
PHYSICAL REVIEW C 103, 044903 (2021)

Particlization of an interacting hadron resonance gas with global conservation laws
for event-by-event fluctuations in heavy-ion collisions
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We revisit the problem of particlization of a QCD fluid into hadrons and resonances at the end of the fluid
dynamical stage in relativistic heavy-ion collisions in a context of fluctuation measurements. The existing
methods sample an ideal hadron resonance gas, and therefore, they do not capture the non-Poissonian nature
of the grand-canonical fluctuations, expected due to QCD dynamics such as the chiral transition or QCD critical
point. We address the issue by partitioning the particlization hypersurface into locally grand-canonical fireballs
populating the space-time rapidity axis that are constrained by global conservation laws. The procedure allows
to quantify the effect of global conservation laws, volume fluctuations, thermal smearing, and resonance decays
on fluctuation measurements in various rapidity acceptances and can be used in fluid dynamical simulations
of heavy-ion collisions. As a first application, we study event-by-event fluctuations in heavy-ion collisions at
the Large Hadron Collider (LHC) using an excluded volume hadron resonance gas model matched to lattice
QCD susceptibilities, with a focus on (pseudo)rapidity acceptance dependence of net baryon, net proton, and net
charge cumulants. We point out large differences between net proton and net baryon cumulant ratios that make
direct comparisons between the two unjustified. We observe that the existing experimental data on net-charge
fluctuations at the LHC shows a strong suppression relative to a hadronic description.
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I. INTRODUCTION

Event-by-event fluctuations in relativistic heavy-ion colli-
sions have long been considered sensitive experimental probes
of the QCD phase structure [1–4]. At the highest collision
energies achievable at the Large Hadron Collider (LHC) and
Relativistic Heavy Ion Collider (RHIC) they can be used to
analyze the QCD chiral crossover transition at small baryon
densities [5]. The equilibrium fluctuations of the QCD con-
served charges in the grand-canonical ensemble (GCE) have
been computed at μB = 0 from first principles, via lattice
gauge theory simulations [6,7]. An appropriately performed
comparison between experimental measurements and lattice
QCD predictions can, in principle, establish whether a locally
equilibrated QCD matter is indeed created in experiment.
At lower collision energies, the fluctuations are used in the
experimental search for the hypothetical QCD critical point
and the first-order phase transition at finite baryon density.
This is motivated by the fact that fluctuations, in particular
the net proton cumulants of higher order, are increasingly
sensitive to the proximity of the critical point [8,9]. The
corresponding measurements are in the focus of several exper-
imental programs, including beam energy scans performed at
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RHIC [10,11] and CERN-SPS [12]. The experimental data in
the literature includes second-order cumulants, both diagonal
[13–16] and off-diagonal [17–19], as well as higher-order
fluctuation measures [11,20–22].

A proper theoretical modeling is crucial for interpreting
the experimental data. It is not uncommon in the literature to
directly compare the theoretical fluctuations evaluated in the
GCE with experimental measurements [23–32]. Such com-
parisons, however, have several important drawbacks. For
one thing, the experimental measurements are performed in
momentum space, whereas the theoretical approaches op-
erate in configuration space. Cuts in the momentum space
may be identified with the coordinate space if strong space-
momentum correlations are present, for instance due to
Bjorken flow, but even in this case a degree of smearing will
be present because of the thermal motion [33,34]. Event-by-
event fluctuations, especially the high-order cumulants, are
strongly affected by global conservation laws [35–37], re-
quiring large corrections to the grand-canonical distributions.
Other mechanisms include volume fluctuations [38–40], finite
system size [41], as well as nonequilibrium dynamics such as
memory effects [42] or hadronic phase evolution [43]. Proper
modeling of these effects is thus required for analyzing the
experimental data quantitatively.

The standard approach to describe the evolution of strongly
interacting QCD matter created in heavy-ion collisions is rela-
tivistic fluid dynamics [44,45]. The hydrodynamic description
terminates at a so-called particlization stage [46], where the
QCD fluid is transformed into an expanding gas of hadrons
and resonances. This picture forms the basis of the hybrid
models of heavy-ion collisions [47,48] and it works quite well
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in describing the spectra and flow of bulk hadrons measured
in a broad range of collision energies [49–52].

Event-by-event fluctuations of hadron yields, on the other
hand, are seldom analyzed in the hydro picture. The yields
of hadrons and resonances are usually sampled in each fluid
element from a Poisson distribution. Because the Poisson
distribution is additive, this means that the yields of all hadron
species in the full space follow the Poisson distribution as
well. This picture corresponds to the multiplicity distribu-
tion of an ideal Maxwell-Boltzmann hadron resonance gas
(HRG) in the GCE. Most hydro simulations use this type
of sampling [53–56]. More advanced procedures incorporate
exact conservation of the QCD conserved charges and/or
energy-momentum [57–61], however, these procedures are
still restricted to the equation of state of an ideal HRG. The
existing methods, therefore, are not suitable to analyze the
fluctuation signals of any effect that goes beyond the physics
of an ideal hadron gas.

Interacting HRG models, on the other hand, offer more
flexibility. For instance, an HRG model with excluded volume
corrections can describe the lattice QCD cumulants of net
baryon distribution in vicinity of the chemical freeze-out at
μB = 0 [62,63], which the ideal HRG model cannot. An-
other example is HRG model with van der Waals interactions,
which captures the physics of nuclear liquid-gas transition at
large μB [31,64]. It is the purpose of this work to formulate
a particlization routine appropriate to describe event-by-event
fluctuations encoded in the equation of state of such interact-
ing HRG models.

The paper is organized as follows. In Sec. II we introduce
a method for sampling an interacting HRG at particlization
stage of heavy-ion collisions that we call subensemble sam-
pler. Section III describes the technical details of sampling
an excluded volume HRG model that we study this work as
an example. In Sec. IV the subensemble sampler is applied
for the description of event-by-event fluctuations in heavy-ion
collisions at LHC energies. Discussion and summary in Sec. V
close the article.

II. SUBENSEMBLE SAMPLER

Consider the particlization stage of heavy-ion collisions at
the end of the ideal hydrodynamic evolution. This stage is
characterized by a hypersurface σ (x), where the space-time
coordinate x is taken in the Milne basis, x = (τ, rx, ry, ηs).
Here τ = √

t2 − r2
z and ηs = 1

2 ln t+rz

t−rz
are the longitudinal

proper time and space-time rapidity, respectively, rx, ry, and
rz are the Cartesian coordinates. The QCD matter is assumed
in local thermodynamic equilibrium at each point x on this
hypersurface.1 As the fluid is converted into hadrons at this
stage, the equation of state is described by hadron and res-
onance degrees of freedom, i.e., this has to be a variant of
the hadron resonance gas model matched to the actual QCD
equation of state at each point on the hypersurface.

1In a more general case the deviations from local equilibrium are
described using viscous corrections.

Let us denote ZHRG(T,V,μ) as the grand partition
function of a hadron resonance gas at temperature T , vol-
ume V , and chemical potentials μ = (μB, μQ, μS ), and
PHRG({Ni} f

i=1; T,V,μ) as the corresponding multiplicity dis-
tribution for all hadron species. Here f is the number of
different hadron species. In case of the commonly used ideal
HRG model PHRG has a form of a multi-Poisson distribution
where the Poisson means correspond to the mean multiplici-
ties of primordial hadrons and resonances. Most particlization
routines work with the multi-Poisson distribution of the ideal
HRG model. However, PHRG will differ from the multi-
Poisson distribution in a more general case of a nonideal
HRG. Thus, in the present work we generalize the particliza-
tion routine for arbitrary hadron multiplicity distributions.

A. Uniform fireball

Let us first consider a case of the grand-canonical en-
semble, where the global conservations laws are enforced on
average. Later we will relax this assumption to incorporate
exact global conservation.

If we further assume for the time being that the intensive
thermal parameters T , μB, μQ, and μS are the same across
the entire fireball, the partition function of the entire system
coincides with the grand partition function Z iHRG of a uniform
interacting HRG (iHRG):

Zgce,unif
tot = Z iHRG(T,V,μ). (1)

Here

Z iHRG(T,V,μ) =
∑

Q

eμ·Q Z iHRG(T,V, Q) (2)

with Z iHRG(T,V, Q) being the canonical partition function of
the HRG model with Q = (B, Q, S), and

V =
∫

σ

dσμ(x) uμ(x) (3)

is the effective system volume at particlization. Here the
integral is over the particlization hypersurface σ and the
space-time points without any matter are omitted from σ .

The single-particle momentum distribution function is
given by the Cooper-Frye formula [65]:

Ep
dNi

d3 p
=

∫
dσμ(x) pμ fi(x, p). (4)

Here fi(x, p) is the single-particle distribution function. In
the following we neglect quantum statistics and viscous cor-
rections but take into account the possibility of interactions
between hadrons. We assume that the distribution function
takes the following general form2

fi(x, p) = diλ
int
i (T,μ)

(2π )3
exp

[
μi − pμuμ(x)

T

]
. (5)

Here μi = biμB + qiμQ + siμS , uμ(x) is the flow velocity
profile, di is the degeneracy factor, and λint

i (T,μ) is a cor-
rection factor which describes deviations from the ideal gas

2Here we neglect the possible modifications of the momentum
distribution due to interactions.
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FIG. 1. A schematic view of the partition of the space-time rapid-
ity axis at particlization into N locally grand-canonical subvolumes,
each characterized by values of the local temperature Tj , the chemical
potential μ j , and the volume Vj .

distribution function induced by interactions. The explicit
form of this factor depends on the interacting HRG model un-
der consideration. The mean particle number 〈Ni〉 is obtained
by integrating Eq. (4) over the momenta:

〈Ni〉 = λint
i (T,μ)

dim2
i T

2π2
K2(mi/T ) eμi/T V, (6)

= λint
i (T,μ) 〈Ni〉id. (7)

The full space hadron multiplicity distribution is given by
the multiplicity distribution of the grand-canonical HRG:

Pgce,unif
({Ni} f

i=1

) = PiHRG({Ni} f
i=1; T,V,μ). (8)

B. Partition in rapidities

Let us now split the hypersurface into s slices along the
space-time rapidity axis (see Fig. 1).3 The boundaries of each
slices are ηmin

j and ηmax
j > ηmin

j . Furthermore, one has ηmin
j =

ηmax
j−1 for j > 1, and ηmin

1 = −ηmax and ηmax
s = ηmax, where

ηmax is the global maximum value of the space-time rapidity.
One could, for instance, identify ηmax with the beam rapidity.

The subvolume characterizing the physical size of slice j
is

Vj =
∫

x∈[ηmin
j ,ηmax

j ]
dσμ(x) uμ(x). (9)

The key assumption in the following is that each subvol-
ume Vj is sufficiently large for it to be in the thermodynamic
limit. Or in other words, Vj � ξ 3 for each i where ξ is any
relevant correlation length. If that is the case, one can neglect
the surface effects, namely the interactions between parti-
cles from different subvolumes. Mathematically speaking,
this implies a scaling Z iHRG(T,Vj, μ) ∼ eVj [or, equivalently,
ln Z iHRG(T,Vj, μ) ∼ Vj] for Vj � ξ 3. Also, the total partition
function factorizes into a product of partition functions for
each of the subvolumes:

Zgce,unif
tot ∼

s∏
j=1

Z iHRG(T,Vj,μ), Vj � ξ 3, (10)

ln Zgce,unif
tot �

s∑
j=1

lnZ iHRG(T,Vj,μ), Vj � ξ 3. (11)

3If the partition in ηs leads to several disconnected hypersurfaces
in a single slice, these should all be treated as separate subvolumes.
More generally, the partition should always be performed into con-
tiguous subvolumes.

The form of Eq. (11) allows us to relax the assumption of
the constancy of thermal parameters. Let us now assume that
the intensive thermal parameters depend on the space-time
rapidity ηs. This implies that each of the rapidity slices is char-
acterized by its own set of values of the thermal parameters,
i.e., in Eqs. (10) and (11) one has T → Ti and μ → μi:

Zgce
tot ∼

s∏
j=1

Z iHRG(Tj,Vj,μ j ), Vj � ξ 3, (12)

ln Zgce
tot �

s∑
j=1

lnZ iHRG(Tj,Vj,μ j ), Vj � ξ 3. (13)

Let us denote the hadron multiplicities in a subvolume j
by N̂j = {Nj,i} f

i=1. The multiplicity distribution N̂ j is given
by the corresponding multiplicity distribution of the HRG
model with thermal parameters of the given subvolume, i.e.,
Pgce(N̂j ) = PiHRG(N̂j ; Tj,Vj,μ j ). Due to the fact that we ne-
glected all correlations between particles from the different
subvolumes, the multiplicity distribution of N̂ j is independent
of the multiplicity distributions in all other subvolumes. The
probability distribution for multiplicities {N̂j}s

j=1 across all
subvolumes thus factorizes as follows:

Pgce({N̂j}s
j=1

) =
s∏

j=1

PiHRG(N̂j ; Tj,Vj,μ j ). (14)

The factorization in Eq. (14) will no longer hold once we
introduce exact global conservation of conserved charges.

The momentum distribution of hadron species i emitted
from a rapidity slice j reads

Ep
dNj,i

d3 p
=

∫
x∈[ηmin

j ,ηmax
j ]

dσμ(x) pμ f j,i(x, p) (15)

with

f j,i(x, p) = diλ
int
i (Tj,μ j )

(2π )3
exp

[
μ j,i − pμuμ(x)

T

]
. (16)

Here μ j,i = biμB, j + qiμQ, j + siμS, j .

C. Exact global conservation laws

Let us now incorporate the effect of exact global conserva-
tion of conserved charges. As we work in the thermodynamic
limit, Vj � ξ 3, the exact conservation will not affect the mean
multiplicities due to the thermodynamic equivalence of statis-
tical ensembles. However, as the thermodynamic equivalence
does not extend to fluctuations, the fluctuation observables
will be affected by the exact conservation, no matter how large
the system is.

The total values of the globally conserved baryon number,
electric charge, and strangeness coincide with the GCE mean
values due to the thermodynamic equivalence of ensembles:

Qtot =
s∑

k=1

〈Qk〉gce. (17)

To enforce the global conservation laws on the level of
multiplicity distributions one has to project out all microstates
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that violate the global conservations laws from the grand-
canonical partition function. This is achieved by introducing
a Kronecker delta into the grand partition function (12) of the
entire system:

Zce
tot ∼

s∏
j=1

∑
Q j

eμ j ·Q j Z iHRG(Tj,Vj, Q j )δ

(
Qtot −

s∑
k=1

Qk

)
.

(18)

The presence of the delta function in Eq. (18) breaks the
factorization of multiplicity distributions in different rapidity
slices. The joint multiplicity distribution reads

Pce({N̂j}s
j=1

) =
s∏

j=1

PiHRG(N̂j ; Tj,Vj,μ j )δ

(
Qtot −

s∑
i=k

Qk

)
,

(19)

Qk =
f∑

i=1

qi Nk,i. (20)

Here qi = (bi, qi, si ) is a vector of conserved charge values
carried by hadron species j.

D. Sampling the multiplicity distribution

Here we present a general method for sampling the joint
multiplicity distribution Eq. (19) of hadron numbers in all the
subsystems. The method is based on rejection sampling and
it assumes that it is known how to sample the multiplicity
distribution of the grand-canonical variant of the HRG model
used. To generate a configuration from the distribution (19)

(1) Sample N̂ j for j = 1 · · · s independently for each
subsystem from the grand-canonical variant of an in-
teracting HRG model characterizing each subsystem.

(2) Compute
∑s

k=1 Qk via Eq. (20). Accept the config-
uration if Qtot = ∑s

k=1 Qk , or go back to step (1)
otherwise.

The method is general in the sense that it does not assume
anything about the specific HRG model used. It will work
both for an ideal and interacting HRG. It should be noted,
however, that the algorithm may become inefficient if the
acceptance rate in step (2) becomes low. This can happen for
large systems and multiple conserved charges. More efficient
algorithms can be devised for specific versions of the HRG
model, see, e.g., a multistep method of Becattini and Ferroni
in Ref. [58]. We do employ this method in our Monte Carlo
simulations in Sec. IV.

E. Thermal smearing

The algorithm in the previous section allows to sample
hadron multiplicity distributions differentially in space-time
rapidity. The experiments, however, perform measurements
in momentum rather than coordinate space, therefore, a tran-
sition to momentum space is necessary. In some cases, such
as the Bjorken flow scenario at the highest collision energies,
it is possible to identify the space-time rapidity ηs with the
momentum rapidity Y , allowing to study rapidity-dependent

hadron distributions without the transition to the momentum
space. Even in this case, however, a degree of smearing be-
tween ηs and Y is present due to thermal motion. The boost
invariance breaks down at lower collision energies and the
problem of space-momentum correlations becomes even more
severe. For these reasons it is necessary to assign each of
the hadrons a three-momentum. Furthermore, if a subsequent
afterburner stage is to be included into the modeling, one has
to generate both the spatial and momentum coordinates for
each hadron.

The procedure to generate the momenta of all the hadrons
is fairly straightforward. Once the multiplicity distributions
{N̂j}s

j=1 for all the rapidity slices have been sampled, the
coordinates and momenta of all the hadrons can be gener-
ated through the standard Cooper-Frye momentum sampling,
applied independently to each hadron in each of the rapidity
slices. Several implementations for this task are available, see,
e.g., Refs. [53,54,66]. The sampled hadrons should then be
provided as input into a hadronic afterburner like UrQMD
[67,68] or SMASH [69], if one is used, or a cascade of
resonance decays performed to obtain the final state particles
that are measured experimentally. The comparison with data
can then be done in the standard way, by computing the
observables in a given acceptance as statistical averages.

III. EXCLUDED VOLUME MODEL FOR
NET BARYON FLUCTUATIONS

To illustrate the developed formalism we shall apply it to
net proton and net baryon fluctuations in heavy-ion collisions
at energies reachable at LHC and RHIC. In this section we
describe the motivation and the technical details behind an
excluded volume HRG model that we use for the analysis. A
reader interested only in the final heavy-ion results may skip
to Sec. IV where these are presented and discussed.

The typical chemical freeze-out temperatures, Tch ∼ 155–
160 MeV at the LHC [70–72] and Tch ∼ 160–165 MeV at
the top RHIC energies [73], are close to the pseudocritical
temperature of the QCD crossover transition determined by
lattice QCD, which is Tpc � 155–160 MeV [74,75] at μB =
0. Lattice QCD predicts that the high-order net baryon cu-
mulants, namely the kurtosis χB

4 /χB
2 and the hyperkurtosis

χB
6 /χB

2 ratios deviate significantly from the Skellam distribu-
tion baseline of the ideal HRG model, where these ratios are
equal to unity. The hyperkurtosis in particular turns negative
around Tpc which is thought to be related to the remnants
of the chiral criticality [5] at vanishing light quark masses.
It would certainly be of great interest to verify this theory
prediction of a negative χB

6 experimentally, which may serve
as an experimental evidence for the chiral crossover transition.
The measurement of higher-order net proton fluctuations is
planned in future runs at the LHC [76].

In our previous work [77] we studied this question an-
alytically, in the framework of the subensemble acceptance
method (SAM). There, the sensitivity of measurements to
the equation of state was predicted to be not overshadowed
if the measurements are performed in acceptance spanning
one to two units of rapidity. However, the entire argument in
Ref. [77] has been done in the configuration space, relying
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on perfect momentum-space correlations due to Bjorken flow.
Here we would like to determine how the results will be
distorted by the thermal smearing and resonance decays.

To apply the formalism of Sec. II we need to employ an
interacting HRG model that matches the lattice QCD equation
of state and be able to sample the grand-canonical multiplicity
distribution of such a model. Here we take an HRG model
with excluded volume interactions in the baryonic sector—the
EV-HRG model—which was formulated in Refs. [62,64] and
shown to describe well the lattice data on the diagonal net-
baryon susceptibilities at μB = 0 at temperatures up to and
even slightly above Tpc.

A. Single-component EV model

Before discussing the full model let us first consider a
single-component excluded volume model in order to intro-
duce the multiplicity sampling procedure. The grand partition
function at fixed temperature T , volume V , and chemical
potential μ reads

Zev(T,V, μ) =
∞∑

N=0

[(V − bN ) φ(T ) eμ/T ]
N

N!
θ (V − bN ).

(21)

Here

φ(T ) = d m2 T

2π2
K2(m/T ) (22)

is an ideal gas density of particle species with degeneracy d
and mass m at vanishing chemical potential. K2 is the modified
Bessel function of the second kind.

Equation (21) defines the multiplicity distribution of the
EV model, giving the following (unnormalized) probability
function:

P̃ev(N ; T,V, μ) = [(V − bN ) φ(T ) eμ/T ]
N

N!
θ (V − bN ).

(23)

In the thermodynamic limit, N → ∞, the particle density
nev(T, μ) = 〈N〉ev/V is determined by the maximum term in
Eq. (21). Maximizing P̃ev with respect to N gives a transcen-
dental equation defining nev(T, μ):

bnev

1 − bnev
e

bnev

1−bnev = bφ(T ) eμ/T . (24)

The solution to Eq. (24) is given in terms of the Lambert W
function (see Ref. [78] for details):

bnev

1 − bnev
= W

[
bφ(T ) eμ/T

]
, (25)

or

nev(T, μ) = W [bφ(T ) eμ/T ]

b{1 + W [bφ(T ) eμ/T ]} . (26)

The pressure reads

pev(T, μ) = T nev

1 − bnev
= T

b
W [bφ(T ) eμ/T ]. (27)

1. Dimensionless form

In the EV model it is possible to replace the three thermal
parameters (T,V, μ) and the excluded volume parameter b by
two dimensionless quantities, namely a reduced volume Ṽ ≡
V/b and a parameter κ ≡ bφ(T ) eμ/T that characterizes the
strength of repulsive interactions. The probability distribution
(23) then takes the form

P̃ev(N ; Ṽ , κ) = [(Ṽ − N ) κ]N

N!
θ (Ṽ − N ). (28)

The mean particle number reads

〈N〉ev = Ṽ
W (κ)

1 + W (κ)
. (29)

This reduced form implies that the multiplicity distribution
is fully specified if the values of parameters Ṽ and κ are
known.

2. Cumulants of particle number distribution

Cumulants of the particle number distribution in the EV
model can be evaluated from the probability distribution func-
tion (28). The nth moment reads

〈Nn〉 =
∑�Ṽ �

N=0 Nn P̃ev(N )∑�Ṽ �
N=0 P̃ev(N )

. (30)

The sums over N are finite due to the presence of the θ

function in Eq. (28). Thus, for finite Ṽ , they can be carried
out explicitly. The cumulants can be expressed in terms of the
moments as

κn[N] =
n∑

k=1

(−1)k−1 (k − 1)! Bn,k (〈N〉, . . . , 〈Nn−k+1〉).

(31)
Here Bn,k are the partial Bell polynomials.

Explicit expressions for κn[N] can be obtained in the
thermodynamic limit, Ṽ → ∞. This is achieved through the
cumulant generating function

GN (t ) ≡ ln〈etN 〉. (32)

The t-dependent mean value 〈N〉ev(t ) is obtained from
Eq. (29) by a substitution κ → κ et :

〈N (t )〉ev = Ṽ
W (κ et )

1 + W (κet )
. (33)

Equation (33) corresponds to the first cumulant. The higher-
order cumulants are obtained by differentiating 〈N (t )〉ev with
respect to t . The results up to fourth-order read

κev
1 [N] = Ṽ

W (κ)

1 + W (κ)
, (34)

κev
2 [N] = Ṽ

W (κ)

[1 + W (κ)]3
, (35)

κev
3 [N] = Ṽ

W (κ) [1 − 2W (κ)]

[1 + W (κ)]5
, (36)

κev
4 [N] = Ṽ

W (κ) {1 − 8W (κ) + 6 [W (κ)]2}
[1 + W (κ)]7

. (37)
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It follows that all cumulant ratios in the EV model depend
exclusively on the value of a single parameter κ in the ther-
modynamic limit.

B. Sampling the excluded volume model

To sample particle numbers from the probability distribu-
tion (23) of the EV model we will use a rejection sampling
technique. First we sample N from an auxiliary envelope
distribution P̃aux(N ; T,V, μ), which we take to be a Poisson
distribution centered around 〈N〉ev:

P̃aux(N ; T,V, μ) = (〈N〉ev)N

N!
θ (V − bN ). (38)

Here 〈N〉ev ≡ nev(T, μ)V with nev defined by Eq. (26). The
theta function ensures that the packing limit is not violated,
i.e., if for a value N sampled from the Poisson distribution
one has V − bN < 0, this value is rejected.

To correct for the difference between P̃aux(N ) and P̃ev(N )
we apply rejection sampling for each value of N sampled
from P̃aux. First, we define a weight factor w(N ) as the ratio
between the true and auxiliary multiplicity distributions:

w(N ) ≡ P̃ev(N )

P̃aux(N )
=

[
(1 − b n) φ(T ) eμ/T

nev

]N

. (39)

Here n ≡ N/V . The number N sampled from P̃aux(N ) shall
be accepted if η < w(N )/wmax where wmax is the maximum
possible value of w(N ) and η is a random number uniformly
distributed in an interval [0,1].

To determine wmax ≡ w(Nmax) let us rewrite Eq. (39) as

w(N ) =
[

1 − b n

1 − b nev
e

bnev

1−bnev

]N

, (40)

where we used Eq. (24). Nmax is determined from
∂ w(N )/∂N = 0. One obtains an equation

ln

[
1 − b nmax

1 − b nev
e

bnev

1−bnev

]
= bnmax

1 − bnmax
. (41)

The solution to the above equation is nmax = nev, i.e., the
weight is maximized at the mean value of N in the thermo-
dynamic limit.4 wmax reads

wmax = exp

[
bnev

1 − bnev
〈Nev〉

]
. (42)

In numerical calculations it is more convenient to work
directly with normalized weights:

w̃(N ) ≡ w(N )

wmax

=
[

1 − b n

1 − b nev

]N

exp

[
bnev

1 − bnev
(N − 〈Nev〉)

]
. (43)

4Note that ∂ w(N )/∂N = 0 may generally correspond either to
a minimum or a maximum of w(N ). The particular case can be
clarified by analyzing the second derivative of w(N ) with respect
to N . We checked that ∂ w(N )/∂N = 0 corresponds to the maximum
of w(N ) if b > 0. Thus, P̃aux(N ) is an envelope of P̃ev(N ).

κ /κ

κ /κ

κ /κ

FIG. 2. The behavior of cumulant ratios κ2/κ1 (black), κ4/κ2

(blue), and κ6/κ2 (red) in a single component grand-canonical ex-
cluded volume model as a function of the reduced volume Ṽ ≡ V/b.
Calculations are performed through a Monte Carlo sampling of 108

events (symbols) and analytically via Eqs. (30) and (31) (solid lines).
The horizontal dashed lines correspond to cumulant ratios in the
thermodynamic limit.

The reduced weight in terms dimensionless variables Ṽ and
κ reads

w̃(N ) =
[

Ṽ − N

Ṽ − 〈N〉ev

]N

exp

[
〈N〉ev N − 〈N〉ev

Ṽ − 〈N〉ev

]
, (44)

where 〈N〉ev is given by Eq. (29).
The sampling procedure described here is similar to the

Monte Carlo EV model analysis performed in Ref. [79],
with one distinction. In Ref. [79] an importance sampling
technique was employed, where each generated event was
accepted with a weight w̃(N ). Here, instead, all accepted
events have the same weight, but their sampling involves an
additional rejection step with respect to the weights w̃(N ).

1. Testing the sampling procedure

To test the sampling procedure described above we take
κ = 0.03 and perform Monte Carlo sampling for different
values of Ṽ . The choice κ = 0.03 is motivated by the fact that
this value is obtained in the EV-HRG model with baryonic ex-
cluded volume b = 1 fm3 at T = 160 MeV and μB = 0 [62],
therefore, the exercise approximately corresponds to sampling
the baryon multiplicity distribution in the vicinity of the QCD
chiral crossover transition where the EV-HRG model approxi-
mates well the QCD cumulants of the net baryon distribution.

We sample 108 numbers at each value of Ṽ and calculate
cumulants of the resulting particle number distribution up
to κ6. Figure 2 depicts the resulting Ṽ dependence of the
scaled variance κ2/κ1, kurtosis κ4/κ2, and hyperkurtosis κ6/κ2

(symbols). The solid lines correspond to an analytic cal-
culation of these ratios via a direct summation over all
probabilities [Eqs. (30) and (31)]. The Monte Carlo calcula-
tions agree with the analytic expectations at all studied values
of Ṽ , validating the sampling method.

Figure 2 allows also to establish when the condition V �
ξ 3 is reached. This is signalled by the approach of the
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cumulant ratios to their expected values in the thermodynamic
limit [Eqs. (34)–(37)], shown in Fig. 2 by the horizontal
dashed lines. Cumulant of a higher order generally requires
larger values of Ṽ to reach the thermodynamic limit, reflect-
ing the fact that higher cumulants are more sensitive to the
correlation length ξ . We observe that cumulant ratios up sixth
order are within few percentages or less of the thermodynamic
limit for Ṽ � 20. The cumulants then scale linearly with the
volume for larger values of Ṽ . The value Ṽ � 20 thus es-
tablishes a lower bound on the physical volume of a single
rapidity slice for the subensemble sampler in Sec. II to be
applicable.

C. EV-HRG model

Having established the baryon multiplicity sampling pro-
cedure in a single-component case, we now turn to the
full model. Quantitative applications to heavy-ion fluctuation
observables require an equation of state with hadron and res-
onance degrees of freedom matched to first-principle lattice
QCD equation of state. For the purposes of net baryon and
net proton fluctuations studied here we employ a variant of
an excluded volume hadron resonance gas (EV-HRG) model
introduced in Refs. [64,80]. The repulsive EV interactions are
introduced for all baryon-baryon and antibaryon-antibaryon
pairs in the EV-HRG model, with a common value b of the
EV parameter for all these pairs.

The pressure in the EV-HRG model is partitioned into a
sum of meson, baryon and antibaryon contributions

p = pM + pB + pB̄. (45)

Here

pM = T nid
M (T, μ), (46)

pB(B̄) = T nid
B(B̄)(T, μ) exp

[−b pB(B̄)

T

]
, (47)

where nid
M and nid

B(B̄) correspond to cumulative number den-
sities of mesons and (anti)baryons in the ideal HRG limit
(b → 0):

nid
M,B,B̄(T, μ) =

∑
i∈M,B,B̄

nid
i (T, μi ), (48)

nid
i (T, μi ) = dim2

i T

2π2
K2(mi/T ) eμi/T . (49)

Here μi = qi · μ is the chemical potential of particle
species i.

The expression (47) can be rewritten in terms of the
Lambert W function in close to analogy to Eq. (23) of the
single-component EV model:

pB(B̄) = T

b
W

[
b nid

B(B̄)(T, μ)
]
. (50)

The particle number densities of individual hadrons species
are calculated as derivatives of the pressure with respect to the
corresponding chemical potential nev

i = ∂ p/∂μi. The mean
multiplicities 〈Ni〉ev ≡ V nev

i in the grand-canonical EV-HRG

model read

〈Ni〉ev = V nid
i (T, μi ), i ∈ M, (51)

〈Ni〉ev = V

b

W [κB(B̄)]

1 + W [κB(B̄)]

nid
i (T, μi )

nid
B(B̄)

(T, μ)
,

= V nid
i (T, μi )

W [κB(B̄)]

κB(B̄){1 + W [κB(B̄)]}
, i ∈ B(B̄).

(52)

Here κB(B̄) ≡ b nid
B(B̄)(T, μ). The mean multiplicities of

mesons coincide with the ideal HRG model baseline. The
multiplicities of (anti)baryons, on the other hand, are sup-
pressed relative to ideal HRG due to EV interactions. This is
quantified by a factor in the r.h.s of Eq. (52). For κB � 0.03, a
value corresponding to T = 160 MeV and μ = 0 (see below),
the yields of baryons are suppressed by about 5%.

Equations (51) and (52) define the factor λint
i (T,μ) en-

tering the single-particle distribution functions fi(x, p) for
particle species i in the Cooper-Frye formula, Eqs. (4)
and (15). For mesons, i ∈ M, one has λiλ

int
i (T,μ) = 1. For

(anti)baryons

λint
i (T, μ) = W [κB(B̄)]

κB(B̄){1 + W [κB(B̄)]}
, i ∈ B(B̄). (53)

The EV-HRG model has been studied in Refs. [62,63] in
the context of lattice QCD results on diagonal net baryon
susceptibilities and Fourier coefficients of net baryon density
at imaginary chemical potentials. Reasonable description of
these observables at temperatures close to Tpc has been ob-
tained for b = 1 fm3, corresponding to κB � 0.03. We employ
this value of b in the present analysis. Figure 3 depicts the
temperature dependence of kurtosis κ4/κ2 and hyperkurtosis
κ6/κ2 of net baryon fluctuations at vanishing chemical poten-
tials. The calculations are compared with the lattice data of
Wuppertal-Budapest (blue bands) [81] and HotQCD (green
bands and symbols) [82] Collaborations. The model is in
quantitative agreement with the lattice data for these two
quantities up to T � 180 MeV. This implies that net-baryon
distribution of the EV-HRG model in this temperature range
closely resembles that of QCD, at least on the level of sixth
leading cumulants. And while this does not necessarily im-
ply that EV interactions is the correct physical mechanism
behind the behavior of net baryon susceptibilities, we view
the EV-HRG model to be an appropriate tool for the purpose
of analysis net baryon and net proton cumulants in heavy-ion
collisions.

The sampling procedure in Sec. III B can be generalized
for the EV-HRG model that has multiple hadron components.
We note that the system in the EV-HRG model is parti-
tioned into three independent subsystems, mesons, baryons,
and antibaryons, see Eq. (45). Therefore, the sampling of
the grand-canonical multiplicities proceeds independently for
each of the three subsystems. The multiplicities of the nonin-
teracting mesons are sampled from the Poisson distribution,
in the same manner as in the ideal HRG. The joint probability
distribution of numbers of all the (anti) baryon species, on the
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FIG. 3. Temperature dependence of net baryon susceptibility ratios (a) χB
4 /χB

2 and (b) χB
6 /χB

2 (right) evaluated at μB = 0 in the EV-
HRG model. The blue and green bands/symbols depicts lattice QCD results of Wuppertal-Budapest [81] and HotQCD [82] Collaborations,
respectively.

other hand, reads

P̃ev
B(B̄)({Ni}; T, μ) =

⎛
⎝ ∏

i∈B(B̄)

{[Ṽ − NB(B̄)] κi}Ni

Ni!

⎞
⎠θ [Ṽ − NB(B̄)],

(54)

where, as before, Ṽ = V/b and

NB(B̄) =
∑

i∈B(B̄)

Ni, (55)

κi = b nid
i (T, μi ). (56)

The auxiliary envelope distribution for the sampling is a
cut multi-Poisson distribution:

P̃aux
B(B̄)({Ni}; T, μ) =

⎡
⎣ ∏

i∈B(B̄)

(〈Ni〉ev)Ni

Ni!

⎤
⎦θ [Ṽ − NB(B̄)]. (57)

The theta function is introduced to avoid exceeding the pack-
ing limit.

Finally, the normalized weight for the rejection sampling
step reads

w̃B(B̄)({Ni}) =
∏

i∈B(B̄)

[
1 − b nB(B̄)

1 − b nev
B(B̄)

]Ni

× exp

[
b nev

B(B̄)

1 − b nev
B(B̄)

(
Ni − 〈

Nev
i

〉)]

=
[

1 − b nB(B̄)

1 − b nev
B(B̄)

]NB(B̄)

× exp

{
b nev

B(B̄)

1 − b nev
B(B̄)

[
NB(B̄) − 〈

Nev
B(B̄)

〉]}
. (58)

Here nB(B̄) ≡ NB(B̄)/V and nev
B(B̄) ≡ 〈NB(B̄)〉ev/V .

The algorithm for sampling the multiplicity distribution of
the EV-HRG model is the following:

(1) Sample the multiplicities {Ni} of all baryons from the
cut multi-Poisson distribution (57).

(2) Generate a random number η from the uniform distri-
bution on the unit interval (0, 1). If η < w̃B({Ni}), then
go to the next step. Otherwise, go back to step (1).

(3) Repeat steps 1 and 2 in the same fashion to sample the
multiplicities of antibaryons.

(4) Sample multiplicities of mesons from the multi-
Poisson distribution of the ideal HRG model.

The procedure for generating the multiplicity distribution
in the EV-HRG model in various rapidity slices that are
constrained by global conservation of conserved charges, as
described in Secs. II and III, is implemented in an extended
version of the Thermal-FIST package [83]. We use this pack-
age in all our calculations.

IV. FLUCTUATIONS IN HEAVY-ION COLLISIONS
AT LHC ENERGIES

A. The setup

We apply our formalism to study the rapidity acceptance
dependence of fluctuation observables in heavy-ion collisions.
To proceed we need to specify the partition of the space-time
rapidity ηs axis into fireballs as well as the ηs dependence of
thermal parameters and volume.

Let us consider Pb-Pb collisions at
√

sNN = 2.76
TeV. At midrapidity the chemical freeze-out is character-
ized by vanishing chemical potentials, temperature values
T � 155–160 MeV and freeze-out volume per rapidity unit
dV/dy ∼ 4000–5000 fm3 [70,84]. The simplest possibility
then is to assume boost invariance across the entire space-time
rapidity range. In this scenario, the mean total number of
particles of given kind in full space, say charged multiplicity
N4π

ch or number of (anti)baryons N4π
B(B̄)

, is then simply given by
multiplying the rapidity density at y = 0 by the total (space-
time) rapidity coverage −ηmax

s < ηs < ηmax
s , for example

N4π
ch = 2 ηmax

s dNch/dy|y=0 (59)

for the charged multiplicity.

044903-8



PARTICLIZATION OF AN INTERACTING HADRON … PHYSICAL REVIEW C 103, 044903 (2021)

The question is how to determine ηmax
s . One possibil-

ity is to equate this quantity to the beam rapidity ybeam ≈
ln[

√
sNN/(2mN )] � 8. However, such an estimate is too crude

and will overestimate the actual N4π
ch . The rapidity density

of charged multiplicity measured at
√

sNN = 2.76 TeV by
the ALICE Collaboration [85] is consistent with a Bjorken
plateau only in a rapidity range |y| � 2, whereas at higher
rapidities dNch/dy drops. The entire measured rapidity depen-
dence of dNch/dy is described well by Gaussian with a width
σ = 3.86 ± 0.05 [85]. We can use this fact to relate N4π

ch and
dNch/dy|y=0 in an empirical way:

N4π
ch =

∫
dy exp

(
− y2

2σ 2

)
dNch/dy|y=0

� (9.68 ± 0.13) dNch/dy|y=0. (60)

Here the error is due to the uncertainty in the value of σ .
Comparing Eq. (60) with (59) one obtains

ηmax
s = (4.84 ± 0.07) for

√
sNN = 2.76 TeV. (61)

We shall use a value ηmax
s = 4.8 for Pb-Pb collisions at√

sNN = 2.76 TeV in the following. We take T = 160 MeV
and μ = 0 for all rapidities. With this choice the model ac-
curately reproduces the rapidity densities of various hadron
species at |y| � 2, where the Bjorken plateau is observed in
the data [85], and provides an accurate estimate of the total
hadron multiplicities in full phase space. As we have assumed
boost invariance across the entire space-time rapidity range,
the model does not describe rapidity distributions at |y| � 2
and thus should not be applied to calculate observables at
large rapidities. However, given the fact that the model does
reproduce the 4π charged multiplicity, it is suitable to describe
the influence of global conservation laws on observables com-
puted around midrapidity, |y| � 2. In the following we focus
on these regions around midrapidity. In a more general study
the assumption of boost invariance can be relaxed to incor-
porate a more accurate description of the forward-backward
rapidity regions.

Our model yields a vanishing total net baryon number in
the full space. Essentially, this means that we neglect baryons
from the fragmentation regions. This is similar to a recent
study [86] performed in the framework of the ideal HRG
model. There it was estimated that the effect of fragmentation
baryons at the LHC does not exceed 6% for the sixth-order net
proton cumulant. We therefore expect the possible influence
of the fragmentation region baryons on our results to be small.

We partition the space-time rapidity axis uniformly into
slices of width �ηs = 0.1. With ηmax

s = 4.8 this implies a
total of 96 slices. The volume of a single slice in 5% most
central collisions is Vi = dV/dy �ηs ≈ 400 fm3. This value
is sufficiently large to ensure that the thermodynamic limit
is reached in each of the subvolumes and thus the require-
ments for the validity of the sampling procedure described in
Sec. II satisfied. This also implies that all intensive quantities,
such as cumulant ratios, are independent of the value of Vi

in this regime, i.e., Vi can be scaled up and down as long
as Vi � ξ 3. This feature is very useful for the Monte Carlo
sampling procedure. Indeed, as the statistical error in higher-
order cumulants increases with the volume, this error can

be minimized by choosing the volume as small as possible.
According to Fig. 2, a value Vi = 20 fm3 is sufficiently large
to capture all the relevant physics for cumulants up to sixth
order. For this reason we take Vi = 20 fm3 in our Monte Carlo
simulations and then linearly scale up the resulting cumulants
to match the volume Vi ≈ 400 fm3 in 0–5% Pb-Pb collisions.

We take the EV-HRG model with b = 1 fm3. As discussed
in Sec. III B, this model provides a reasonable description of
high-order net baryon susceptibilities from lattice QCD. The
grand-canonical distribution of hadron multiplicities can be
efficiently sampled following the rejection sampling based
algorithm described in Sec. III B. We take Ti = 160 MeV
and vanishing chemical potentials, μi = 0, uniformly for all
subvolumes along the rapidity axis.

For the net baryon cumulants we shall take into account
only the exact conservation of baryon number, which is ex-
actly vanishing, B = 0, in all events. In principle, one should
also take into account the exact conservation of electric charge
and strangeness. However, as discussed in Refs. [77,87], the
influence of these conserved charges on net baryon cumulants
is negligible at LHC energies. Their influence on net proton
cumulants is more sizable [87] but still expected to be sublead-
ing compared to baryon number conservation. Neglecting the
exact conservation of electric charge and strangeness allows
to significantly speed up the Monte Carlo event generation,
as this strongly reduces the rejection rate associated with
exact conservation of multiple conserved charges and allows
to gather enough statistics within a reasonable time period
to accurately evaluate cumulants up to sixth order. We do
analyze the influence of electric charge and strangeness con-
servations on second-order cumulants of various net-particle
distributions in Sec. IV F.

Once the joint hadron multiplicity distribution from all
the subvolumes has been sampled, we generate the hadron
momenta, independently for each hadron. To that end we em-
ploy the blast-wave model [88], which provides a reasonable
description of bulk particle’s pT spectra at LHC [89]. The
model corresponds to a particlization of a cylindrically shaped
fireball (

√
r2

x + r2
y � rmax), at a constant value of the longitu-

dinal proper time τ = τ0. The longitudinal collective motion
obeys the Bjorken scaling while the radial velocity scales with
the transverse radius, βr ∝ rn

⊥. This corresponds to a flow
profile uμ(x) = (cosh ρ cosh ηs, sinh ρ �e⊥, cosh ρ sinh ηs),
where ρ = tanh−1 βr , and βr = βsζ

n is the transverse flow
velocity profile. Here ζ ≡ r⊥/rmax is a normalized transverse
radius. The momentum distribution of hadron species with
mass m emerging from a jth space-time rapidity subvolume
is given by

dN

pT d pT dy
∝ mT

∫ ηmax
j

ηmin
j

dη cosh(y − η)
∫ 1

0
ζ dζ

× e− mT cosh ρ cosh(y−η)
T I0

(
pT sinh ρ

T

)
, (62)

Here mT =
√

p2
T + m2 is the transverse mass, y = 1

2
log ωp−pz

ωp+pz

is the longitudinal rapidity, and I0 is a modified Bessel
function.
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β

FIG. 4. The pT spectrum of protons in 5% most central Pb-Pb
collisions at

√
sNN = 2.76 TeV at midrapidity (|y| < 0.5), as mea-

sured by the ALICE Collaboration (red symbols) [89] and given
by the blast-wave model (T = 160 MeV, βs = 0.77, n = 0.36) with
(dashed line) or without (solid line) pT shape modification due to
resonance decays. The normalization factor of the blast-wave model
distribution has been fitted to the data.

The sampling of momenta from the distribution (62) is
readily implemented in the Thermal-FIST package that we
employ. We are only left with specifying the values of the
blast-wave model parameters βs and n. For this purpose we
make use of the result of a recent study [90], where the blast-
wave model was fitted to experimental data of the ALICE
Collaboration with account for modification of pT spectra
due to resonance decays. For most central Pb-Pb collisions
at

√
sNN = 2.76 TeV one has βs = 0.77 and n = 0.36, which

gives a reasonable description of bulk hadron pT spectra.5 One
should note that Ref. [90] has extracted a temperature value
of T = 149 MeV from the pT spectra fits rather rather than
the T = 160 MeV value that we use here for fluctuations.
However, the T = 160 MeV value shows a similarly good
agreement of the blast-wave model proton pT spectrum with
the data, as the one shown in Ref. [90] for T = 149 MeV.
Figure 4 compares the shape of the pT spectrum of protons as
observed in the data (red symbols) [89] and predicted by the
blast-wave model [Eq. (62)] with T = 160 MeV, βs = 0.77,
and n = 0.36. The dashed line in Fig. 4 corresponds to blast-
wave model spectrum which includes the modification of the
proton pT spectrum due to resonance decays. This effect,
computed here via Monte Carlo simulations of decays, only
slightly modifies the momentum distribution.

In the final step of the Monte Carlo event generation
procedure we perform all strong and electromagnetic decays
until only stable hadrons are left. We generate 1010 events in
total6 and study the rapidity dependence of various fluctuation
observables. As our analysis only concerns the baryons, to

5One notable exception here are low-pT pions that are significantly
underestimated by the blast-wave model. These pions have no influ-
ence on the net baryon fluctuations that we study here.

6Such a large number of events is needed to compute cumulants of
sixth order with a sufficiently small statistical uncertainty.

speed-up the Monte Carlo procedure we omit all the primor-
dial mesonic species [step (4) in the algorithm of Sec. III B],
as these do not affect the behavior of (anti)baryons in any way
within the EV-HRG model that we use.

B. Rapidity acceptance dependence of net baryon cumulants

We start with the rapidity acceptance dependence of net
baryon number cumulants. First, we look at the second cu-
mulant of net baryon fluctuations normalized by the Skellam
distribution baseline, κ2[B − B̄]/〈B + B̄〉. This type of ratio
has been extensively studied at LHC energies by the ALICE
Collaboration [15] for net protons. This ratio equals unity
for the case of a grand-canonical ideal HRG model at any
temperature and chemical potentials. The ratio, however, does
exhibit small deviations from unity in the EV-HRG model
that we use. For instance, at T = 160 MeV and μ = 0 the
grand-canonical value reads(

κ2[B − B̄]

〈B + B̄〉
)ev,gce

� 0.94. (63)

We note that it is currently challenging to directly com-
pute κ2[B − B̄]/〈B + B̄〉 in lattice QCD, as the denominator
〈B + B̄〉 is not a conserved quantity. Given the good agreement
of the EV-HRG model with lattice QCD for the higher-order
cumulants, however, we expect QCD to have a similar value
to the one given by Eq. (63). An interesting question now is to
determine if and how the grand-canonical value in Eq. (63) is
reflected in heavy-ion data.

The top panel of Fig. 5 depicts the rapidity acceptance
�Yacc dependence of κ2[B − B̄]/〈B + B̄〉 that results from
the Monte Carlo sampling within the subensemble sampler.
Here the acceptance is centered at midrapidity, i.e., particles
with rapidity |y| < �Yacc/2 are accepted. The red symbols
depict the full result which includes the distortion of hadron
momenta due to thermal smearing at particlization and sub-
sequent resonance decays. The black symbols, on the other
hand, correspond to the case when these effects are neglected,
i.e., the final kinematical rapidity is taken to be equal to
the space-time rapidity coordinate at particlization, y ≡ ηs.
Comparing the two allows to establish the effect of thermal
smearing and resonance decays. We observe that the Monte
Carlo results in the no-smearing case agree with the analytic
expectations of the SAM (black lines). The SAM baseline for
κ2[B − B̄]/〈B + B̄〉 is given by [77,87](

κ2[B − B̄]

〈B + B̄〉
)SAM

= (1 − α)

(
κ2[B − B̄]

〈B + B̄〉
)ev,gce

. (64)

Here α is a fraction of the total volume which corresponds to
the acceptance |ηS| < �Yacc/2:

α = �Yacc

2 ηmax
s

. (65)

The agreement of the Monte Carlo points with the SAM is
the expected result and serves as a validation of the sampling
procedure.

Notable differences between the red (momentum rapidity)
and black (space-time rapidity) points in Fig. 5 appear when
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FIG. 5. Rapidity acceptance dependence of cumulant ratios
κ2/κ

Skellam
2 (top), κ4/κ2 (middle), and κ6/κ2 (bottom) of net baryon

distribution in 0–5% central Pb-Pb collisions at the LHC in an ex-
cluded volume HRG model matched to lattice QCD. The symbols
depict the results of the Monte Carlo event generator, the full black
squares correspond to neglecting the momentum smearing, the open
red triangles include the thermal smearing at particlization, and the
full red circles incorporate the smearing due to both the thermal
motion and resonance decays. The dashed black lines correspond
to the predictions of the SAM framework [77]. The solid red lines
correspond to adding a Gaussian rapidity smearing on top of the
SAM. The dashed blue lines correspond to the binomial acceptance,
which describes the effects of baryon number conservation in the
ideal HRG model limit.

the acceptance is sufficiently small, �Yacc � 1. This is a con-
sequence of the dilution of momentum-space correlations due
to thermal motion. For a very small acceptance, �Yacc � 1,
the results converge to the baseline given by the binomial dis-
tribution, (κ2[B − B̄]/〈B + B̄〉)binom = 1 − α, shown in Fig. 5
by the dashed blue line. The binomial distribution corresponds
to an independent acceptance for all (anti)particles and de-
scribes the cumulants of net baryon distribution in the ideal
HRG model, where the global baryon conservation constitutes
the only source of correlations between baryons [37,40,91].

The additional momentum smearing due to decays of
baryonic resonances is virtually negligible, being completely

overshadowed by the thermal smearing. This is true not only
for the variance, but also for the kurtosis and hyperkurtosis,
as seen by comparing the red points (thermal smearing +
resonance decays) with the open red triangles (thermal smear-
ing only) in all three panels of Fig. 5. To understand this
behavior one can consider, e.g., decays � → Nπ . In such a
decay the released momentum is split evenly between the two
decay products in the resonance center-of-mass frame. This
leads to a larger velocity (rapidity) smearing of the lighter
decay product—the pion—whereas the velocity (rapidity) of
nucleon is less affected. We conclude that the smearing of
baryon fluctuations due to resonance decays can be safely
neglected. Note that this statement does not extend to (net-
)particle fluctuations involving lighter hadrons such as pions
or kaons. There the effect of resonance decays should be
carefully taken into account.

In the Appendix we develop a simplified analytic model
to take into account the momentum smearing in net baryon
cumulants. There we assume that the shift in kinematical
rapidity relative to the space-time rapidity is described for
all baryon species by a Gaussian smearing. The red lines
in Fig. 5 exhibit the results of such a simplified calculation.
For a Gaussian width of σy = 0.3 the simplified calculations
agree very well with the full Monte Carlo results. Therefore,
this model can be used to predict the rapidity dependence
of pT -integrated net baryon cumulants without invoking the
time-consuming Monte Carlo event generator.

Net-baryon fluctuations in a sufficiently large rapidity ac-
ceptance �Yacc � 1 are accurately described by the analytical
SAM baseline (64). This conclusion is important, because
the SAM makes the connection between the grand-canonical
susceptibilities and cumulants constrained by global conser-
vation laws without any additional assumptions regarding the
equation of state. In our previous work [77] where the SAM
is introduced, we argued that the SAM is reliable for rapidity
acceptances �Yacc � 1, where the distortion due to thermal
smearing is expected to be subleading. The results obtained
in the present work using the EV-HRG model explicitly con-
firm this. The grand-canonical (κ2[B − B̄]/〈B + B̄〉)ev,gce can
therefore be extracted from data by fitting the α dependence of
net-baryon fluctuations measured in sufficiently large rapidity
acceptance via Eq. (64).

We turn now to the kurtosis of net baryon fluctuations,
κ4[B − B̄]/κ2[B − B̄]. In the GCE this quantity coincides with
the corresponding ratio χB

4 /χB
2 of the susceptibilities. The

EV-HRG model at LHC energies yields the following value

χB
4

χB
2

� 0.66. (66)

This is in agreement with lattice QCD continuum estimates
of HotQCD (χB

4 /χB
2 = 0.65 ± 0.03) [82] and Wuppertal-

Budapest (χB
4 /χB

2 = 0.69 ± 0.03) [81] Collaborations, taken
at the same temperature T = 160 MeV.

The rapidity acceptance dependence of κ4[B − B̄]/κ2[B −
B̄] is depicted in the middle panel of Fig. 5. The qualitative
behavior of the kurtosis largely mirrors that of the variance. In
the absence of momentum smearing, the Monte Carlo results
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agree with the analytical SAM baseline of Ref. [77]:(
κ4[B − B̄]

κ2[B − B̄]

)SAM

= (1 − 3αβ )
χB

4

χB
2

− 3αβ

(
χB

3

χB
2

)2

. (67)

Here β ≡ 1 − α. At LHC energies one has χB
3 /χB

2 = 0, thus,
the second term in Eq. (67) does not contribute.

With thermal smearing and resonance decays included, the
kurtosis deviates from the SAM baseline for �Yacc � 1 and for
�Yacc � 1 tends to the binomial distribution baseline, which
at the LHC energies reads (κ4[B − B̄]/κ2[B − B̄])binom

LHC = 1 −
3αβ. For �Yacc � 1 the full result is described well by the
SAM (67).

Finally, we look at the behavior of the hyperkurtosis,
κ6[B − B̄]/κ2[B − B̄]. Lattice QCD predicts a sign change of
the grand-canonical hyperkurtosis at μ = 0 in the vicinity
of the pseudocritical temperature (Fig. 3). This qualitative
feature has been argued to be a signature of the QCD
chiral crossover transition [39]. If this interpretation is cor-
rect, a corresponding measurement of κ6[B − B̄]/κ2[B − B̄]
in heavy-ion collisions at the LHC can potentially serve as the
first experimental signature of that transition. The EV-HRG
model reproduces the available lattice QCD data for χB

6 /χB
2

and gives the following value at T = 160 MeV:

χB
6

χB
2

� −0.27. (68)

This agrees within errors with the continuum estimate of the
Wuppertal-Budapest Collaboration, χB

6 /χB
2 = −0.26 ± 0.17

[81] as well as with Nτ = 8 results of the HotQCD Collabora-
tion [82] shown in Fig. 3. It should be noted that the EV-HRG
model itself does not incorporate the chiral crossover transi-
tion but predicts the negative hyperkurtosis at T � 160 MeV
as a consequence of repulsive interactions between baryons.
Here we do not discuss whether the negative χB

6 /χB
2 seen in

lattice QCD is indeed a signature of the chiral crossover but
rather use the EV-HRG model to establish how a negative
χB

6 /χB
2 would be reflected in heavy-ion observables.

The lower panel of Fig. 5 shows the rapidity acceptance
dependence of the hyperkurtosis. In the absence of momentum
smearing, the Monte Carlo results are described by the analyt-
ical SAM baseline, which for LHC energies, i.e., for μ = 0,
reads [77](

κ6[B − B̄]

κ2[B − B̄]

)SAM

LHC

= [1 − 5αβ(1 − αβ )]
χB

6

χB
2

− 10α(1 − 2α)2β

(
χB

4

χB
2

)2

. (69)

The hyperkurtosis, in the absence of momentum smearing,
is sensitive to the grand-canonical value (68) in acceptances
up to �Yacc � 1.5. For larger acceptances baryon conserva-
tion dominates, making it difficult to disentangle between
the EV-HRG model and the binomial baseline, given by
(κ6[B − B̄]/κ2[B − B̄])binom

LHC = 1 − 15αβ(1 − 3αβ ). This was
already pointed out in our previous study [77]. The thermal
smearing distorts the signal at small acceptances, �Yacc � 0.5,
where the hyperkurtosis is closer to the binomial distribution
baseline than it is to the SAM. At 0.5 � �Yacc � 1.5, on the

other hand, κ6[B − B̄]/κ2[B − B̄] is overshadowed neither by
the thermal smearing nor by the baryon number conservation.
We, therefore, argue that a measurement of a hyperkurtosis,
which is negative over this entire range may be interpreted
as a signal of the chiral crossover, provided that the negative
grand-canonical hyperkurtosis seen in lattice QCD is indeed a
consequence of chiral criticality.7

C. Net baryon vs net proton fluctuations

Our discussion has so far been restricted to cumulants
of net baryon distribution. However, experiments typically
cannot measure all baryons, in particular the measurement of
neutrons is extremely challenging. For this reason one usually
uses net protons as a proxy for net baryons. It is natural to
expect net protons to carry at least some information about
net baryon fluctuations. In fact, as shown by Kitazawa and
Asakawa [92,93], under the assumption of isospin randomiza-
tion at late stages of heavy-ion collisions, one can reconstruct
the cumulants of net baryon distribution from the measured
factorial moments of proton and antiproton distributions.

However, these considerations do not imply that ratios
of proton cumulants can be used directly in place of the
corresponding ratios of baryon cumulants, something which
has nevertheless been employed in a number of works in the
literature [28,29,94]. The proton and baryon cumulant ratios
do coincide in the free hadron gas limit, where they both
trivially reduce to the Skellam baseline, but this does not hold
in general case.

Large differences between net proton and net baryon cu-
mulant ratios were reported earlier in Ref. [31] for the van der
Waals HRG model in the GCE. Here we study these differ-
ences in the framework of the EV-HRG model constrained to
lattice data and include effects of global baryon conservation
and momentum smearing.

Figure 6 depicts the rapidity acceptance dependence of
net baryon (black squares) and net proton (blue symbols)
cumulant ratios κ2/κ

Skellam
2 , κ4/κ2, and κ6/κ2 calculated us-

ing Monte Carlo sampling within the SAM. The calculations
incorporate the thermal smearing and resonance decays. The
results reveal large differences between net proton and net
baryon cumulants ratios. Net proton cumulant ratios are con-
siderably closer to the Skellam baseline of unity. This can
be understood in the following way. By taking only a subset
of baryons—the protons—one dilutes the total signal due to
baryon correlations. This leads to a smaller deviation of cumu-
lants from Poisson statistics—the limiting case of vanishing
correlations.

The large difference between net proton and net baryon cu-
mulants clearly indicates that direct comparison between the
two is not justified. It is interesting that net proton cumulant
ratios cross the grand-canonical value of the corresponding

7We note that at �Yacc � 1 baryon number conservation leads to
a negative hyperkurtosis also in the case of the ideal HRG, see
the dashed blue line in Fig. 5. Thus it is essential to establish a
negative κ6[B − B̄]/κ2[B − B̄] at �Yacc � 1 for the chiral crossover
interpretation to be valid.
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FIG. 6. Rapidity acceptance dependence of net baryon (red
squares) and net proton (blue circles) cumulant ratios κ2/κ

Skellam
2

(top), κ4/κ2 (middle), and κ6/κ2 (bottom) in 0–5% central Pb-Pb
collisions at the LHC in an excluded volume HRG model matched
to lattice QCD. The open blue diamonds correspond to net proton
cumulants evaluated from net baryon cumulants using a binomial-
like method of Kitazawa and Asakawa [92,93]. The solid lines
correspond to the analytical predictions of the SAM framework with
(solid) and without (dashed) Gaussian rapidity smearing.

net baryon ratios in the grand-canonical limit (horizonal lines
in Fig. 6) for a sufficiently large acceptance. This, for instance,
takes place at �Yacc � 1.4 for κ2/κ

Skellam
2 while for κ4/κ2

the crossing is at �Yacc � 2.5. The crossings take place due
to suppression of net proton cumulants from baryon number
conservation. This accidental coincidence between net proton
and grand-canonical net baryon cumulant ratios may be of
relevance for the recent analysis of STAR data by the HotQCD
Collaboration in Ref. [94]. There, the net baryon lattice QCD
susceptibilities were directly compared to the measured net
proton cumulants and an agreement, within large error bars,
was reported.

We explore also, if the method of Kitazawa and Asakawa
[92,93] can be used to relate net proton and net baryon cu-
mulants in the EV-HRG model. To do that, we calculate net
proton cumulants in an alternative way, namely by registering
each baryon within the rapidity acceptance with a Bernoulli

probability q = 〈p〉/〈B〉. For an EV-HRG model at T = 160
MeV that we use one has q � 0.33. The net proton cumulants
computed in this way are shown in Fig. 6 by open blue
diamonds. They agree with the actual net proton cumulant
ratios shown by blue circles. This confirms that cumulants of
net baryon distribution can be recovered from factorial mo-
ments of net proton distribution via a binomial unfolding with
probability q. The value of q in experiment can be calculated
from the measured mean multiplicities of the various baryon
species. The neutron yield, which is not measured, can be
reconstructed from proton yields using the isospin symmetry.

D. Comparison to ALICE data

The results we have discussed so far correspond to fluctu-
ations of baryons and protons in acceptances integrated over
all transverse momenta. This has not yet been achieved ex-
perimentally. Instead, the ALICE Collaboration has published
measurements of the variance of net-proton distribution in
Pb-Pb collisions at

√
sNN = 2.76 TeV in an acceptance in a

three-momentum range 0.6 < p < 1.5 GeV/c and longitudi-
nal pseudorapidity |η| < 0.8 [15].

The top panel of Fig. 7 depicts the comparison between
the data (symbols) and the EV-HRG model with exact baryon
number conservation (black line) for the ratio κ2/〈p + p̄〉
of net protons. The data are described by the model within
errors. However, the data are described similarly well by
the ideal HRG model, where this ratio is given by the bi-
nomial baseline, (κ2/〈p + p̄〉)bino = 1 − αp [40]. Here αp =
〈Np〉acc/〈NB〉4π where 〈Np〉acc is the mean number of protons
in the acceptance and 〈NB〉4π is the mean number of baryons
in the full space. This implies that measurements in these
acceptance windows are not very sensitive to the equation of
state. The deviations from the Skellam baseline are dominated
by the global baryon conservation. The effect of repulsive
interactions in the EV-HRG model is to slightly reduce the
ratio further away from the Skellam limit. This is in contrast to
the baryon and proton cumulants in pT -integrated acceptances
that we have shown in Figs. 5 and 6, where the effect of inter-
actions for one unit of rapidity is already sizable. The reason
is due to cuts in the transverse momentum coverage. While
the presence of radial flow does induce a level of correlation
between the transverse momenta and coordinates of particles,
this correlation is not as strong as in the longitudinal direction
given by the Bjorken flow. The pT cuts, therefore, lead to
a Poissonization of the grand-canonical fluctuations, making
it challenging to extract the grand-canonical susceptibilities.
This underlines the importance of expanding the acceptance
for fluctuation measurements in the future runs at the LHC in
order for them to be sensitive to the equation of state.

We also explore the effect of exact conservation of electric
charge and strangeness of net proton fluctuations. As shown in
Ref. [87], a moderate effect of these extra conservation laws
on net proton cumulants is expected. To evaluate the effect,
we sample the grand-canonical multiplicities of all hadrons
and resonances, including mesons, in the same fashion as
before, but reject, in addition to baryon number conservation,
all events which do not satisfy the exact conservation of global
electric charge, Q = 0, and strangeness, S = 0. These two

044903-13



VOLODYMYR VOVCHENKO AND VOLKER KOCH PHYSICAL REVIEW C 103, 044903 (2021)

κ
〈

〉
κ

κ

± ×

×

κ
κ

Δη

FIG. 7. Pseudorapidity acceptance dependence of net proton cu-
mulant ratios κ2/κ

Skellam
2 (top), κ4/κ2 (middle), and κ6/κ2 (bottom)

in 0–5% central Pb-Pb collisions at the LHC. Calculations in an
EV-HRG model with global baryon conservation are depicted by the
solid lines while the dashed blue lines correspond to the binomial
acceptance baseline. The red lines correspond to including the effect
of volume fluctuations into the EV-HRG model with global baryon
conservation, the bands correspond to the uncertainty in the variance
of volume fluctuations (see text). The dash-dotted magenta lines cor-
respond to EV-HRG with additional conservation of electric charge
and strangeness. The symbols depict the experimental data of the
ALICE Collaboration [15].

additional rejection steps slow down the event generator pro-
cedure considerably. Therefore, we generate a smaller number
of events in the BQS-canonical ensemble, equaling to about
3 × 107 events. For this reason we restrict the analysis within
the BQS-canonical ensemble to the second- and fourth-order
cumulants. The κ2/〈p + p̄〉 ratio from the BQS-canonical EV-
HRG model is depicted by a dash-dotted magenta line in the
top panel of Fig. 7. The exact electric charge and strangeness
conservation leads to a further reduction of κ2/〈p + p̄〉 by
a moderate amount. This effect is consistent with results in
reported in Ref. [87] using the SAM for multiple conserved
charges.

The pseudorapidity dependencies of kurtosis and hyper-
kurtosis of net proton fluctuations within the same ALICE
acceptance are depicted in the middle and bottom panels of

Fig. 7, respectively. Similar to the variance, these show a
suppression with respect to the Skellam baseline, mainly due
to the baryon number conservation. It is notable that the hy-
perkurtosis never reaches a negative value within the ALICE
acceptance. Again, this is a reflection of a limited pT coverage
of the acceptance as well as of measuring only a subset of all
baryons.

E. Volume fluctuations

We would like to discuss another issue which may af-
fect fluctuation measurements in heavy-ion collisions, namely
fluctuations of the system volume. The volume fluctuations
do not affect the behavior of the mean quantities, but they do
modify the fluctuations. This effect has been studied in several
works in the literature [38–40]. Here we follow Ref. [39] to
estimate the effect of volume fluctuation on our results.

We assume that, in the absence of volume fluctuations, all
the cumulants obey linear scaling with the volume, κn ∝ V .
Let us denote by κ̃n the cumulants which include the effect of
volume fluctuations. They read [39]

κ̃n =
n∑

l=1

Vl Bn,l (κ1/V, κ2/V, . . . , κn−l+1/V ). (70)

Here Vl is the lth cumulant of the system volume distribution
and Bn,l are Bell polynomials.8

Let us now take into account that all odd-order cumulants
of net-particle distribution at the LHC vanish, κ2n−1 = 0. In
this case the odd-order order cumulants with volume fluctua-
tions do vanish as well, κ̃2n−1 = 0. The even order cumulants
up to n = 6 read

κ̃2 = κ2, (71)

κ̃4 = κ4 + 3κ2
2 ṽ2, (72)

κ̃6 = κ6 + 15κ2 κ4 ṽ2 + 15κ3
2 ṽ3. (73)

Here ṽi = Vi/〈V 〉i are the scaled volume cumulants. The vari-
ance of a net-particle distribution at the LHC is not influenced
by volume fluctuations, as pointed out before in Refs. [39,40].
However, the volume fluctuations do influence the higher-
order cumulants.

The cumulant ratios read

κ̃2

〈p + p̄〉 = κ2

〈p + p̄〉 , (74)

κ̃4

κ̃2
= κ4

κ2
+ 3κ2 ṽ2, (75)

κ̃6

κ̃2
= κ6

κ2
+ 15κ4 ṽ2 + 15κ2

2 ṽ3. (76)

A nonzero variance of the volume distribution influences the
kurtosis and hyperkurtosis. In addition, the hyperkurtosis may
be affected by a nonzero skewness ṽ3 of the volume distribu-
tion.

8Note that our definition of the cumulants κn differs from the one
in Ref. [39] by being multiplied by a volume factor V .
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The effect of volume fluctuations is determined by the
values of the reduced cumulants ṽi. These are mainly deter-
mined by the collision geometry and the centrality selection.
To illustrate the effect of volume fluctuations we will con-
sider net-proton fluctuations in the ALICE acceptance that we
discussed in the previous subsection. For simplicity, we shall
neglect the skewness of volume fluctuations, ṽ3 = 0, which
could have an influence on the hyperkurtosis but not on the
kurtosis. To fix ṽ2 we make use of the ALICE measurement of
the variance of proton number distribution [15]. As the mean
number of protons is nonvanishing even at the LHC energies,
the variance κ̃

p
2 of proton number distribution is affected by

the volume fluctuations, in contrast to net-proton variance
which is unaffected. Following Eq. (70) the proton number
scaled variance reads

κ̃
p
2

〈p〉 = κ
p
2

〈p〉 + 〈p〉 ṽ2. (77)

The ALICE Collaboration has measured κ̃
p
2 /〈p〉 = 1.07 ±

0.06 and 〈p〉 = 18.4 ± 0.4 in an acceptance 0.6 < p <

1.5 GeV/c and |η| < 0.8. The EV-HRG model without vol-
ume fluctuations that we use, on the other hand, predicts
κ

p
2 /〈p〉 = 0.98. Assuming that the difference between the

model and the measurements can be attributed to volume
fluctuations, one can use Eq. (77) to extract the value of ṽ2

which describes the data:

ṽ2 = 0.005 ± 0.003. (78)

The pseudorapidity dependence of the kurtosis and hyper-
kurtosis of the net proton distribution in 0–5% central Pb-Pb
collisions at the LHC in the EV-HRG model with baryon
number conservation and volume fluctuations in depicted in
Fig. 7 by the red lines with bands. The bands correspond to the
error propagation of the variance of the volume distribution
in Eq. (78). The volume fluctuations have a large effect on
higher-order fluctuations, both the kurtosis and hyperkurto-
sis exceed unity in all acceptances considered, in contrast
to calculations without volume fluctuations where they lie
below unity. It seems, therefore, that a significant reduction of
volume fluctuations will be required in the future experimental
measurements to be able to reliably control this effect. As an
illustration, the dotted red lines in Fig. 7 depict the cumulant
ratios when the variance of volume fluctuation is decreased
by an order of magnitude, i.e., ṽ2 = 5 × 10−4. In this case,
the results are considerably closer to the cumulant ratios with-
out volume fluctuations, and it should be possible to reliably
extract these ratios by fitting the data via Eqs. (74)–(76). This
type of analysis has been performed by the HADES Collabo-
ration in Ref. [22], where the next-to-leading-order volume
dependence of the cumalants was additionally considered.
The centrality bin width correction [95] is another possible
remedy, which has been applied for net proton measurements
by the STAR Collaboration [11].

F. Net-�, net-kaon, and net-pion fluctuations

Net proton cumulants are not the only fluctuation measure-
ment performed by the ALICE Collaboration. Fluctuations of
net numbers of �’s, kaons and pions are also being performed,

and preliminary results were reported in Refs. [96–98]. Here
we would like to discuss the behavior of these quantities
within our approach. The main purpose here is to illustrate
how the different effects like resonance decays and exact
conservation of various conserved charges influence the ob-
servables semiquantitatively. Where available, we do confront
our predictions with the preliminary data as well. Our analysis
here is restricted to the second cumulants normalized by the
Skellam baselines, which at the LHC energies are free of the
influence of volume fluctuations.

To perform the analysis we sample the full EV-HRG
model, including both the (anti)baryons and mesons, using the
same parameters as above. The cumulants are calculated after
all strong and electromagnetic decays, in the ALICE accep-
tance, 0.6 < p < 1.5 GeV/c and a pseudorapidity acceptance
|η| < 0.5 �ηacc, where �ηacc is varied up to a value of three
units. We consider three configurations for the treatment of
global conservation laws: (i) global conservation laws are
neglected (grand-canonical); (ii) exact conservation of baryon
number is enforced (B-canonical); (iii) exact conservation of
baryon number, electric charge, and strangeness is enforced
(BQS-canonical). Comparing the results between the three
cases allows us to distinguish the roles of different conser-
vation laws.

Let us start with the net-� fluctuations. The results are
depicted in the top panel of Fig. 8. The κ2[� − �̄]/〈� + �̄〉
ratio shows a mild suppression relative to unity as the pseudo-
rapidity acceptance �ηacc is increased. A small suppression
exists already in the grand-canonical limit (dashed blue line),
which is attributed to the presence of repulsive baryon inter-
actions modeled by the excluded volume. A larger effect is
observed when the global baryon number conservation is in-
corporated (solid black line). An additional suppression from
exact strangeness conservation on top of baryon conservation
is also observed (magenta line), although this effect is rather
small. This smallness is attributed to the fact that at LHC
energies the dominant part of all strange quarks is carried by
kaons, with �’s forming only a small fraction of all strange
particles.

The net kaon fluctuations are interesting because they
are affected by a decay φ → K+K− of the φ meson. Our
calculations, as well as experimental data [99], suggest that
about 6% of final state K+ and K− mesons come from this
decay channel. The decay generates a correlation between
the numbers of K+ and K−. If both decay products fall into
a measurement acceptance, then this gives no contribution
to the variance κ2[K+ − K−] as the net number of kaons
is unchanged. However, the total number of charged kaons,
〈K+ + K−〉, increases by two. For this reason one can expect
the ratio κ2[K+ − K−]/〈K+ + K−〉 to be below unity due to
resonance decays alone, even in the absence of global con-
servation laws. This is indeed observed in our Monte Carlo
simulations depicted in the middle panel of Fig. 8: The ratio
κ2[K+ − K−]/〈K+ + K−〉 is visibly below unity in the grand-
canonical calculation which we attribute to the φ → K+K−

decay. The net kaon fluctuations are virtually unaffected by
the exact baryon number conservation (black line). This is
expected because mesons do not interact with the baryons in
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FIG. 8. Pseudorapidity acceptance dependence of variance-over-
Skellam ratios for net � (top), net kaon (middle), and net pion
(bottom) numbers in 0–5% central Pb-Pb collisions at the LHC. The
lines depict calculations within the subensemble sampling of the
EV-HRG model, without global conservation laws (dashed blue
lines), with global baryon conservation (solid black lines), and
with global conservation of baryon number, electric charge, and
strangeness (dash-dotted magenta lines). The bands represent the
preliminary data of the ALICE Collaboration [96,98].

the EV-HRG model, hence the baryon number conservation
does not have an influence on meson distribution, except for
small feeddown contributions from baryonic resonances.

The kaons are affected by strangeness and, to a lesser
extent, electric charge conservation. The BQS-canonical cal-
culation is depicted by the dash-dotted magenta line, showing
a further suppression of the variance-over-Skellam ratio when
strangeness and electric charge conservation is implemented.
The resulting �ηacc dependence of net kaon fluctuations
agrees with the preliminary data of the ALICE Collaboration
[96,98], shown in Fig. 8 by the gray bands, although the
experimental uncertainties are quite large.

The behavior of net-pion fluctuations (the bottom panel in
Fig. 8) is qualitatively similar to net kaons. The pion fluctu-
ations are affected more strongly by resonance decays than
kaons. Several resonances give a notable contribution. The
most notable ones are decays ρ0 → π+π−, ω → π+π−π0,
η → π+π−π0, all leading to a sizable suppression of the

ratio κ2[π+ − π−]/〈π+ + π−〉 relative to unity already in the
grand-canonical limit (the blue line). Baryon conservation has
a negligible influence on net pion fluctuations, similar to net
kaon fluctuations. Net pion fluctuations, however, are notably
suppressed by the exact conservation of electric charge, see
the dash-dotted magenta line. This should not come as a
big surprise, as the charged pions constitute the majority of
all charged particles at the LHC, hence the sizable effect of
charge conservation on pion fluctuations.

The preliminary data of the ALICE Collaboration on net
pion variance-over-Skellam ratio lies somewhat below our
BQS-canonical model prediction, the deviations are roughly
on a two-sigma level. It should be cautioned that our pre-
dictions for net pion fluctuations should be regarded as
semiquantitative, for several reasons. For instance, we use
the blast-wave model parametrization from Ref. [90] which
underestimates significantly the number of soft pions, pT �
500 MeV/c. Also, we neglect the effect of Bose statistics,
which is nonnegligible for the primordial pions at the chem-
ical freeze-out. We also neglect additional effect due to
rescattering in the hadronic phase. It is known, however, that
the number of ρ0 resonances reconstructed in central Pb-Pb
experimentally is about 20–25% lower than predicted by the
HRG model at the chemical freeze-out [100,101]. This in-
dicates additional dynamics in the hadronic phase involving
ρ0 resonances and their decay products, which may change
the effect of ρ0 decays on κ2[π+ − π−]/〈π+ + π−〉. It is
true, however, that both the Bose statistics as well hadronic
rescattering are expected to worsen the agreement with the
data rather than improve it. The Bose statistics leads to an
enhancement of pion fluctuations [102], whereas the hadronic
rescattering will dilute the correlations between pions from
resonance decays in given acceptance, both effects thus lead-
ing to an increase of κ2[π+ − π−]/〈π+ + π−〉. Nevertheless,
our analysis is sufficient to indicate that net pion fluctuations
are affected sizably by both the resonance decays as well as
exact global conservation of electric charge. Both these mech-
anisms should thus be taken into account in interpretations of
experimental data.

G. Dynamical net-charge fluctuations

We would like to conclude our analysis of experimental
data with the variance of the net-charge distribution. The
corresponding measurements have been performed by the
ALICE Collaboration and published in Ref. [103]. There, the
measurements were focused on a quantity ν(+,−,dyn), defined
as

ν(+,−,dyn) = 〈N+(N+ − 1)〉
〈N+〉2

+ 〈N−(N− − 1)〉
〈N−〉2

− 2
〈N+N−〉

〈N+〉〈N−〉 . (79)

Here N+(−) is the number of positively (negatively) charged
particles in the final state for a given acceptance. In the limit
〈N+〉 = 〈N−〉, which to a large precision holds at the LHC,
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ν(+,−,dyn) simplifies to

ν(+,−,dyn) = 4
〈δQ2〉
〈Nch〉2

− 4

〈Nch〉 , 〈N+〉 = 〈N−〉. (80)

Here Q ≡ N+ − N− is the net charge and 〈Nch〉 ≡ 〈N+〉 +
〈N−〉 is the charged multiplicity. ν(+,−,dyn) is thus closely
related to the so-called D measure:

D = 〈Nch〉ν(+,−,dyn) + 4

= 4
〈δQ2〉
〈Nch〉 . (81)

The D measure was introduced in Ref. [3] as a probe that
discriminates the charge-carrier degrees of freedom in the
medium. In the quark-gluon plasma (QGP), where the quarks
carry fractional charges, one has D ∼ 1–1.5 [3] in thermal
equilibrium. For a gas of hadrons and resonances, on the other
hand, the baseline value is considerably larger, D ∼ 3–4 [35].

A direct comparison of the baselines with experimental
measurements of net-charge fluctuations is complicated by
several additional effects, including volume fluctuations, exact
charge conservation, and acceptance cuts. The situation at the
LHC is favorable with regard to the volume fluctuations: as
the D measure (81) is defined by the variance of net charge
fluctuations, it is unaffected by volume fluctuations due to an
equal average numbers of positively and negatively charged
particles, as discussed in Sec. IV E. To account for the exact
charge conservation, different corrections to Eq. (81) have
been suggested in the literature. Reference [104] advocated
an additive correction:

D′ = D + 4 αch, αch = 〈Nch〉〈
N4π

ch

〉 . (82)

Here 〈N4π
ch 〉 is the mean charged multiplicity in the full space.

Reference [35], on the other hand, suggested a multiplicative
correction:

D′′ = D

Cμ (1 − αch )
. (83)

Here 1 − αch is the charge conservation correction factor
while Cμ = 〈N+〉2/〈N−〉2 (= 1 at the LHC) additionally cor-
rects for the effects of finite net charge.

The ALICE measurements in Ref. [103] include charge
conservation corrections and incorporate the differences be-
tween D′ and D′′ as a contribution to the systematic error. Here
we analyze the behavior of the D measure within our Monte
Carlo sampling of the EV-HRG model at LHC conditions.

Figure 9 depicts the pseudorapidity acceptance dependence
of the D measure of the dynamical net-charge fluctuations
in 0–5% central Pb-Pb collisions at the LHC calculated in
the EV-HRG within various statistical ensembles. A trans-
verse momentum cut 0.2 < pT < 5.0 GeV/c is applied. This
is the same pT cut as in the ALICE measurement. The
dashed blue line depicts the behavior of the D measure in
the grand-canonical version of the EV-HRG model. As the
grand-canonical calculation neglects the exact charge conser-
vation, we calculate the D measure in this case directly using
Eq. (81), without applying any of the charge conservation
corrections. The resulting D measure is a decreasing function

Δη

FIG. 9. Pseudorapidity acceptance dependence of the D measure
of the dynamical net-charge fluctuations in 0–5% central Pb-Pb col-
lisions at the LHC. The dashed blue line depicts calculations within
the Monte Carlo sampling of the EV-HRG model without global
conservation laws (the grand-canonical ensemble). The black lines
correspond to EV-HRG model calculations with exact conservation
of baryon number, electric charge, and strangeness, where the D
measure is corrected for exact charge conservation in an additive
(dash-dotted, following Ref. [104]) or multiplicative (solid, follow-
ing Ref. [35]) ways. The symbols depict the experimental data of the
ALICE Collaboration [103] corrected for charge conservation.

of �ηacc that saturates at a value of around D ∼ 2.8 in the limit
�ηacc → ∞. The suppression of D relative to the Poisson
statistics baseline of D = 4 is attributed to decays of neutral
resonances into a pair of charged particles, like ρ0 → π+π−.
Here the discussion of resonance decays affecting net-pion
fluctuations in Sec. IV F straightforwardly applies. We note
that the influence of the excluded-volume effects in the baryon
sector is virtually negligible, as the majority of charged par-
ticles at the LHC are mesons. Therefore, the results shown in
Fig. 9 for the EV-HRG also apply to the standard ideal HRG
model.

Calculations incorporating exact conservation of various
conserved charges reveal that net-charge fluctuations are af-
fected by exact conservation of the electric charge, while
the additional influence of baryon number and strangeness
conservation is observed to be negligible. This observation is
consistent with the results of Ref. [87], where it was shown
that the variance of a conserved charge distribution is only
affected by exact conservation of that charge, but not of any
other conserved charge. The black lines in Fig. 9 show the re-
sults of the BQS-canonical EV-HRG model calculation where
we apply the charge conservation correction in accordance
with Eq. (82) [D′, dash-dotted line] or (83) [D′′, solid line].
This is the same procedure that was performed by the ALICE
Collaboration in Ref. [103] to correct for global charge con-
servation. If these corrections were exact, one would expect
to reproduce the grand-canonical result shown by the dashed
blue line. Instead, we observe that both the D′ and D′′ appear
to overestimate the charge conservation correction, especially
D′ at large �ηacc. The D′′ correction does perform better than
D′ and stays close to the grand-canonical result for �ηacc � 4.
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The experimental data of the ALICE Collaboration are
shown by the symbols with error bars in Fig. 9. The data
points lie considerably lower than model predictions. In par-
ticular, the slope of the curve at small �ηacc is much steeper
in the data than in the model. This result is in line with
the tensions of the HRG model with the preliminary data
for net-pion fluctuations discussed in Sec. IV F. The visibly
stronger effect obtained for the D measure can be attributed
to a significantly larger transverse momentum coverage for
the net-charge fluctuations relative to those for net pions. As
discussed in Sec. IV F, the effects that we neglected in our
calculations, such as the Bose-Einstein statistics for pions or
hadronic rescattering, would be expected to enhance the D
measure and thus even further worsen the disagreement with
the data. At this point we do not see a conceivable mechanism
to explain the ALICE data within a purely hadronic descrip-
tion. The measurement, therefore, points to the suppression of
net-charge fluctuations in central heavy-ion collisions at the
LHC relative to the hadronic scenario. One tantalizing possi-
bility here is the QGP formation, where a suppression of the
D measure is expected [3]. We hope that future measurements
and analyses will shed more light on whether the observation
of a suppressed D measure constitutes a QGP signature.

V. DISCUSSION AND SUMMARY

In this work we introduced a subensemble sampler—a
novel particlization routine for heavy-ion collisions which
preserves the thermal fluctuations and correlations in an
interacting hadron resonance gas on a local level. It also
takes into account global conservation laws on an event-by-
event basis. The key of the procedure lies in partitioning
the particlization hypersurface into locally grand-canonical
subvolumes. In each subvolume, the hadron numbers are sam-
pled from the grand-canonical multiplicity distribution, while
their momenta follow from a thermal distribution imposed
on a collective velocity profile. The global conservation laws
are enforced via a subsequent rejection sampling step. The
procedure allows to evaluate event-by-event fluctuations of
various particle numbers in a momentum space acceptance, as
appropriate for experiment, within a fluid dynamical picture
of a local thermodynamic equilibrium at particlization.

The partition into subvolumes is not unique, the choice can
be optimized for the applications on hand. Certain restrictions
do apply. On the one hand, each subvolume Vi has to be suf-
ficiently large such that the cumulants of hadron multiplicity
distribution are in the regime where they scale linearly with
Vi. On the other hand, the partition should be sufficiently fine
grained, both relative to the acceptance where measurements
are performed as well as to capture the coordinate space inho-
mogeneities in the distribution of thermal parameters. In the
present work we considered the partition along the space-time
rapidity axis (Fig. 1), which is appropriate to study the rapidity
dependence of fluctuations integrated over the transverse mo-
menta. Other partition schemes can be considered in a more
general case.

As a first application of our new particlization routine,
we studied event-by-event fluctuations in Pb-Pb collisions at
the LHC, with a focus on the rapidity acceptance dependence

of cumulants of the net baryon distribution. To that end, we
utilized a hadron resonance gas model with excluded vol-
ume interactions in the baryonic sector, which matches well
the available lattice QCD data on cumulants of net baryon
distribution at a particlization temperature of T = 160 MeV.
We used a blast-wave flow velocity profile and neglected any
dynamics in the hadronic phase except for strong and electro-
magnetic decays of resonances.

Our Monte Carlo simulations reveal how baryon inter-
actions, global baryon conservation, thermal smearing, and
resonance decays affect the behavior of cumulants in a mo-
mentum acceptance around midrapidity, as is appropriate for
experimental measurements. In the absence of thermal smear-
ing and resonance decays, net baryon cumulants follow the
analytic baseline established within a SAM in Ref. [77]. One
can therefore use the SAM to correct experimental measure-
ments for the effects of global baryon conservation. However,
for this to work the experimental acceptance needs to have
a sufficiently large rapidity coverage, roughly �Yacc � 1, and
capture the entire transverse momentum range. The reason for
that is the thermal smearing, which dilutes the signal for small
acceptance and causes the cumulant ratios to approach the
binomial distribution baseline (see the red points in Fig. 5).
We do observe that this effect is well described at LHC by a
simplified analytic model which assumes the thermal smear-
ing in kinematical rapidity to be Gaussian (see Appendix).
The resulting expressions are somewhat more involved than
the simple formulas of the pure SAM framework, but it is
possible they can be used to subtract the effect of thermal
smearing from the data in addition to global conservation. The
effect of an additional rapidity smearing of baryons due to
decays of resonances is found to be negligible.

We find large differences between experimentally measur-
able net proton cumulants and the theoretically calculated
net baryon cumulants. The net proton cumulants generally
lie much closer to the Skellam baseline than the net baryon
cumulants. This is a reflection of the fact that protons form a
subset of all baryons. Measuring a subset, as opposed to the
full set, dilutes the strength of correlations, which is reflected
by the difference between net proton and net baryon cumu-
lants in Fig. 6. We do observe that net proton and net baryon
cumulants are indeed related to each other by a binomial
(un)folding, as advocated by Kitazawa and Asakawa [92,93].
This result, however, does not by any means imply that one
can directly compare net proton cumulant ratios with the net
baryon ones. Such a comparison is not only unjustified, but
is likely to lead to misleading interpretations and conclusions.
For meaningful comparisons one has to reconstruct the net
baryon cumulants from net proton ones through the binomial
unfolding procedure described in Refs. [92,93]. This has not
yet been achieved in the present experiments although the
procedure is doable and, in fact, straightforward, requiring the
use of the factorial moments of (anti)proton distributions that
are readily accessible in experiment. On the other hand, the
factorial moments of baryons and antibaryons are not directly
accessible in lattice QCD, therefore, applying the method of
Kitazawa and Asakawa to construct net proton cumulants
from the lattice results on net baryon cumulants requires
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model assumptions. This observation underscores the im-
portance of measuring the factorial moments of (anti)proton
distribution in addition to net proton cumulants, as only in
this case one can reconstruct the net baryon cumulants and
make the comparisons with various theoretical predictions
meaningful.

We confronted the predictions of our event generator with
the available experimental data of the ALICE Collaboration
on the variance of net proton, net pion, net kaon, and net
charge distributions. We find good agreement of our event
generator with the net-proton data. However, the data are
described similarly well by the binomial distribution base-
line that corresponds to an ideal hadron gas model with
baryon number conservation. In other words, the currently
available measurements, performed in a three-momentum and
pseudorapidity acceptance, do not allow to distinguish the
subtle effects associated with the QCD chiral crossover tran-
sition. The variances of net-pion and net-kaon fluctuations are
not sensitive to the interactions in the baryonic sector and
global baryon conservation, but they are affected by reso-
nance decays and exact conservation of electric charge and
strangeness. Our model describes the preliminary ALICE data
on net kaon fluctuations within error bars. The model also
describes the trends seen in the pseudorapidity acceptance of
net-pion fluctuations although the preliminary data are over-
estimated roughly on a two-sigma level.

The HRG model we employ does not describe the ALICE
data on net-charge fluctuations. The experimental data on
the D measure is significantly below the model predictions
(Fig. 9). It seems doubtful that the measurement can be de-
scribed within a purely hadronic description. A suppression of
the D measure, on the other hand, is expected in quark-gluon
plasma phase [3]. In fact, this has been the primary motivation
for the corresponding measurements. It remains to be seen
whether the ALICE measurement is indeed a signal of QGP.

Measurements of higher-order cumulant ratios are affected
by volume fluctuations. We estimated the effect for 0–5%
central 2.76 TeV Pb-Pb collisions based on the available data
of the ALICE Collaboration on the first two proton number
cumulants and the volume fluctuations formalism of Ref. [39].
We found the effect to be quite large for the kurtosis and
hyperkurtosis of net proton fluctuations in the ALICE accep-
tance, changing the qualitative nature of the pseudorapidity
window dependence of these observables. Therefore, remov-
ing the contribution of volume fluctuations will be essential
for interpreting the experimental data, and our results indicate
that the centrality selection should be optimized in the future
LHC measurements of the higher-order net proton fluctua-
tions.

We did not incorporate the effect of exact energy-
momentum conservation. This effect is important for fluctu-
ations of quantities that are strongly correlated to the total
energy in the system [105], such as the total charged multiplic-
ity [36]. We do not expect it to have a sizable influence on the
quantities studied in the present work that are all net numbers.
This is because the net numbers at the LHC are centered
around zero and do not correlate with the total energy in the
system. In general, incorporating energy-momentum conser-
vation requires the use of the microcanonical ensemble. It is a

nontrivial task to sample this ensemble, which does not appear
to be feasible to do using the rejection sampling algorithm
that we employ here. Incorporating the energy-momentum
conservation is likely to involve a more generalized approach.
For instance this has been achieved for the case of ideal HRG
using Metropolis sampling in Ref. [60]. We plan to address
this question in the case of interacting HRG in future works.

The formalism developed in this work has many future
applications. One natural extension are the studies of fluctua-
tions at lower collision energies probed by beam energy scan
programmes at RHIC and SPS facilities [10]. There, the ef-
fects of finite (baryo)chemical potentials, nonuniform rapidity
distribution of thermal parameters, and absence of the longitu-
dinal boost invariance will play an additional role [106,107].
One can also consider a particlization hypersurface and flow
velocity profile emerging from a full (3 + 1)-dimensional
hydro simulation as opposed to the blast-wave model that
we used here, which may additionally include viscous cor-
rections. It would also be of interest to analyze the effect
of rescaterrings in the hadronic phase which would enhance
the effect of momentum smearing and thus dilute the signal
[43]. This can be achieved by coupling the particlization to a
subsequent hadronic afterburner such as UrQMD or SMASH.
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APPENDIX: AN ANALYTIC MODEL TO ACCOUNT FOR
MOMENTUM SMEARING IN NET BARYON CUMULANTS

Here we present a simplified analytic model to account
for the effect of momentum smearing on the cumulants of
net baryon distribution measured in a pT -integrated accep-
tance. The formalism here is applicable for interacting HRG
models where correlations between numbers of baryons and
antibaryons are absent in the GCE. This is the case, for in-
stance, for the EV-HRG model that we use in this study.

The model consists of two steps: (i) the effect of momen-
tum smearing is evaluated in the GCE, i.e., neglecting the
exact baryon number conservation; (ii) the SAM framework
is applied to the result obtained in the first step to incorporate
the exact baryon number conservation.

Let us start with the first part of the procedure. Con-
sider all baryons and antibaryons at particlization that have
a longitudinal space-time coordinate ηs within a narrow range
[η0

s − �ηs/2, η0
s + �ηs/2]. We assume that the physical vol-

ume corresponding to this range is large enough to capture
all the physics associated with the correlation length, i.e.,
dV/dηs �ηs � ξ 3. This means that, in the absence of exact
baryon number conservation, the distribution of (net) baryons
from this space-time rapidity range is independent from all
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other particles outside this range and is determined by the
grand-canonical susceptibilities, namely

κB,gce
n

(
η0

s

) = dV/dηs �ηs T 3 χB
n ,

∣∣ηs − η0
s

∣∣ < �ηs. (A1)

In the absence of correlations between numbers of baryons
and antibaryons in the GCE that we assumed, the susceptibil-
ities and cumulants are partitioned as follows:

χB
n = χB+

n + (−1)n χB−
n , (A2)

κB,gce
n

(
η0

s

) = κB+,gce
n

(
η0

s

) + (−1)n κB−,gce
n

(
η0

s

)
. (A3)

Here χB+
n and χB−

n are the grand-canonical susceptibilities of
baryon and antibaryon number, respectively.

Consider now the baryons which end up in a longitudinal
rapidity acceptance |Y | < �Yacc/2. Since the contributions
from the different �ηs slices are independent, the resulting
cumulants of the accepted particles are a sum of the contri-
butions from the individual slices. Therefore, let us calculate
the contribution from a single slice |ηs − η0

s | < �ηs. Let us
denote by p(η0

s ,�Yacc) the probability that a baryon with a
space-time rapidity η0

s at particlization ends up in this accep-
tance. This probability is determined by thermal smearing.
Assuming that all (anti)baryons at a given space-time rapidity
η0

s end up in the kinematical acceptance independently from
each other and approximating the probability p(η0

s ,�Yacc) to
be uniform in a range �ηs, the cumulants of distribution of
(anti)baryons in acceptance |Y | < �Yacc/2 that came from
the space-time rapidity range |ηs − η0

s | < �ηs are obtained
by applying a binomial filter with the Bernoulli probability
p(η0

s ,�Yacc) to the space-time rapidity cumulants κ
B±,gce
l (η0

s ):

κB±,gce
n

(
�Yacc, η

0
s

) = kbino
n

[
p
(
η0

s ,�Yacc
)
,
{
κ

B±,gce
l

(
η0

s

)}]
.

(A4)

Here kbino
n [p, {κl}] is a nth-order cumulant of particle num-

ber distribution obtained by applying the binomial filter with
probability p to a distribution described by a set of cumulants
{κl} with l = 1 · · · n. The cumulant generating function Ck (t )
for the cumulants kn after the binomial filter can be expressed
in terms of the corresponding cumulant generating function
Cκ (t ) for cumulants κ before the filter [91,108]:

Ckbino (t ) = Cκ [ln(1 − p + et p)]. (A5)

The explicit result for the first four cumulants reads

kbino
1 = pκ1, (A6)

kbino
2 = p2 κ2 + p(1 − p) κ1, (A7)

kbino
3 = p3 κ3 + p(1 − p)[3pκ2 + (1 − 2p) κ1], (A8)

kbino
4 = p4 κ4 + p(1 − p){6p2 κ3 + p(7 − 11p) κ2

+ [1 − 6p(1 − p)] κ1}. (A9)

As already mentioned, the full result for cumulants
κ

B±,gce
n (�Yacc) of all (anti)baryons in the rapidity acceptance

is obtained by summing the contributions from all ηs slices.

One obtains

κB±,gce
n (�Yacc) =

∫
dηs kbino

n

[
p(ηs,�Yacc),

dκ
B±,gce
n

dηs

]
,

(A10)

where

dκ
B±,gce
n

dηs
= dV

dηs
T 3 χB±

l . (A11)

Note that dV/dηs, T , and χB±
l can all depend on ηs in general

case. The net baryon cumulant is then simply

κB,gce
n (�Yacc) = κB+,gce

n (�Yacc) + (−1)n κB−,gce
n (�Yacc).

(A12)

How do we evaluate the binomial probability p(ηs,�Yacc)?
We shall assume that the kinematical rapidity of each baryon
is smeared around the space-time rapidity coordinate ηs in
accordance with a Gaussian distribution with a width σy. The
width can be estimated by analyzing the flow velocity and
temperature profiles at the particlization hypersurface. For the
blast-wave model that we use at the LHC one has σy ≈ 0.3.
The binomial probability reads

p(ηs,�Yacc) =
∫ �Yacc/2

−�Yacc/2
dY

exp
[− (Y −ηs )2

2σ 2
y

]
√

2πσy

. (A13)

Equations (A12) and (A13) allow to calculate the influence
of thermal smearing in the GCE. In order to incorporate the
exact conservation of baryon number we apply the SAM
framework of Ref. [77]. The canonical ensemble cumulants
that include both the effect of thermal smearing and global
baryon conservation read

κB,ce
1 = κ

B,gce
1 , (A14)

κB,ce
2 = β κ

B,gce
2 , (A15)

κB,ce
3 = β (1 − 2α)κB,gce

3 , (A16)

κB,ce
4 = β(1 − 3αβ ) κ

B,gce
4 − 3αβ2

(
κ

B,gce
3

)2

κ
B,gce
2

, (A17)

κB,ce
5 = β (1 − 2α)

{
[1 − 2βα]κB,gce

5 − 10αβ
κ

B,gce
3 κ

B,gce
4

κ
B,gce
2

}
,

(A18)

κB,ce
6 = β[1 − 5αβ(1 − αβ )]κB,gce

6 + 5 α β2

×
{

9αβ

(
κ

B,gce
3

)2
κ

B,gce
4(

κ
B,gce
2

)2 − 3αβ

(
κ

B,gce
3

)4

(
κ

B,gce
2

)3

− 2(1 − 2α)2

(
κ

B,gce
4

)2

κ
B,gce
2

− 3[1 − 3βα]
κ

B,gce
3 κ

B,gce
5

κ
B,gce
2

}
.

(A19)

Here α is the fraction of the total volume which is covered
by the acceptance and β ≡ 1 − α. For the LHC ener-
gies that we study in this paper α = �Yacc/(2ηmax

s ). It is
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also implied κ
B,ce(gce)
n ≡ κ

B,ce(gce)
n (�Yacc) in the equations

above.
We would like to emphasize again that the thermal smear-

ing model here is based on the assumption that numbers
of baryons and antibaryons are uncorrelated in the grand-
canonical limit. While this is the case for the EV-HRG model
that we use in the present paper, this is not necessarily the
case for other theories. Modifying the smearing model to
the general case should be possible, and will require the use

of binomial filtering applied to factorial moments of baryon
and antibaryon distributions, as discussed in Ref. [109] in
the context of acceptance corrections to net baryon and net
proton cumulants. It should also be possible to generalize the
model to pT -differential measurements and smearing based on
thermal distributions superimposed on a realistic flow velocity
profile and a three-dimensional particlization hypersurface, as
appropriate for the differential momentum distribution mea-
surements in experiment.
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