2 (T )
(dot-dashed line), and w

η

3 (T ) (dotted line), defining the effective
viscosities (3) at

√
sNN = 5.02 TeV. They are obtained by fitting the

hydrodynamic results in Fig. 1 using Eq. (8). The shaded boxes to
the left are meant to represent the discrete part w f δ(T − Tf ): Their
area is |w f | (see numbers in Table I), and their vertical placement is
arbitrary.

of T get the largest weights in absolute value. This explains
the conclusion from a recent Bayesian study that η/s is best
constrained in the range 150 < T < 220 MeV [20]. For bulk
viscosity, on the other hand, the weight has a peak for inter-
mediate values of the temperature, around 230 MeV for v2

and 190 MeV for v3. The discrete part w f of the viscous
correction, corresponding to the first term in Eq. (8), is given
in Table I. It originates from the viscous correction to the
thermal momentum distribution [47]. This correction depends
on the microscopic dynamics at freeze-out [52], which is not
well understood. By contrast, the smooth part of Eq. (8),
which is the viscous correction that builds up during the
hydrodynamic evolution, solely involves the equations of hy-
drodynamics and is more robust. Looking at the numbers in
Table I, one sees that w f is a small fraction of the integral
W , which implies that freeze-out only accounts for a small
fraction of the viscous suppression: 5% for v2, 21% for v3, in

and a similar formula for bulk viscosity. For temperatures close to
the freeze-out temperature Tf = 156.5 MeV, there are differences
between the variations of �n and wn, which are apparent in particular
for shear viscosity, where the leftmost point for �2,3 goes up, while
the variation of w

(η)
2,3(T ) is monotonic down to Tf . The reason is that

for these values of T0, part of the Gaussian profile is cut at Tf [see
Figs. 1(a) and 1(b)], resulting in a smaller value of �n.

TABLE I. Values of w f [Eq. (8)] and W [Eq. (5)] for elliptic
(n = 2) and triangular (n = 3) flows, and for shear and bulk viscosity,
in central Pb + Pb collisions at

√
sNN = 5.02 TeV.

n w f W ≡ ∫
T −

f
w(T )dT

Shear 2 −0.07 −1.34
Bulk 2 0.15 −1.30
Shear 3 −0.49 −2.33
Bulk 3 0.21 −2.61
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the case of a constant η/s. Note also that the bulk viscosity
gives a small but positive contribution to vn at freeze-out.6

The fact that w f is small guarantees that the determination
of �n in viscous hydrodynamics is fairly robust with respect
to model uncertainties. Note that this is because we have
evaluated the pt -integrated vn, which is largely determined
by the energy-momentum tensor. In a specific pt range, the
sensitivity to freeze-out dynamics would typically be larger,
which is the reason why we do not study vn(pt ) in this paper.
As we shall see in Sec. VII, w f represent a much larger frac-
tion of the viscous correction at lower energies, even for the
integrated vn.

IV. ORDERS OF MAGNITUDE AND
DIMENSIONAL ANALYSIS

Before we embark on quantitative tests of the “effective
viscosity” approach, we analyze the order of magnitude of
the viscous suppression. For a constant shear viscosity over
entropy ratio η/s = 0.08 [2], Eq. (4) together with the nu-
merical values in Table I gives �2 = −0.11 and �3 = −0.19,
corresponding to 10% and 17% reductions in v2 and v3, re-
spectively, according to Eq. (1).

We now check that these numbers are compatible with
expectations from dimensional analysis. The inverse Reynolds
number Re−1 governs the magnitude of viscous effects. It is
defined as the ratio of the viscous force, which is η�v for
shear viscosity, to the inertia, which is (ε + P)dv/dt for a
relativistic fluid. Assuming that space-time derivatives are of
order 1/R, where R is the rms radius of the initial density
profile, and using ε + P = T s, one obtains

Re−1 = (η/s)

T R
. (10)

In this equation, is it natural to replace (η/s) by the effective
viscosity (η/s)eff . T should be a typical temperature at which
viscous effects operate, that is, T ≈ 200 MeV.

In the specific case of anisotropic flow, one can guess the
order of magnitude of �n with the guidance of exact solutions
[54], which give an extra factor of n2 [50]. The dimensional
analysis is the same for bulk viscosity. Hence, the back-of-
the-envelope estimate of �n is

�n ∼ −n2 (η/s)eff + (ζ/s)eff

T R
. (11)

Comparing with Eq. (4), the expected order of magnitude of
the prefactor W (η,ζ )

n is

W (η,ζ )
n ∼ −n2 1

T R
. (12)

With the value R � 4.2 fm of our initial condition [Fig. 2(a)]
and T ≈ 200 MeV � 1 fm−1, Eq. (12) gives W (η)

2 ≈ W (ζ )
2 ≈

−1.0 and W (η)
3 ≈ W (ζ )

3 ≈ −2.1. The numerical values in Ta-
ble I are of the expected order of magnitude. In particular,
they confirm the expectation that shear and bulk viscosity have

6This can be inferred from the observation that �n > 0 for T0 < Tf

in Fig. 1(d).

similar effects, and that the damping is stronger by a factor ≈2
for v3 than for v2.

V. EFFECTIVE VISCOSITY AS A PREDICTOR
OF THE DAMPING OF vn

We now test the hypothesis that the effective viscosities
(3) are good predictors of the viscous suppression �n. Using
the weights w(η,ζ )

n (T ) determined in Sec. III, we can evaluate
the effective shear and bulk viscosities for any temperature-
dependent viscosity and then predict the value of the viscous
damping �n using Eq. (4). In order to check the validity of this
prediction, we carry out viscous hydrodynamic simulations
with nine different (η/s)(T ) profiles, which are represented
in Fig. 4(a), and seven different (ζ/s)(T ) profiles, which are
represented in Fig. 5(a). These profiles span a wide range of
possibilities concerning the variation and magnitude of η/s
and ζ/s.

For each of these profiles, Figs. 4(b), 5(b), 4(c), and 5(c)
display the value of �2 and �3 computed numerically in
viscous hydrodynamics using Eq. (1), as a function of the
value predicted using Eq. (4). When only bulk or shear vis-
cosity is present, the quantity on the x axis is the effective
viscosity (η/s)n,eff (Fig. 4) or (ζ/s)n,eff (Fig. 5), multiplied
by the corresponding constant W (η,ζ )

n . Note that the effective
viscosity is not strictly identical for n = 2 and n = 3, because
the weights for n = 2 and n = 3 in Fig. 3 are not exactly pro-
portional to each other. For a smooth temperature dependence,
the effective viscosities associated with v2 and v3 dif-
fer little: (η/s)2,eff = 1.10(η/s)3,eff for η/s ∝ T , (η/s)2,eff =
0.94(η/s)3,eff for η/s ∝ 1/T , and (ζ/s)2,eff = 1.05(ζ/s)3,eff

for ζ/s ∝ T . In the case of the Duke parametrization of the
bulk viscosity, which varies quickly precisely in the region
where the weights w(ζ )

n (T ) vary steeply, the difference is
larger: (ζ/s)2,eff = 0.69(ζ/s)3,eff .

For small |�n|, the calculated value agrees with the pre-
dicted value in all cases: with only shear viscosity (full
symbols in Fig. 4), only bulk viscosity (full squares and circles
in Fig. 5), or with shear and bulk viscosity simultaneously
(full stars in Fig. 5). This means that Eq. (2) holds in the limit
of small viscosity, which is precisely the assumption under
which it was derived. In particular, our calculation shows
explicitly that shear viscosity and bulk viscosity give additive
contributions to the damping of vn.

For larger values of |�n|, corresponding to larger values
of η/s, the calculated values (full symbols) start to deviate
from the predicted values (full lines). They are above, which
implies that the dependence of vn on (η/s)n,eff or (ζ/s)n,eff

is slower than exponential. These nonlinearities are stronger
for bulk viscosity than for shear viscosity. Despite these de-
viations, all full symbols almost lie on the same curve. This
means that the effective viscosity is an excellent predictor of
�n, even when viscosity suppresses vn by a factor 2.

We now discuss the compatibility of our results with
those of Niemi et al. [18]. They have carried out extensive
simulations with different η/s(T ) profiles, which have been
chosen in such a way that they yields similar v2 and v3.
We therefore expect that these profiles correspond to similar
effective viscosities. Furthermore, since one of the profiles
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FIG. 4. (a) Various (η/s)(T ) profiles which are used to test Eq. (2). They are defined by (η/s)(T ) = C (full lines), (η/s)(T ) = CT/T0

(dashed lines), or (η/s)(T ) = CT0/T (dash-dotted lines), with T0 = 225 MeV, and C = 0.08, 0.16, or 0.24. Panels (b) and (c) display �n

defined by Eq. (1), as a function of �n defined by Eq. (4). Each symbol (squares, circles, triangles) in panels (b) and (c) corresponds to one
of the profiles in panel (a). Full symbols correspond to the 0–5% centrality window (Sec. V), and full lines are the diagonals y = x. Gray
diamonds represent the prediction for 20–30% centrality from Reynolds number scaling, defined by Eq. (14). Open symbols correspond to the
value calculated numerically in the 20–30% centrality window (Sec. VI).

is a constant η/s = 0.2, we expect that (η/s)n,eff ≈ 0.2 for
all the other profiles, both for n = 2 and n = 3. The authors
provide the parametrization for three of these profiles, which
are named “param1,” “param2,” and “param4.” Comparison
with our results is not straightforward because they implement
partial chemical equilibrium (PCE), and run hydrodynamics
down to Tf = 100 MeV. The energy density at T = 100 MeV
with PCE is approximately the same as at T = 140 MeV
without PCE. We try to take this difference into account,
at least approximately, by evaluating the effective viscosity
(3) with a lower value Tf = 140 MeV. For this purpose, we
extrapolate the weights w(η)

n down to 140 MeV using Eq. (8),
and we neglect the discrete contribution, which is small but
depends on Tf , since we have not evaluated w f for Tf = 140
MeV. We obtain (η/s)2,eff = 0.175 and (η/s)3,eff = 0.163 for
“param1,” 0.184 and 0.185 for “param2,” and 0.206 and 0.207
for “param4.” As expected, all effective viscosities are close
to 0.2. The ordering explains the fine splitting observed in
Fig. 14(a) of Ref. [18], which shows that the damping is
weakest for the “param1” parametrization and strongest for
the “param4” parametrization. This shows that effective vis-
cosities can used to efficiently classify parametrizations of
temperature-dependent viscosities.

VI. CENTRALITY AND SYSTEM-SIZE DEPENDENCE

We show that at a given collision energy, the dependence
of �n on nuclear size and collision centrality is determined by
the 1/R dependence expected from Reynolds number scaling,
Eq. (11), and that the effective viscosity is unchanged. We
present first the general argument and then the numerical
results that support it.

The key observation is that the mean transverse momentum
of outgoing hadrons, 〈pt 〉, is almost independent of centrality
and system size: Specifically, 〈pt 〉 varies by less than 1% be-
tween 0 and 30% centrality in Pb + Pb collisions at 5.02 TeV
[55], while the multiplicity decreases by a factor ≈3 [41]. 〈pt 〉
also differs by less than 2% in Pb + Pb and Xe + Xe collisions
[55], while the multiplicity changes by a factor ≈1.6.

In ideal hydrodynamics, the mean transverse momentum is
unchanged under a uniform scaling of space-time coordinates,
where the entropy density s and the fluid velocity uν are
unchanged:

xμ → λxμ,

s(xμ) → s(λxμ),

uν (xμ) → uν (λxμ). (13)

FIG. 5. Same as Fig. 4 for bulk viscosity alone, and shear + bulk. The (ζ/s)(T ) profiles are represented in panel (a). They are defined
by (ζ/s)(T ) = C (full lines), (ζ/s)(T ) = CT/T0 (dashed lines), with T0 = 225 MeV, and C = 0.04, 0.08, or 0.16. The dash-dotted line is the
Duke parametrization [53]. Squares, circles, and triangles in panels (b) and (c) correspond to the profiles in panel (a). The stars represent a
calculation done with a constant shear viscosity over entropy η/s = 0.04 (we choose a small value so that nonlinear effects are negligible), on
top of the Duke parametrization of bulk viscosity. As in Fig. 4, gray diamonds represent the prediction for 20–30% centrality from Reynolds
number scaling, defined by Eq. (14).
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The volume and the final multiplicity, which are extensive
quantities, are multiplied by λ3, but 〈pt 〉, which is an inten-
sive quantity, remains the same. Reversing the argument, the
observation that the mean transverse momentum remain con-
stant as one varies centrality or system size implies that these
variations amount, to a good approximation, to a uniform
scaling [56]. A less central collision, or a smaller nucleus,
goes along with a faster expansion, but with the same density
and temperature. This statement may seem counterintuitive, as
one would think that more central collisions or larger nuclei
imply a higher density. However, one typically has in mind a
comparison at the same time, while the time coordinate should
also be rescaled in Eq. (13): One should evaluate the density
at an earlier time for the smaller system. A uniform scaling
does not change the fraction of the space-time history that the
system spends at a given temperature. Therefore, the effective
viscosity, which represents the relative weights of the different
temperatures, is unchanged.

The observation that the density is essentially constant as
a function of centrality or system size is supported by the
following theoretical argument: The multiplicity is approxi-
mately proportional to the number of constituent quarks [57],
which is also proportional to the volume since the nuclear den-
sity is approximately constant. Hence, the ratio multiplicity
over volume does not vary significantly. Note that the shape
changes as a function of the collision centrality (see Fig. 2),
so that the scaling is not strictly isotropic. The anisotropy is
responsible for anisotropic flow but has a small effect on the
mean transverse momentum.

We simulate midcentral collisions by adjusting the param-
eters of the initial density profile (7) in our hydrodynamic
calculation [Fig. 2(b)]. Note that we keep the same value of
the initial time (τ0 = 0.6 fm/c) for both centralities, while
it should also be rescaled for the transformation (13) to be
exact. However, this breaking of scale invariance occurs long
before vn develops, and we will see that it has no effect on the
final results. In order to ensure that 〈pt 〉 is the same for both
centralities, we require that, at a time proportional to the the
rms radius R, the entropy density is the same. We therefore
choose s0 in such a way that s0τ0/R is unchanged. s0 and
R0 are finally fixed by requesting that the final multiplicity
matches the experimental value, which yields the profile in
Fig. 2(b).7

We then evaluate the viscous suppression of vn in the
20–30% centrality range for the same temperature-dependent
viscosities as in Sec. V. Results are displayed in Figs. 4 and 5
as open symbols. We plot the value of �n calculated numeri-
cally with (1), as a function of the value calculated for central
collisions. Therefore, closed and open symbols, correspond-
ing to central and midcentral collisions, are vertically aligned.
The open symbols are below the closed symbols, which means
that the viscous suppression is larger for midcentral than for
central collisions. The gray diamonds represent the prediction

7Due to the anisotropies, the rms radius R does not coincide with
the parameter R0 in Eq. (7). For the profile in Fig. 2(b), for instance,
R0 = 2.97 fm, while R = 3.19 fm.

from dimensional analysis that �n is proportional to 1/R
[Eq. (11)]:

�n[20–30%] = R[0–5%]

R[20–30%]
�n[0–5%]

= 1.32 �n[0–5%]. (14)

Gray diamonds lie almost on top of open symbols, which con-
firms that the centrality dependence of the viscous suppression
is determined by Reynolds number scaling. The explicit cal-
culation above is only done for one collision system and
one centrality range but conclusions are general. As long as
〈pt 〉 does not vary, the effective viscosity should remain the
same, and the centrality dependence of the Reynolds number
is solely determined by the transverse size. The decrease of
〈pt 〉 becomes significant for peripheral collisions, but this is
also the place where the hydrodynamic description is less
reliable.

VII. EFFECTIVE VISCOSITIES AT RHIC

While the effective viscosity is roughly independent of
system size and centrality, it depends on the collision energy.
The lower collision energy correlates with lower temperature
of the quark-gluon matter formed in the collision [56], and
one expects this change to reflect on the weights w(η,ζ )

n (T )
entering the effective viscosities (3). In order to illustrate this
dependence on collision energy, we carry out simulations at
the top RHIC energy

√
sNN = 200 GeV. We single out the

dependence on collision energy by changing only the nor-
malization constant s0 in the initial density profile (7), and
keeping all other parameters (R0, ε2, ε3) constant. For ideal
hydrodynamics, we choose s0 = 173 fm−3, which ensures
that the charged multiplicity per nucleon matches the value
measured in central Au+Au collisions [58].

The calculation is done exactly as in Sec. III. Figure 6 is
the equivalent of Fig. 1, but at the lower energy, where the
temperature is ≈25% smaller. Results for �n are compara-
ble, except for the overall temperature scale and the overall
magnitude. In particular, the small increase of vn due to shear

FIG. 6. Same as Fig. 1, for the collision energy
√

sNN = 200 GeV.
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TABLE II. Same as Table I for
√

sNN = 200 GeV.

n w f W ≡ ∫
T −

f
w(T )dT

Shear 2 −0.67 −1.56
Bulk 2 1.12 −2.33
Shear 3 −2.12 −3.40
Bulk 3 3.34 −3.81

viscosity, which was observed for T0 > 330 MeV in Fig. 1(c),
is now observed for T0 > 250 MeV [see the enlargement in
Fig. 6(c)].

The �n results are then fitted using Eqs. (2) and (8). The
integral of the weights W (η,ζ )

n , which determine the damp-
ing for a given effective viscosity according to Eq. (4), are
larger at RHIC (Table II) than at the LHC (Table I). This
implies that for a given effective viscosity, the damping is
somewhat stronger at RHIC than at LHC. This increase is a
natural consequence of the lower temperature, as shown by the
estimate (12) from dimensional analysis. One would expect
an increase by a factor ≈1.3, but the increase is significantly
larger, by a factor ≈1.8, for the effect on bulk viscosity on v2.
This is probably a consequence of the nonconformal equation
of state. RHIC probes the equation of state just above the
transition to the quark-gluon plasma and going from RHIC
to LHC does not boil down to rescaling the temperature. The
most spectacular difference between RHIC and LHC results is
that the discrete contribution w f , corresponding to the viscous
correction at freeze-out, is now a sizable fraction of the total
W (Table II). Since, as pointed out in Sec. III, there is a
theoretical uncertainty on w f , it implies that the determination
of the effective viscosity is less robust at RHIC than at the
LHC.

The smooth part of the weights, displayed in Fig. 7, differs
significantly from the result at the higher energy (Fig. 3), in
particular for bulk viscosity. This is somewhat surprising as
the results in Fig. 6, from which they are obtained, are similar
to the results in Fig. 1, from which Fig. 3 is obtained. The
difference is likely due to the separation between the discrete
and the smooth contribution. In particular, the large negative
value of w

(ζ )
3 just above the freeze-out temperature partially

FIG. 7. Same as Fig. 3 for
√

sNN = 200 GeV.

compensates the effect of the large positive contribution at
freeze-out.

VIII. CONCLUSIONS

Within the hydrodynamic description of heavy-ion col-
lisions, we have evaluated the dependence of elliptic and
triangular flows on shear and bulk viscosities, for an arbitrary
temperature dependence of these transport coefficients. We
have assumed that v2 and v3 are determined by linear response
to the initial anisotropies ε2 and ε3 and studied the dependence
of the response on viscosity, thereby generalizing the study
of Teaney and Yan [50], which was done for a constant η/s.
We have shown that the damping is the sum of contributions
from shear and bulk viscosity. Each of these contribu-
tions is determined by effective shear and bulk viscosities,
which are weighted averages of the temperature-dependent
viscosities.

The effective viscosities consist of a discrete part, propor-
tional to the viscosity at freeze-out, and a continuous part,
which is a weighted integral of the viscosity over temperatures
above the freeze-out temperature. The discrete part originates
from the off-equilibrium correction to the momentum dis-
tribution of outgoing particles, while the continuous part is
due to the hydrodynamic expansion itself. For the integrated
vn, the discrete part is a small contribution at LHC energies.
This guarantees that the determination of vn in viscous hy-
drodynamics is robust with respect to uncertainties on the
theoretical description of the hadronic phase. At RHIC en-
ergies, on the other hand, the discrete and the continuous
contributions to the effective viscosities are of the same order
of magnitude, which entails a large theoretical uncertainty.

The weights defining the effective viscosities are displayed
in Figs. 3 and 7. Shear viscosity matters in the ranges T <

280 MeV at the LHC and T < 210 MeV at RHIC. For bulk
viscosity, the weights decrease less quickly, so that higher
temperatures, corresponding to earlier stages of the expansion,
are comparatively more important.

We have shown that the effective viscosity is independent
of centrality and system size at a given collision energy, to
the same extent as the mean transverse momentum 〈pt 〉. The
dependence of the damping on centrality and system size
follows the 1/R dependence expected on the basis of Reynolds
number scaling, where R is the transverse radius. Furthermore,
effective viscosities are very similar for v2 and v3, which
implies that a combined analysis of all existing v2 and v3

data at a given energy can at best constrain two numbers:
the effective shear and bulk viscosities at this energy. This
in turn implies that the temperature dependence of transport
coefficients cannot be extracted from LHC data alone and
claims from early Bayesian analyses [19] must be revisited
carefully [59].8 Global analyses should be more efficient if
they make use of the observation that data at a given energy

8Note that the extraction of the effective viscosity from data relies
crucially also involves the detailed modeling of initial conditions
[60,61], which is beyond the scope of the present work.
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only give access to the effective viscosity at that energy.
Detailed information about the temperature dependence of
transport coefficients can only be obtained by a simultaneous
fit to RHIC and LHC data, as recognized by the recent analysis
of the JETSCAPE Collaboration [62]. If, for instance, the
shear viscosity over entropy ratio was large only above 200
MeV, damping of anisotropic flow would be larger at the LHC
than at RHIC.
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