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From chiral kinetic theory to relativistic viscous spin hydrodynamics
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In this paper, we start with chiral kinetic theory and construct the spin hydrodynamic framework for a chiral
spinor system. Using the 14-moment expansion formalism, we obtain the equations of motion of second-order
dissipative relativistic fluid dynamics with nontrivial spin-polarization density. In a chiral spinor system, the
spin-alignment effect could be treated in the same framework as the chiral vortical effect (CVE). However, the
quantum corrections due to fluid vorticity induce not only CVE terms in the vector/axial charge currents, but
also corrections to the stress tensor. In this framework, viscous corrections to the hadron spin polarization are
self-consistently obtained, which will be important for precise prediction of the polarization rate for the observed

hadrons, e.g., A hyperon.
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I. INTRODUCTION

Relativistic heavy-ion collisions provide a special environ-
ment to study the strong interaction. In such experiments, a
new phase of matter—the quark-gluon plasma (QGP)—is cre-
ated [1,2]. Recently the STAR Collaboration at the Relativistic
Heavy Ion Collider reported measurement of a nonvanishing
polarization of A hyperons [3,4]. This result could imply an
extremely vortical fluid flow structure in the QGP produced
in semicentral nucleus-nucleus collisions and has attracted
significant interest and generated wide enthusiasm. In ad-
dition, detailed measurement of the spin polarization, in
particular, the longitudinal polarization at different azimuthal
angles [5] disagrees with current theoretical expectation
[6-8].

In theoretical attempts (e.g., Refs. [9-15]) to compute the
hadron polarization rate, one typically assumes that hadrons
are created according to the thermal equilibrium distribu-
tion for particles in a locally rotating fluid, whereas the
viscous corrections induced by off-equilibrium effects are ne-
glected. Also, studies generally assume that the spin degrees

Although hydrodynamics is a macroscopic theory based
on conservation laws and the second law of thermodynamics,
the evolution of dissipative quantities depends on the details
of how the system approaches the thermal distribution and
needs the guidelines of kinetic theory to correctly reflect
microscopic processes. In a massless fermion system, the
microscopic transport processes are described by the chiral
kinetic theory (CKT) [17-19]. A convenient way to derive
the CKT is the Wigner function formalism [20-26]. For the
pedagogical reason, we review recent developments in the
Wigner function formalism of chiral kinetic theory in Sec. II.
With such a tool, we derive ideal spin hydrodynamic equations
for thermal equilibrium systems in Sec. III and obtain vis-
cous spin hydrodynamics in Sec. IV. In addition, we analyze
the causality and stability of spin hydrodynamic equations
against linear perturbations in Appendix A and explore the
pseudogauge transformation to symmetrize the stress tensor
in Appendix B. In the rest of the appendices, we include
calculation details.

In this paper, we take the mostly negative convention

oY — - .
of freedom of either hadrons or partons have negligible in- gf)t:g;ﬁ_c g diag(+, —, —, —), and adopt the following
fluences on the dynamical motion of the medium. A more '
sophisticated and self-consistent framework is required to ARV = gV iy M
understand the discrepancy alluded to above and to describe =8 u,
the vortical structure of the QGP. Consequently, we pro- W LA Ay L LAl Ay 1Ay
pose to develop a relativistic dissipative hydrodynamic theory Aap = 28aBp T 38580 =307 A, )
with spin degrees of freedom, i.e., “spin hydrodynamics,’ 1 u, u,
from a microscopic theory with the vortical and nonequi- Wy = §(3u7 =y 7>, (3)
librium effects consistently taken into account [16]. As a T 1
first step, we concentrate on the chiral limit in this paper, o' = ——e""u e = —€"P7u,0,u,, @)
owing to its simple structure of the underlying microscopic 2 2
theory. dX = u"9,X, &)
6 = d,u", ©)
) W _ AMVaa B
*shuzhe.shi @mcgill.ca o = Aypdtu”. 0
2469-9985/2021/103(4)/044906(17) 044906-1 ©2021 American Physical Society


https://orcid.org/0000-0002-3042-3093
https://orcid.org/0000-0001-5472-5005
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.044906&domain=pdf&date_stamp=2021-04-22
https://doi.org/10.1103/PhysRevC.103.044906

SHI, GALE, AND JEON

PHYSICAL REVIEW C 103, 044906 (2021)

In addition, we define the projected vector/tensor as

Ve = Acye (8)
(aB) — AaBy nv

ViR = ATRVIY, ©)

VeuP = autvryy. (10)

II. CHIRAL KINETIC THEORY FROM THE WIGNER
FUNCTION FORMALISM

Spin is an intrinsic quantum degree of freedom of ele-
mentary particles. To describe the nonequilibrium collective
behavior of Dirac spinors taking into account the spin degrees
of freedom, a natural framework is the Wigner formalism,

Wab<x,p>s</d4ye“/”"”w (r+3) 0l —§)> an

As a 4 x 4 matrix depending on coordinate x and momen-
tum p, it describes the phase-space distribution for different
spin states and can be decomposed in the Clifford basis
{ I, V“, V 0,,1,,2,,3

=iy%y'y2y v B = gl v,
= H(F+iPy’ + V' + Ay + 1L,,2"),  (12)
where the scalar F, pseudoscalar P, vector V,, axial-vector
A, and tensor £, are known as the Clifford components.
With these components, one can express the thermodynamic

quantities—the current, axial current, energy-momentum ten-
sor, and the spin tensor current—respectively, as

_ _ [ d'p
I = Gyt —/WV“, (13)
" Trayq,d d4p Iz
Sy = Wyiyy) = (2n)4A : (14)

LV T. (s L v d4p v
T = ((iy"D")) =fm” v 1s)

d*p
ok v
u /(2n)4A“' (16)

In the absence of an external field, the equation of mo-
tion for the Wigner function can be obtained from the Dirac
equation,

SHY = (W{J/ M) =

vu(p" + LR W (e, p) = mW (x, p), ()

which contains a set of coupled equations for the Clifford
components. In the massless limit (m = 0), the equations are
partially decoupled and the vector and axial-vector compo-
nents V,, and A, couple only with each other but not the
scalar, pseudoscalar, and tensor components,

PV, =0, prA, =0, (18)

3V, =0, A, =0, (19)
geumapw = poAu = puAs, (20)
gewgam“ = poVu = puVo- @h

These equations can be further simplified by recombining the
vector and axial Vector 1nt0 left-handed (LH) and right-handed
(RH) components 7. (V“ + A"). They evolve indepen-
dently,

P T, =0, (22)

0" Ty =0, (23)

h

Eeuvpaapji = :l:(pvji,/t - Pu,jiﬁv)- (24)
In Refs. [25,26], the authors employ a semiclassical expansion
(i.e., h expansion) in the massless limit and derive the CKT
up to the leading order in /. In first-order CKT, the RH/LH
components can be expressed as

ehveo ppn(,

Jf:(p":l:h
2p-n

)f + (25)
where f1 are the RH/LH particle distribution functions, de-
fined as the p*-proportional section of corresponding chirality
current 7. Their equations of motion are driven by the chiral
kinetic equation (CKE),

€'’ pong
|:p“3,,_ + h<auT_”;)av]fi =0. (26)

In particular, n** is a timeike arbitrary auxiliary vector field
and could depend on space-time x* in a nontrivial way. It is
introduced to separate the p*-parallel and p*-perpendicular
components. Noting that the momentum p* is a null vector,
hence, self-perpendicular, the separation is not unique and
depends on the choice of n**. Such nonuniqueness leads to the
frame dependence of the distribution function—also known
as the side-jump effect [25-27]. When choosing different aux-
iliary fields, e.g., #** and v*, the corresponding distribution
functions f,) + and f{,) + differ at 7 order,

e PulyVp aaf(O):t
2(u-p)v-p)

€
f[u],:t - f[u],:t =F ) (27)

and, consequently,

P funx — P fox

€ potty €77 ppug
= :Fh< > P2 — g >3uf(0),i, (28)
p-u 2p-v

so that the definition of jjt‘ remains invariant. We refer the
readers to Ref. [25] for detailed derivations. In the above
equations, f(o+ is the classical A order of the chirality density
function and is frame independent. As will be discussed in
Sec. III B, it will be more natural to choose n** to be the local
fluid velocity. For the sake of generality, we keep n* arbitrary
at this point.

Last but not least, the conservation equation of total angu-
lar momentum,

0= 9, M"*
= 0,(L" + hS*™)
= 8, (T*"x" — T*'x") + h 3, S"*
=T —T")+ ho,Ss"* (29)
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is satisfied automatically, which can be shown by taking the
momentum integral of Eq. (21), one of the equations of mo-
tion for Wigner components. In a system with Dirac spinors,
the conservation of total angular momentum is not an extra
constraint on the system evolution. The spin-density current
follows once the axial charge density, accounting for the im-
balance between RH and LH particles, is defined.

II1. SPIN HYDRODYNAMICS IN EQUILIBRIUM

A. Equilibrium distribution

To connect kinetic theory with hydrodynamic theory, a nat-
ural starting point is the equilibrium limit of the distribution
function. This is nontrivial when rotation effects are included:
Quantum corrections appear in the kinetic equation Eq. (26),
therefore, the equilibrium distribution will also be modified.
Here we derive the equilibrium distribution with vorticity
corrections fi oq in a similar way as in Ref. [24]. We start from
the principle that equilibrium distribution fi(x, p) = fi(g+)
should be a function of the linear combination of the quanti-
ties conserved in collisions—namely, the particle number, the
momentum, and the angular momentum,

e“”"‘ﬂpanﬂ

_ 30
T (30)

8+ = 04 + ,BAP)‘ + hyi.;/_u

where the coefficients &, B, and y are not arbitrary. They are
constrained by the CKE,

vpo
€"Pop,n,

2p-n

df:l: euvpap Ny
=8(p)—=| p*8, £ Hl0,——2% )9, |g+. (31
(P)dgi[p m (u 2p-n g+. (31

0= 6(p2>[p“aﬂ + h(aﬂ )av}fi(gi)

To solve the coefficients, we take the semiclassical expansion,
g+ = 8o+ + g+ + O(?)

= (@©).+ + Puby) + h(a(l),:t + pubBly

G“U“ﬂpanﬂ

+Vi,uu 2p n

) +ou, (32)
as well as

fe(g) = f0).+(g0).+) + f() +(80).+)

e“”"‘ﬁp n
u al'p
X <a(l),:t + pulgu) + Vi, 217—’1)
+O(R?). (33)
From zeroth-order CKE, one finds that
_ 9B
o)+ =0, B+ Wby = 1 S (34)

Noting that n* is the auxiliary vector in constructing the
solution of the Wigner function, one would need to ensure
that physical quantities, such as J{ will be independent of

n*, hence,

€77 Pty 5 froyt
2(m - p)(v-p)
€M7 Py, 05 8(0)+

— ) i
=7 2w - p)(v - p) J0),+(8w0.x) + O(%).

Sua S, = Fh

(35)
Comparing the above two equalities, one obtains that

pkeuvpap#uvvp
2(u - p)(v - p)

_ euvaﬁpauﬂ B Guvaﬂpavﬁ
. 2p-u 2p-v

9 B(0).»

p*e“”p“puuvvp
2w - p)v-p)
Further noting the arbitrariness of #, v, and p, one gets
Ve = £5 0By — 05 Bo)u)- (37)
Then, we consider the first-order CKE and find

a - By
4 8uv-

Consequently, one can absorb oy + and By, ,, respectively,
into a(gy,+ and By, ,, and conclude that

= 2V+50 (36)

duay+ =0, 3,810+ By = (38)

d-p
a,u,,gv + auﬂpc = —8uv;

8Moai = O, 4

v = i%(a“ﬁ” —0"B"), (39)

and

9,8, — 0, uvaf »
fi(gi)=fi(ai+puﬁu)ih( uB . B € § P n,g>
p-n

x fi(ox + pup™) + O(?). (40)

It is worth noting that compared to the derivation in Ref. [24],
we take into account the guiding principle that physical quan-
tities are independent of n*, i.e., Eq. (34). By doing this, one
would be able to rule out the ambiguous extra mode of y ;.
pointed out in Ref. [24]. Additionally, the conditions (33) and
(37) apply only for a system in global equilibrium. They are
not required in the derivation of the hydrodynamic equations.

Comparing the general form with momentum-integrated
thermodynamics quantities, one can find that oy = uy/T
corresponds to the RH/LH chemical potential, whereas 8, =
u* /T corresponds to the flow velocity and temperature.
Particularly, the latter is independent of flavor or helicity.
Combined with the Fermi-Dirac distribution, we can express
the equilibrium distribution functions in a compact form

1

chvpo @00 Ppl ’
+ h 4n-p ] +1

Jeq.£(P) = (41)
€

Xp [P'“;l‘«i

where @, = %(8\, % — 9,%) is the thermal vorticity.
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B. Ideal spin hydrodynamics

With the thermal distribution obtained, now we move on
to construct the hydrodynamic quantities by taking the
equilibrium limit. For later convenience, we define
the vorticity vector o/ = —LePu,mw,, = 1" u,d,u,,
the  vector/axial chemical potential uy = (us+ +
n-)/2, pa = (uy+ —pn—)/2, and denote the integral
fp = 2582)){;’417 By substituting equilibrium distribution
in the definition, the equilibrium hydrodynamic quantities are
as follows:

h P
Jé(:.:t = /pﬂfeq,i + EGM/\UP/ i 3pfeq,:i:
14 P p

h(o
=niu":|:—<£> o, 42)
2 al’Li T.n
Jeqv = Jeq+ T
h(o
=nvuu+-(ﬂ) o, 43)
2 aMV T.jea
JE= T =T
h(o
=nAuﬂ+—<ﬂ> o, (44)
2 8/.LA T.py

Teﬁv = /p“pv(feqdr"i'feq,f)
P
2O pvp)»na
+ het p/l;map(feq,Jr_feq,)

hn
= cufu’ — PA™ + TA(&U"M" + Te"*w,,),

(45)
Sééw = %EAMVUJeq,A,Uv (46)
where
ny = /(u “Peqr, e=3P= /(u ) p)2(feq,+ + fea-):
P : 47)

We note that these are equivalent to the result in Ref. [28]
if implementing the equilibrium distribution for both particle
and antiparticle,

2
ny = E(Tz_{_ﬂ_i)’

6 w2

N O e Y N/ T 48
T 760 2 472 '
Some comments are in order:

(a) In the above equations, the quantum corrections to the
vector and axial currents are collectively known as the chiral
vortical effect (see, e.g., Ref. [29]). In particular, even in the
purely neutral case wy = uy = 0, the quantum correction to
the axial current /(T 2w" /6) is nonvanishing. Noting that this
leads to nonzero spin-density u,\Sé‘é“’ = hT3w""/12, such a
quantum correction term induces the spin-vorticity alignment.

(b) On top of an existing chiral-hydro that includes anoma-
lous transport terms in the current and axial currents, our

derivation also indicates different terms in the stress ten-
sor accounting for the feedback to energy and momentum
flow. Quantum correction introduces an antisymmetric term
h4otu’ — 4w’ u" + Te"*w,,) together with a symmetric
correction x4h(w*u” + w'u"). These terms are proportional
to chirality imbalance and vanish if us =0, i.e., an equal
amount of RH and LH particles at any spatial and temporal
points.

(c) As a first-order derivative term w* appears in the
hydrodynamic equations, it is nontrivial to show their
causality and stability. With details in Appendix A, these
equations are shown to be causal and stable against
linear perturbations, which follow from the fact that
a9t = (1/2)e""??(9,u,)(d,us) does not contain second-
order derivatives of the velocity, such as 9, dgu*.

(d) It might be worth noting that we take the canonical
definition of energy-momentum tensor 7*” and spin-density
S*v_ There have been discussions on the equivalence of
evolution equations when taking other definitions, differing
by a pseudogauge transformation [30-32]. In Appendix B,
we derive the explicit form of the pseudogauge transfor-
mation to symmetrize 7/"”. We emphasize that such a
pseudogauge transformation does not cause an ambiguity as
the microscopic distribution f*(p) is invariant under such
a transformation. Physical observables, including the spin-
polarization vector, are constructed based on the distribution
functions, hence, they are not influenced by the pseudogauge
transformation.

(e) Last but not least, one can find that all these hydrody-
namic quantities are independent of the choice of auxiliary
field n, but the distribution functions f* depend on the ex-
plicit form of n*. We obtain the physical choice of such an
auxiliary field as follows. We denote the spin correction term
in distribution function (39) as

etvep Pall
wo_ al’p
T = S, (49)
Noting that n, X} = 0 transforms as a vector under Lorentz
1vp0
transformation X" = < 2E‘,7p 2 only contains the spatial part

in the frame satisfying n’* = {1, 0, 0, 0} at space-time point
(', x',y, 7). It represents the polarization tensor /¥ p* /2 for
a RH particle, whereas for a LH particle, the polarization
tensor is —e”/* p¥ /2, which is accounted for by the sign differ-
ence in the current term and equilibrium distribution function.
Consequently, 2[’;']’ serves as the spin tensor in the frame
comoving with n*. To correctly reflect the spin polarization
in the distribution function, it is more natural to take n* = u*

to be the flow velocity. We adopt this choice for the rest of this
paper.

IV. HYDRODYNAMICS NEAR EQUILIBRIUM

In this section we extend the discussion to nonequilibrium
systems and derive second-order spin hydrodynamics from
the CKT. To describe nonequilibrium hydrodynamics evolu-
tion, we start with the chiral kinetic equations with collision
terms. The quantum correction term in the CKE could be fur-
ther simplified, see Eq. (E3) in Appendix E. Taking n** = u*,
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the equations become

p"aufi + h(

where

Elwpapv(apua)
4u-p

)aufi = Celfy, /-1, (50)

Ci(p) = fk ) Wil (P F (KD (D) f GO fr(P) fo () £ (P f (K]
,p K

+Wal fs (P F- (k) fr(p) f- (k) — f(p)f- ) f (P f- KDL, (51)

C_(p) = /k k[W1[ff(p’)ﬂ(k’)ff(p)ff(k)—ﬂ(p)ﬂ(k)ff(p/)ff(k/)]
p K

+Walf- (D) f+ (D - (D) (k) = F-(p) ) f~(p) £ ]I (52)

are the collision kernels. For later convenience, we recast the CKE to be as follows:

[(u PF hz“’—'p}ifi —Culfi = =P Vufy F h(
u-p

E/vaﬂpv(apua)

r )vufi, (53)

where dX = u"9,X, V, = A,,d". In the 14-moment expansion formalism, we expand the nonequilibrium correction to be

moments of p, - - - pgy, and truncate terms up to p? order,

I5 = o+ fa (U= fOlAETT 4+ 250 py + 257 pupy]

h
=fo + (- foi)[¢ﬁ —

where
1
= 55
fo+(p) oxp [+ 1 (55)
1
feq,:l:(p) - exp[u.p;ui :I:h%‘:—ﬁ] + 1

how-p 2
= fox F fox (1 — fO,i)ﬁ_ +O07).  (56)
u-p

Noting that the equilibrium form of polarization vector w" is
a first-order derivative term, we keep up to first order in vis-
cous expansion. This is consistent with the order of quantum
corrections.

It is worth noting that in the above expressions, 7 and
n+ are the effective temperature and chemical potentials,
respectively. In principle, these quantities are well defined
only in thermal systems; whereas, in practice, one can define
them for nonequilibrated systems by matching the energy and
particle densities,

¢= /p W pPUL () + £ (), (57)
ne = f,, - pFe(p), (58)

with their corresponding equilibrium expectations,
€ == /p W PP aas D) + foa (P, (59)

ne = neqs = f (- p)foqs(P)- (60)
P

a) .
—II; —}—)»ﬁl'[ +)\vivipﬂ +Afﬂ“”pﬂpvj|, (54)

(

With these, one can separate the pressure into two parts—
the thermal pressure P and the bulk pressure IT being the
nonequilibrium correction,

1
P = —5/A””pupu[feq,+(P)+feq,—(p)]’ (61)
P

1
m=-g f A pupul8f(p) + 8- ()], (62)
p

where 8 f. = f* — f5, denotes the nonequilibrium sector of
the distribution functions. Implementing the energy matching
relation (55), one can reexpress Eq. (58) as

I1

1
-3 / (P P8 f1(p) + 81— (p)]
P

m2
- / [8£.(p) + 5 (D). 63)
P

In the massless limit m2 = 0, the bulk viscous pressure van-
ishes, hence, the scalar corrections Aﬁl’[ disappear.

Besides, one can further define the nonequilibrium correc-
tions to hydrodynamics—the dissipative quantities,

o = / NPT+ F P, (64)
P

Vi = fAZP“é‘fi(p). (65)
P
From the relations in Egs. (53)—(60), one can fix the coeffi-

cients in nonequilibrium distribution function,

+ 1 i:-lfl(u'P)—Jfl

= A (66)
4sz Dgfl

Detailed derivations can be found in Appendix D.
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Substituting the distribution function in the definitions
(13)—(15), we find the RH and LH particle currents and
energy-momentum stress tensor,

B ppor G(l)i
:i:ze’”’ U,05 Di Vi

+

2,2 _upoi LA
:|:4J—i(6/ o MpO'gST[)g — ! CD)L)

4,2

= nput + Vi + R (67)

quantum, £

4k
T = eutu’ — PA* + 7" + ?a)"(vi —Y)

i
+%(8a)“u” + Te" " w,5)

h Ji Jr
+—eﬂﬂ“*upA“faa[(—3f — 32 )mg}

2 25, 2,
+Ee“p”u 1 d, (v —v)

2 14 AN A
I e (o) (v —v))

o€ uo(Geu™)( = v;

2h
+?6’Mp“up(80u”)(v; —v)

— PAM 4+ g™ 4 RTH (68)

= culu
=céeu quantum

Together with classical dissipation terms 7" and v, viscous
corrections also modify the quantum Tuantum and Jguunm, +
from their equilibrium form. In this paper, we take the Lan-
dau frame and define flow velocity u* as the timelike left
eigenvector of the stress tensor with energy density € being
the eigenvalue,
mv —
Uy Tclassical = eu’. (69)
Finally, we derive the equations of motion for dissipative
terms, ruled by

AR dmre = f AL p PP (ds fy +dsfo), (70)
14
Ay, , = /Agpac%fi, (71)
p

whereas the equation of motion for §fy is derived from
Eq. (50),

dsfy — | — + h— |Cilfs, f-
fx (u_p 2(u-p)3> +[fs -]
. ",
= —dfeq+— M
u-p
heuvkdpvppuk(apuc - aoup)
V. fx. 72
4(M‘p)3 llf:l: ( )

Putting the lengthy calculations in Appendix F and keeping
up to second-order terms, the relaxation equations for all the

dissipative terms are

Azfjdn"” -

h
- E(XZT’jZ -

(A(Z) + A(2))
ijiz)Aaﬁwp +

h T o
+5 X5 - X DAL P v

8 14 « 8 a v 12 o
= gPO’ /3—397[ ﬂ+?A ﬂO'H T[/“,—?O'uﬂ'ﬁﬂ

12
_ Boow _ o fuvp _ gBeanvp
7 o, € Uywy — T, € Uy,

2h h
-+ ISAaﬂa)MV na + SnAA“ﬁV“

L e ugrp

10e4+P *
LA

20e+P

(cf e u, Vo P + 0% €271, V, P), (73)
and
h
1) (1) (1
—ApgvE — Bigvg £ —ZTWiOa)

E(Af) 2 A(—Z)—z) P,

aB 3.+
A dvﬂ

D:t + J:t
= velE g P ALY, — o, L
S T 2050050 2J3%0

3
—0vg — ga““vff — eyt @

hooa i D5,
—%dIE, F ——A“d
T3 Mo T or
3 n? 1
+ MM —00” + 0w,
2 &4 + Pj: 3

h o (13 4
F I00 159w +50 “wu

h .
+ Eeﬂmwlud(vulg?o), (74)

where A, B, W, and X are integrals of collision kernel de-
fined in Appendix G. They are functions of temperature 7 and
chemical potentials 4. We note that there have been similar
attempts to derive the dissipative spin hydrodynamics from
the relaxation-time approximation [28,33], i.e., the collision
kernel is approximated by (f — feq)/Teq- We emphasize that
by taking the 14-moment formalism with a concrete collision
kernel, we are able to obtain the exact form of transport
coefficients and relaxation times. In this paper, we aim to
construct a theoretical framework based on the general form
of collision terms. Recent studies—focusing on relativistic
heavy-ion collisions—of the relaxation time can be found in
Refs. [34-36].

We end by discussing the viscous correction to the spin
degrees of freedom. At the macroscopic level, the spin density
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at the fluid comoving frame is

SHY = gy, SHY

1
= —e‘”’”/‘u)\./la
2 p

1
= _60A”Uuk(]+,a - Jf,a)

AT ( Ony on_ 1
- — | —— _ - v___af — _HVoA
= (3M+ + )AgAﬁZD' + 26” VAo Uy,

4 op—
(1), + (1),—

h 4,1 Gy
+_€ij)\€(r(xﬁyukuaaﬁ - V_)t,/_"‘ = VZ
2 D;r,l Dy,

hJis s
—_| &= ilnd n—ﬂé v.oo_ T[VE I3
+4(J;2+J;2)( Te o)
[ AP by
— (2 + 22 e 0. (75)
4\, i

Especially, in the equilibrium limit that all viscous correc-
tions are turned off, i.e., v — 0, 7" — 0, the spin-density

J

1

SHY AgAgw“ﬁ is proportional to the spatial components of
thermal vorticity tensor.

At the microscopic level, one would be interested in the
polarization rate for individual particles, especially for fi-
nal hadrons. The momentum-dependent mean spin vector for
each hadron can be obtained as follows (see, e.g., Ref. [37]),

/ dEfO,,\tr[{)/}“, ZpO'}W(x7 p)]

1
S*(p) = —ge“”/’(’pv
/dEfo.prtr[W(x, Pl

q deﬁ)qpm;Aa(x,p)

E,uvpzrp
4mH

v

/dEfo,xV’\(x, p)

| /dE?Op,\A“(x, D)

2my / ALV, (x, p)

where Xy, , represents the freeze-out hypersurface. Assuming
that hadrons take the same distribution as the 14-moment
formalism (54), we find

) (76)

-1
SH(p) = —{[L fV,0i| +/Efv,o(1 — fv.0) (A V% po +)»n77a’317a17ﬁ)}

ZmH

h
x {[—Ze“”p“/ Pv®po fro(l _fV,O)] +f P fvo(l —fv,O)l;:4
» )

Ay

+ / P fvo(l —fv,o)( > Vi Po +
z

+O(1?),

where fyo = [e“P~®/T + 117! is the Fermi-Dirac distri-
bution, [;(-++) = [3dZ} p,(---) is the integral over the
freeze-out hypersurface, and

pa = (U —pn-)/2, p=Wus+np-)/2,
v =l =t o =l ok (78)

In the expression of the mean spin vector per particle (72), if
keeping terms in [-- -] only, one can repeat the equilibrium
result in Ref. [37], whereas the other terms are corrections.
Among them, there is a term proportional to u4/T, which
is a leading-order contribution in both gradient expansion
and semiclassical expansion. It acts oppositely for A and A
hyperons and might suggest an explanation for the measured
difference in their polarization rate [3]. The rest of the terms
are viscous corrections: The ones in the denominator {- - - } !
are corrections to spin-averaged particle distribution; whereas
the ones in the numerator are corrections directly to the spin
distribution. The latter might be related to the sign difference
between theory and experiment results on azimuthal angle
distribution of longitudinal polarization. Last but not least,

A=Az A — Az
v 5 vvapa+ b4 3 rrnaﬂpapﬁ>}

(77)

(

noting that for systems starting with zero chirality imbalance,
all quantities proportional to the difference between right and
left, i.e., ;s and v/’j , appear because of chiral transport, hence,
are proportional to %. Therefore, such terms are consistent in
both quantum and viscous expansions.

V. SUMMARY AND OUTLOOK

In this paper, we start from a 14-moment expansion formal-
ism and obtain the second-order viscous spin hydrodynamics
from a system of massless Dirac spinors. In such a system,
the spin-alignment effect could be treated in the same frame-
work as for chiral hydrodynamics but with nontrivial quantum
corrections to the stress tensor. We further obtain the nonequi-
librium correction to the spin-polarization vector and find a
potential new source for the difference in the polarization rate
of A and A hyperons.

We construct a hydrodynamic theory that self-consistently
solves the evolution of systems containing spin degrees of
freedom and includes the viscous corrections in the hadron
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spin-polarization rate, and the explicit form of the hydrody-
namics quantities and equations are shown in Egs. (62), (63),
(68), and (69). This framework will be implemented in future
numerical hydrodynamic simulations to precisely quantify
both global and local polarization rates of final-state hadrons
created in heavy-ion collisions.

We need to point out that whereas taking the chiral limit,
both the spin tensor and the axial current can be represented
by the semiconserved axial charge. For massive fermions,
on the other hand, one would need to introduce another two
independent degrees of freedom to construct the microscopic
state [38—41]. To fully explore the spin dynamics for a generic
system, one would need to start from the quantum kinetic
theory for massive particles to construct the corresponding
viscous hydrodynamic theory. This would be performed in our
future work.

We end by noting that hydrodynamic theory is a macro-
scopic theory that can be derived from conservation laws and
the second law of thermodynamics. A hydrodynamic theory
containing the spin degrees of freedom has been constructed
based on such macroscopic principles in Ref. [42]. It is par-
ticularly interesting to compare the results derived from a
microscopic approach to those derived from a macroscopic
approach. Compared to the results of Ref. [42] where parity-
odd effects are not considered, we find extra terms could
be added without violating conservation laws and entropy
production law. Those results will be reported in a separate
publication.
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APPENDIX A: STABILITY AND CAUSALITY OF SPIN
FLUID DYNAMICS

A unique feature of spin hydrodynamics is the emergence
of the vorticity vector w* terms at ideal order, which is a
first-order derivative of velocity u”. Given this, one may be
concerned by the numerical stability and relativistic causal-
ity of the theory. Generally speaking this is not an issue as
the definition of the vorticity vector contains an antisym-
metric Levi-Civita tensor, hence, neither 9,w" nor w*9,X
contain second-order derivative terms, not even the product
of first-order terms with respect to the same variable. To see
this, we follow the procedure in Ref. [43] and examine the
linear perturbation on top of a homogenous-constant back-
ground. Without loss of generality, we take the direction of
the background fluid velocity as the Z direction, hence, the
full velocity is u* = y(1,0,0, B) + (8¢, Su*, S, Su®) with
y = (1 — B*)~!/2 being the Lorentz factor. Similarly, the full
energy density becomes ¢ + §e, whereas the number den-
sity is ny + ény, and the axial number density is ny + dng.
Noting that the four-velocity must be normalized u, u* =1,
hence, du' — Bdu* = 0. It would be more convenient to let
Su =y 8u’ and 8u' = y B 8u’, and we label 8u* = Su' and
S’ = Su? for consistency. One can see that Su', Su?, and 8u°
correspond to éu in the fluid comoving frame.

The evolution of the perturbative quantities {d¢, dny, dna,
Su', su?, su®} is governed by

9,80l =0, 9,88 =0, 9,6T* =0. (Al

Expanding the hydrodynamic equations for linear perturbations, one finds

0 =y (3 + B2.)dny + ny[d,8u’ + d,6u” + y (B, + 3,)81’],
0 = y(d + Bd)8na + nald.Su' + 8,8u* + vy (Bd; + 9,)8u’],

0 =y (3 + Bd:)d¢ + H[0,8u' 4 3,81 + y (B0, + d.)du’],
1 hiny 3 2
0= Hy @ + po.)su’ +3:8 + —=y (@ + B)0,8u’ — y (B3, + d)8u’],
2 hnA 1 3
0 = Hy (3 + Bo)su’ + ,6P + —=y (3 + By (B3, + 9.)8u’ — d.8u’],

_ 2 3 2 hing 5 2 1
0=Hy~(, + Bd,)ou’ + y~ (B9, + 3,)6P + TJ/ (9 + BO;)(00u” — dy8u’),

(A2)
(A3)

(A4)

(A5)

(A6)

(A7)

where H = ¢ 4 P is the enthalpy. Compared to the “spinless” hydro, the evolution equations contain second-order derivative
terms (7iny/2)0,0,8u”. However, this does not necessarily mean instability or acausality. To see it explicitly, we apply Fourier
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transformation to the perturbative quantities and solve the plane-wave eigenmodes,

Se 580

Sny dnyg

Sny ' dna

sul | = expliter — ko — kyy — k21| sul (AB)
Su? Su(z)

Su’ i Sup )

For later convenience, we apply the variable substitution w = y (' + Bk,) and k., = y (B’ + k.). Then, the plane wave becomes

expli(wt — kyx —

kyy — k.z)] = expli[@'y (t — Bz) — kux — kyy — kly (z — BD)]},

(A9)

and k] and o', respectively, correspond to the wave number in the z direction and frequency in the fluid comoving frame. For the

plane-wave modes, one can make the replacement,

0y — —ik,,
& — iy (o' + BK),
v, + B0,) — iw,

in Egs. (A2)—(A7) and rewrite them as

M—w' 0 0 ak,
0 - 0 bk,
0 0 —o ck,
dk, ek,  fk, —w
dk, ek, fk, —go'k]
L dk] ekl  fkI —g'w'k,
where
a=e+P, b=ny, c=ny, dEla—P,
H d¢e
1 0P 1 oP hing
e=———, =——) g=i— (A14)
H ony H 0ony 2H

Particularly, g is purely imaginary, and g* = —g. The six
eigenvalues of the coefficient matrix (A13) are as follows:

o' £ +/ad + be + cfk',

with k" = /k} +k} + k2. The solution of the perturbation

field would be trivial unless one of the above eigenvalues
is zero. Such a condition leads to the constraint equation
between w and k—the latter is also referred to as the dis-
persion relation. For the eigenvalues in (A14), we note that
|glk’ = hnak’/(2H ) < 1 per the requirement of semiclassical
expansion, hence, 1 + |g|k’ # 0, and o' %+ |g|k'w’ = 0leads to
o’ = 0. With these, nontrivial modes can be found if

o, 0,0 +|glk'e, (A15)

o = tek. (A16)

o =0, or

Particularly, the speed of sound in the fluid comoving frame,

¢y =+/ad +be+cf
apP ny 9P n

_ (v o
de &+ Pony

is determined by the equation of state and takes the same

formula as the “spinless” hydro. Reexpressing the constraint

9P 1/2
—_— (A17)
e+ Pony

0y — —iky, (A10)
9, - —iy(Bw + k;), (A11)
y(Bo, +0;) = —ik;, (A12)
aky ak, ] se
bk bké ony
cky ck! Sny
; =0, Al3
—g*a)’k; _gw/ky 81,{; ( )
— —g*a)’kx du
, , su’
—8w'ky —w ]

equations (A15) with laboratory-frame quantities, the disper-
sion relations of the nonvanishing modes are as follows:
o = Bk, (A18)

or

(1= )k £y + (- pa)rid
1 — B2 :

(A19)

w =

It is clear that (A18) is the “static” perturbation moving to-
gether with the fluid background, whereas (A19) is the sound
propagation with the Doppler effect. The property of Lorentz
transformation ensures the speed of sound to be less than the
speed of light. Consequently, one can conclude that spin hy-
drodynamics equations remain causal and is stable for linear
perturbations, even though they contain the derivative term
wt.

We end this Appendix by noting that, in general, the
causality and stability of linearized sound modes do not
guarantee the causality and stability of the whole theory—
far-from-equilibrium perturbations cannot be approximated as
linearized modes. Therefore, our paper can be considered a
necessary but nonsufficient condition for stability. A complete
analysis takes into account the nonlinear far-from-equilibrium
perturbations. One then may need the techniques recently
developed in Ref. [44]. This lies beyond the scope of this
project and is left for future work.
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APPENDIX B: PSEUDOGAUGE TRANSFORMATION TO
SYMMETRIZE THE ENERGY-MOMENTUM TENSOR

It is worth noting that in this paper we take the canonical
definition of the energy-momentum tensor,

THY — d4 m
<2n>4”
ny
— /pupva+heuxapfpsz 3,11, (B1)
p p 4N

which contains a quantum correction which is not necessar-
ily symmetric. However, in this Appendix we show how to
symmetrize the stress tensor without changing any physical
observables or the evolution of thermodynamic quantities. In
principle, one can alter the form of the stress tensor by adding
the divergenceless term,

Tq,l)w =TW + %a)h((b)\;w + (D;/.vk 4 @U)Lu)’ (BZ)

whereas the spin density becomes Si*’ = S*V — &* in
order to maintain angular momentum conservation. Such a
transformation is referred to as a pseudogauge transformation
in Refs. [30-32], and in practice, we employ the Schouten
identity (E1) and separate the quantum correction of the
stress tensor into symmetric and divergenceless antisymmetric
components,

heukap/p DPils pfA

2n -
f (w70 p 4 &7 py P20
*3 /(6““’"’17“ - e“‘mp“)—pma dp fa
V4

n
vkappu) p)n.(r apfA

h
= 5/(6“)“”’17” +e
P

h o
+§ /(6‘”’“” b eP T 4 €MV pP) 5/\ 0 fa
14

h o
= / (€7 €7 ) o
14

h
+ZE’M”3A/prA +O0(). (B3)
p

Especially, the antisymmetric term vanishes after taking the
divergence, %6””*98M8)\ fp DPpfa = 0 and does not contribute
to the conservation equation. This identity also yields the
explicit form of the pseudogauge transformation,

h
PHY = —ge“”p / Pofas (B4)
p

so that

1
T,uv = T/J.U + Eax(qj)»pw + ¢MV}L + q)v)upt)

sym can

v h o v VAo an
=/1v”pfv+—/(6M PP e P T fy
» 2J)p 2n-p

(B5)

is symmetric. Using such a definition, the equilibrium form of
stress tensor becomes

72’;;; eq = = cu'u’ — PA™ + hng(o™u’ + o’'ut).

(B6)
It is worth mentioning that the pseudogauge transformation
does not bring any ambiguity in our framework because
of the following two reasons. First, the additional term is
divergenceless by definition, hence, it does not alter the
evolution of the system. Second, although the pseudogauge
transformation modifies the definition of spin-density S**,
the spin-/chirality-dependent distribution functions remain
the same. In other words, physical observables in heavy-ion
collisions, such as the spin-polarization vector as shown in
Eq. (72), are independent of the choice of pseudogauge.

APPENDIX C: THERMODYNAMIC INTEGRALS
AND ORTHOGONAL POLYNOMIALS

In this Appendix, we discuss some mathematical rela-
tions related to the thermodynamics integrals fp(~ --)fo and

fp(~ --)fo(1 — fo) and construct the orthogonal polynomials
used in the main text.

(1) Integration by part: In the main text, integration by
part is frequently employed to derive/simplify the thermal
integrals. Noting that

d
%fo = — f0),
d
d_fO(l - fo) = fod—=2f), (C1
p
and applying integration by part, one can find
/ ’p — f)FIE,. p]
mfo( fo) D
_ dp E,d
= T/mfo?E(PF[E , D), (C2)
/ TP a2 VELE,, p]
mfo( foX fo D
_ d’p E, d
= T/mfo(l —fo)?E)(PF[E ,pD. (C3)

(2) Orthogonality in thermodynamic integrals: For an ar-
bitrary function of comoving energy F' = F(u - p), angular
dependence yields the orthogonal property,

d*pF
(K1 4om)
—=—P"' P D, Py
(7 )E, :
M8 &’pF .
= —S AN | S ( Ppapp)™. (C4)
Q2m+ D! (2w )E,

(3) Orthogonal polynomials: We start by defining some
thermodynamic integrals as

[ = / d’p(=A" p,p,)i(u - p)y' =2
e (27 )*E, (2q + 1)!!
7 = / d*p(— A" p,py)i(u - py=4
e (27 )’E, 2q + 1)!!

va (CS)

Jo(l = fo), (C6)
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GE,?,),, = Jn,qu,q - Jn—l,qu+l.q» (C7)
Gn,m = Gg,ozq = Jn,OJm,O - Jn—l,OJm-H,Ov (C8)
Dn,q = -,nJrl,q-lnfl,q - J}%q (C9)

Then, we construct the polynomials P\*) as functions of the
comoving energy E, = (u - p). They are defined to satisfy the
orthonormal relation,

3
Sy = [ TP opopo, (C10)
Q2 )3E
where the weight function,
1\ ARV ¢
o _ (=D*¥(A p/tpv) 1— C11
® TSI Jo(P1 — fo(p)] (C11)
satisfies the normalization relation,
3
1 = d—pw(f) (C12)
(2n)’E,

For each ¢, we explicitly write down the zeroth-, first-, and
second-order polynomials as

PP =1, (C13)
J J
©) 20+1,¢ 20,0
= - (u- p), (C14)
! D2z /Dasie
50 Dapyr0 — G(zi)_;,_g,,z((u p)+ Dagsr,e(u - p)?
= (C15)
/Ny
where the normalization factor is
Dyoq1,e
Ne = =28 (Jags0,eDaesane — Joess, KG24+3 20
+ J2eqa,0D2ey1,0). (C16)
We further define
—1)iq! / App"pP)
X1, £ _ ( f B
v = [ fox(1— fox )— )
e+, @-py ¥
(C17)

with X being I1, v, m, or Q. In particular, matching relations
ensures that

3
[M],+ _ (+ _ (OL,+ _
Foo = Tom2 Foo =0 FhLy =0,
=12, FUt=1, FUlT=o,
AP =0, AP =-1 (C18)
Similarly, we have
IfO:Jfl/Tzni, IZi,OZGiv
" i on*
Sy =T(ex+Pr), Jip= Py (C19)

From the definition and after integration by parts, one can find

Joo = Ohq (C20)
T Gy
ol,_

Jog = ——=24] (C21)
B

Jng =+ DTS ,. (C22)

(4) Simplification of thermodynamic integrals: Employing
2

the on-shell condition (—A*p,p,) = (u - p)? — m?, one can
find
q k., 2k
(=1)'m
Ly = Z Lioko,  (C23)
(261+ DI = kl(g = k)!
Zq: )k 2k
Jn,q n 2k,05 (C24)
2q i k(g — k!
s - DU S GO s o
rnq _ r+2k—24,0°
2q + D! = k(g — k)! a

These expressions can be further simplified when taking the
massless limit m = 0,

1

I,=——1I,0, C26
4T g+ DI (€26)
1
Jng = ———1J00, 27
4T g+ D0 (€27)
1 2
Dn =\ A Dn 5 C28
4 |:(2q+l)!!i| 0 (€28)
1 2
(@) _
Gn,m - |:(2q+ 1)”:| Gn,iru (C29)
e S pi (C30)

" g+ DT e

APPENDIX D: COEFFICIENTS IN DISSIPATIVE
QUANTITIES

In this Appendix, we show the full details of computing the
coefficients Ay obtained from matching dissipative quantities
with nonequilibrium distribution functions. In the moment
expansion formalism, we expand the distribution functions
near their equilibrium forms

fi = fe:s + fezs(l - fe:i:[)[-’_)”ﬁn + )“f)tvip# + )‘i:nlwp/lp‘)]’

(DI)
where the nonequilibrium corrections can be expressed as
AT = e P + ca 1 PO 4 i o P, (D2)
i =B el P, (D3)
aEnt = AP (D4)

In the above equations, P{“’s are orthogonal polyno-
mials of comoving energy (u-p), and their explicit
form can be found in Appendix C. Additionally,
(c.0,Cx.1,Cx 2, c‘:"t’o, k|, c‘i’?o) are coefficients that depend
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on temperature 7', chemical potential u*, fluid velocity u*,
but not on momentum p. In addition, the coefficients are
orthogonal to velocity,
i =Akct, o= Al (D5)
It might be worth mentioning that although it has been shown
in the main text that I'T as well as the scalar correction ArIT
vanish for massless system, we formally keep these terms in
this Appendix for the convenience of future extensions.
To determine the coefficients, we first denote 8 f. = f* —
= and compute the integrals,

/ 8fs = J5oC+.0, (D6)
P

/ (- pofe = Tipcio— [Dgcen. (D7)
P

+

n C+.1
vV D1,0

+ =t + ~+ + n*
\/JZ,ODZ,O - J3,()GS,()+‘I4,OD1,0

/ (- p)8fe=J5oce0—
p

+ — ct2, (D8)
\/ DI,O/JO,O
/ AR b = —JE (DY)
4

/(u “p)A pSfe = _J;:[Ciqo + D;lci,l’ (D10)
p

/ N PPofe = 205c,. (D11)
P
Keeping up to 7° order, we find
0 DF
/ P fep) = = Jiacko + = ch
u-p o [px &
p Dy,
+ (1(% + J(foci,o)u“,
(D12)

p'p’
/ —(u e f+(p) = I(fou’“’“u” — I(flA’“’ — Jfl (”Mcl,o + u”ci,o)
p

+ uv
+2J55¢4 o,

pu,pv + u.ov + iy + TRy v
f u_pfi(l’)=11,0“ W= L5 A — T (el g + el )

+ 275k, (D14)

() )

ppp
f w oy EP= —li A+ 2035
p

x (A AL+ A AL + AT AR)

+ g+ + g+
J3,112,2_J2,1J3,2 o

C
+,1
i ,
\/D3,l

(D15)

+ «a
X\ pcho+

(D13)

Then, the matching relations of Egs. (53)—(60) require

+
31-[ JI,O
C+0=—7T—7F1 C+1= C+,0
2m2]6t0 ’ Dﬂ: ’
J 1.0
+ [ pt
D5 o\/J6.0/Pio
2= T ot Tt T
\/Jz,oDz,o — 30650+ 150D7
2 +
noo_ Vi oo ‘]3,1 "
Ciro= N €y = n Cio
21 VD3
b fatd
ety = 2 ®16)
' 4J5,

Finally, substituting the coefficients in Egs. (D2)—(D4), one
eventually obtains

3 JE
+ — _ P(O),ﬂ: + 1,0 PI(O),:t
n—- + 0
2m2J0’0 DTO

+ /7t + p(0),+
DZ,O JO,O/DI,OPZ

+ ., (D17)
+ e +
\/Jz,oDz,o —J30G50 T /10D70

+ p(),*
= b pOE | a0
v — + 0
T2 \/D3i1

—L, (D18)
Dy,
pE 1
AE = 40F == (D19)
4,2 4,2
With these, we have
J:t
FlrlE = (—1)1g1 20 D20
= g (D20)
JEJE —JETE
]:r[ji]]’i _ (_1)qq' 3,1V2q r-HSi 4,1V2¢q r,q. (D21)
3.1

APPENDIX E: OTHER MATHEMATICAL RELATIONS

In this Appendix, we list some of the mathematical rela-
tions employed in the derivation.

(1) Schouten identity—in this paper, we frequently employ
the following identity:

0= puevpak _i_pvepaku + ppe(x)\;w + p(rE)Lqu _i_p)\e;wpa‘
(ED)
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(2) Projector,
NPT = LAYABAY + AAPAY + ASABAY + ACADAY + AYABAY + AYABAT) — L(APA LAY + AP A A,
17207 S Gl VRl Vi § vEL S Y T 7 i) vEu s ATv =) 15 |22 VAR,
FAPALAY + AP AL A+ APY A A+ AP NG AT+ AT A AY + AT AGAR + AN A (B2)

(3) Simplifying the quantum correction term in the CKE,

hs(p )( ﬂ)é) f

_ 6‘“"”’1),,8 Uy, €7 prpouyd,u; 0 f
B 2p - u)? ’
Pp3 Uy €M oty (Buur + ) €M7 P pputg (3t — ) af
4(p - u)? 4(p - u)? !
_ elvre Ppamqu TP Pyt Bty o f
2(p-u)? !
— ) ppa[ltutf] + (_E/wpo*pk _ ekvpapu +€palupv +€¢7)\;wpp +€Auvppa)pﬂ”aalﬂbgkl Wf
4(p-u)
€M% b (D
( P ( )>aﬂf+0(h2). (E3)

APPENDIX F: EQUATION OF MOTION FOR DISSIPATIVE QUANTITIES

In this Appendix, we derive the equations of motion for dissipative terms, ruled by

A dmre = / AL PP (dsf +dsfo), (F1)
p
AP dvy , = /Agp“dafi. (F2)
P
where 8 fr = f* — eq, and
5 w-p puvufi heuwﬂpvppuk(apua - aaup)
défy — h , =—d - Vife. F3
S (u-p 08 )) Celfy, f-] = —dfeq+ - p 2 p)? S (F3)
Although it has been proven that the bulk viscous pressure IT vanishes for massless system, we keep it for later convenience,
h w-
=+ - foi)[ ﬁ— +anT+ A vEp + A?;n““pupu} (F4)
1 (u-p)—Ji
M=o aF= % (F5)
i D3,
From conservation equations one can find
—dny = nsf + 3, £ 7o, (I 0", (F6)
n op h A,  3n “
—de = (e +P)0 — P oup + EnAuvdw + 78M(nAw ), F7)
du’ : V'P+ ALd n“ﬂ+h Ad “+3h “V (F8)
—du’ = — -n o + —nu"V,u’ .
€+ P a8 2 ARy 2 A I3

Then, we obtain the equation of motion for the shear viscous tensor,

. h -
ABdmr — (AD) + AP — S = XAl —(X2 5= XA W

(a B) it h
5 ppp
_/p(apﬂ)dfeq,+ - / Vp.f+ - _Gﬂvxguk(apua - aaup)
» p Uu-p 4
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for dissipative currents,
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The following relations are useful in the calculations above:

/paf =neu” +0§ £ —hjflw“
, + + + T s
h
/Papﬂfi = e u®uf — PLAP + ﬂiﬂ + 5 ne(u®of + ufw®),
p
+

PaPﬂ + [7],+ 8 nJy,
fe = neuu? — 5 AP + Fiy 7% i +ufv? £ 2—T’(u°‘wﬂ +uP ),

044906-14

(F9)

(F10)

(F11)

(F12)

(F13)



FROM CHIRAL KINETIC THEORY TO RELATIVISTIC ... PHYSICAL REVIEW C 103, 044906 (2021)

PapﬁpV By B A T o_B B_ay v_ap
(u p)f:t_E:tuu — Py APY + uP AYY +u? APy + P+ uP Y 4w %)
L (-
[v], £
+ (AP7vE + ATV + AL )i 5 E WP o + uu o
hJf,
Fop (A" + AT + AW,
PP p

p (M ' P)2
[v],+

+@ PV + v+ uPur ) +

+ +

hJ hJ
:I:%(u"‘uﬂa)y + uu’ f + uPu’ o) F 2—%’2(Aﬂya)“ + AP 4 AP,

(o pB) () 1)(0)
/ pep”'p'p fi= 2I:t Awﬂgﬂy f2[713] i(ggPaAz,f)A(};inuv + ;Aysn,aﬂ).
p

(u- p)?
The following integrals of equilibrium distributions are also used
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APPENDIX G: COLLISION KERNELS
In this Appendix, we compute the collision kernels for distribution,
f5 =1+ 5= fHe=lp),

how-p ;
¢=lpl = [¢ﬁ— + AR+ A vip, + Afnh pupv}

One will keep in mind that A and A, are still functions of energy E,,.
Noting that

fox(p) = fo.+(p) - exp(E,/T — u*/T),
one could find

Fo+ P fo+ &) fo+ (P fo+K) = fo+(P)fo+ (K fo+(P)fo+ (K,
Fo— (@) fo— (k) fo.— () fo— (k) = fo—(p)fo.— (k) fo— (P fo,— (K,
Jo.+ ) fo— K fo+(P)fo— (k) = fo+(p)fo,— (k) fo+(P)fo,— (k).
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In general, we express the £ indices kernel as
i = / P pEC I fy f f / / f e PPOEN WL (D) (KD () fr (k)
P
— Fe (D) ) f (P KD+ Wal £ (P - (K) £ () f- (k) = Fr(p) f- () (D) f- (K]} (G7)
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+ (Wafo,+ (P fo.— (K fo.+(P) fo,— (k) (p+[p) + ¢kl — 4 [p'] — ¢_[K'D}. (G8)

Then, the relevant terms are
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+vl / / / / AGPPE Wafo (D) fo.- () fo+ () fo,- ()0 [Ex ke — 2, TE{IK,)}
/ k k/
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The following term is also needed

h v o r— h v o o r—
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