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Laser-nucleus interactions in the sudden regime
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The interaction between medium-weight nuclei and a strong zeptosecond laser pulse of MeV photons is
investigated theoretically. Multiple absorption of photons competes with nuclear equilibration. We investigate
the sudden regime. Here the rate of photon absorption is so strong that there is no time for the nucleus to fully
equilibrate after each photon absorption process. We follow the temporal evolution of the system in terms of a
set of rate equations. These account for dipole absorption and induced dipole emission, equilibration (modeled
in terms of particle-hole states coupled by the residual nuclear interaction), and neutron decay (populating a
chain of proton-rich nuclei). Our results are compared with earlier work addressing the adiabatic regime where
equilibration is instantaneous. We predict the degree of excitation and the range of nuclei reached by neutron
evaporation. These findings are relevant for planning future experiments.
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I. INTRODUCTION

Exciting experimental developments at petawatt laser fa-
cilities [1] combined with experimental, computational, and
theoretical advances in the production of high-energy laser
pulses [2–9] give rise to the hope that intense pulses with
photon energy h̄ω0 in the few MeV range and with a typical
energy spread σ in the 10-keV range will become available in
the near future. Efforts in that direction are presently under-
taken at the Nuclear Pillar of the Extreme Light Infrastructure
under construction in Romania [10], and in the development
of Gamma Factories at the Large Hadron Collider of CERN
[11]. How would such a pulse interact with a nucleus?

For a photon with an energy in the MeV range, the product
of photon wave number k and nuclear radius R obeys kR � 1.
Therefore, we consider only dipole processes (even though
higher multipolarities might be important for some nuclei
at small excitation energies [12]). Single dipole absorption
excites the nuclear giant dipole resonance (GDR). In a shell-
model picture the GDR is a superposition of particle-hole
excitations out of the ground state and is not an eigenstate
of the nuclear Hamiltonian Ĥ . These particle-hole excitations
actually do not all have the same energy. That leads to a
spreading of the GDR often referred to as Landau damping,
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a one-body effect [13,14]. The residual two-body interaction
mixes the particle-hole excitations with each other and with
other shell-model configurations and, thus, spreads the GDR
over the eigenstates of Ĥ , leading to a Lorentzian distribution
of the dipole strength with width �↓. For low-lying modes
with excitation energies of up to 10 or 20 MeV the “spreading
width” �↓ of the nuclear GDR [15,16] has values around
5 MeV [17]. In a time-dependent picture the spreading of the
GDR over the eigenstates of Ĥ can be viewed as statistical
equilibration [18] with characteristic time scale τeq = h̄/�↓.
A similar order of magnitude for the generic time required to
reach thermal equilibrium τeq � 10−22 s can be achieved by
considering the traversal time for medium-weight nuclei [19].
We note, however, that the definition of an equilibration time
becomes more complex once very high excitation energies
are achieved, for instance, in hot GDRs [20], accompanied
by strong neutron evaporation rates and corresponding short
lifetimes [19].

The strength of dipole absorption is measured by the rate
Rdip (or, equivalently, by the effective dipole width �̃dip =
h̄Rdip or the time scale τdip = h̄/�̃dip for dipole absorption).
The standard nuclear dipole width has values in the keV range.
However, for a laser pulse containing N � 1 photons within
few tens of zs (1 zs= 10−21 s), that width is boosted by the
factor N even when the pulse is not coherent [21], and the
effective dipole width can easily take values in the MeV range.
That makes multiple dipole absorption of photons out of the
same laser pulse a likely process.

For the following qualitative comparison of �̃dip and �↓ we
consider both quantities as independent of excitation energy.
That picture is only an approximation. Experimental evidence
for hot GDR quenching [20] was interpreted as an increase
of �↓ with temperature, reaching up to 20 MeV (50 MeV)
at 160 MeV (220 MeV) excitation energy, respectively [22].
Such an increase of �↓ with temperature would lead to a
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weak decrease of the effective dipole absorption width �̃dip

as indicated by the expression for Rdip [21]. However, for the
mere purpose of defining laser-nucleus interaction regimes, it
is sufficient to compare the two widths at small excitation en-
ergies, where they can reach comparable values depending on
the laser gamma-ray parameters. Once �̃dip ≈ �↓, we expect
that multiple dipole absorption leads to multiple GDR-type
excitations, each accompanied by internal nuclear equilibra-
tion. The ratio of the two competing widths �↓ and �̃dip then
defines three regimes: (i) the perturbative regime �̃dip � �↓,
(ii) the quasiadiabatic regime �̃dip � �↓, and (iii) the sudden
regime �̃dip � �↓. The perturbative regime (i) was studied
in Refs. [23,24]. The term “quasiadiabatic” in (ii) refers to
the assumption that after each photon absorption process, the
nucleus reaches equilibrium prior to the absorption of the
next photon. Theoretical and numerical studies [25,26] in that
regime are based on a statistical approach and make use of rate
equations. These have shown that multiple photon absorption
produces compound nuclei in the so-far unexplored regime
of several hundred MeV excitation energy and low angular
momentum. The nuclei so produced undergo sequential neu-
tron decay with intermittent further dipole absorption and
equilibration, leading to a chain of highly excited proton-rich
nuclei.

In this paper we address the sudden regime (iii). To model a
situation where after each photoabsorption process there is not
sufficient time for equilibration, we need a detailed descrip-
tion of the states of the compound nucleus. We use the shell
model, assuming that the ground state of the target nucleus
has a doubly closed shell. The last occupied single-particle
state defines the Fermi surface. Excited states are multiple
particle-hole excitations out of the ground state (referred to
as mp-mh states with integer m).

For that picture, a manageable theoretical framework
cannot be established without statistical assumptions. Particle-
hole states are grouped into classes defined by particle-hole
number m and total energy, as discussed in more detail in
Sec. II A. It is assumed that within each class of mp-mh states,
the residual interaction is so strong that equilibration is much
faster than the equilibration between different classes, and can
be considered to be quasi-instantaneous. This assumption is
also used in precompound reaction models and has proven its
validity by good agreement with experimental data [27]. A
second related assumption is that because of the strong mixing
within one class, the eigenfunctions of the time-independent
Hamiltonian are Gaussian-distributed random variables, and
the eigenvalues obey Wigner-Dyson statistics [28]. This as-
sumption was thoroughly tested in Ref. [29]. These two
assumptions guarantee that both the matrix elements of the
residual interaction connecting states in different classes and
those of the dipole operator, are zero-centered Gaussian-
distributed random variables [18]. Rates are obtained as mean
values over these distributions. The rates for nuclear equili-
bration are proportional to mean values of squares of matrix
elements of the residual interaction connecting states in dif-
ferent classes, and to the level density of the mp-mh states
reached. The rate for dipole absorption is similarly propor-
tional to the mean square matrix element for dipole absorption

[21] and to the density of final states. Multiple dipole absorp-
tion leads to nuclear excitation far above yrast. Calculation of
the rates requires, therefore, the knowledge of mp-mh level
densities at high excitation energy (up to several 100 MeV)
and for large particle numbers. A reliable approximation for
these densities in terms of the single-particle level density of
the shell model was worked out in Refs. [30,31] and is used in
what follows.

The rates are used in rate equations. These describe the
time evolution of the average occupation probabilities of
classes of mp-mh states under the influence of the external
field of the laser. They account for the following competing
processes: photoabsorption and its inverse process stimulated
photon emission, equilibration, and neutron evaporation. In
a manner similar to the theory of precompound reactions
[32], equilibration is taken into account by coupling different
mp-mh classes at the same energy. Absorption of a photon
by an mp-mh state either generates an additional particle-
hole pair promoting the nucleus to class (m + 1)p-(m + 1)h,
or it increases the energy of an existing particle-hole pair.
Conversely, stimulated emission leads to the annihilation of
a particle-hole pair, or it reduces the energy of an existing
particle-hole pair without changing m. We disregard here pos-
sible collective excitations which could play a role at small
excitation energies. Neutron evaporation changes mass num-
ber from even to odd and conversely. For odd-mass nuclei
we interpolate between the neighboring even-mass nuclei. We
consider, thus, only states with equal particle-hole numbers.
We neglect particle loss from direct photon excitation of
particles (protons or neutrons) into continuum states. Thus
we confine ourselves to a chain of nuclei with equal proton
numbers. Ensuing limitations and possible corrections have
been addressed qualitatively in Ref. [26] for the quasiadiabatic
regime. The relevance of these processes for the deep sudden
regime is briefly addressed in the concluding remarks of this
paper in Sec. IV. We simplify the treatment of the problem
by disregarding spin altogether. That was justified in Ref. [26]
by the slow increase of total spin value with multiple photon
absorption.

We consider the interaction of a strong zeptosecond laser
pulse with a medium-weight nucleus with mass number A.
For �̃dip we use values in the range 1–20 MeV. In the
course of the reaction, up to N0 ≈ 140 photons may be ab-
sorbed. We neglect the resulting reduction of N → N − N0

in the boost factor of �̃dip. The energy h̄ω0 per photon is
5 MeV, and the duration of the pulse is τ = h̄/σ where σ

is of the order of several 10 keV so that τ ≈ 10−20 s. We
investigate the temporal evolution of the nucleus over the
laser pulse duration, and we follow the chain of neutron
evaporation processes towards proton-rich nuclei. Fission is
expected to be important only for very heavy nuclei and is
disregarded. To illustrate the role of the equilibration process,
we compare results for the sudden and for the quasiadia-
batic regime. In the absence of nucleon emission and fission,
photon absorption would saturate at an excitation energy
where the rates for absorption and for stimulated emission
become equal. That energy is given by the maximum of
the total level density summed over all particle-hole classes.
The larger the effective dipole absorption rate, the faster this
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saturation energy is reached. Neutron evaporation takes over
at an energy below the saturation point. The combination of
repeated neutron emission and continued dipole absorption by
the daughter nuclei then produces proton-rich nuclei far from
the valley of stability. This picture is qualitatively similar to
but quantitatively somewhat different from the results for the
quasiadiabatic regime.

The paper is structured as follows. The rate equation and
the transition rates are introduced in Sec. II. This section also
addresses the densities of accessible states for mp-mh classes.
Numerical results follow in Sec. III and the paper concludes
with a discussion in Sec. IV.

II. RATE EQUATIONS

A. Basic approach

With A the even mass number of the target nucleus, we
consider a chain of (n + 1) nuclei with mass numbers A − i
where i = 0, 1, 2, . . . , n, with an arbitrary cutoff at i = n. In
the target (i = 0), absorption of k laser photons will increase
the excitation energy by kh̄ω0 and potentially also change
the particle-hole number. We group the nuclear states accord-
ing to the generation i, the particle-hole number m, and the
total energy, which for our case will be a multiple of the

laser photon energy h̄ω0. In the following we therefore use
classes labeled (i, k, m). The equilibration processes between
classes are discussed below. The level density in each class
is ρm(0, k). Single or multiple neutron decay of the target
populates an energy continuum of states in the daughter nuclei
labeled i = 1, 2, . . . , n. For even-mass daughter nuclei i, the
mp-mh states in the energy interval between (k − 1/2)h̄ω0

and (k + 1/2)h̄ω0 form class (i, k, m). The class of particle-
hole states with excitation energies in the interval 0 � E �
(1/2)h̄ω0 is labeled (i, 0, m). The average level density of
the states in class (i, k, m) is denoted by ρm(i, k). For odd-
mass daughter nuclei we use energy intervals k defined in
the same manner. We avoid introducing mp-(m ± 1)h states
and their level densities and use a simplification instead. We
neglect the even-odd staggering of the ground-state energies
as well as that of the spin-cutoff factor, and we approximate
the level density for odd i by interpolating between the values
for the two neighboring even-mass nuclei. In other words,
we use the expression for the level density for even mass
numbers given in Ref. [31] indiscriminately for both even and
odd A.

The rate equation for the average total occupation proba-
bility Pm(i, k, t ) of the states in class (i, k, m) as a function of
time t is

Ṗm(i, k, t ) =
∑

m′=m±1

V 2
m′m(i, k)ρm(i, k)Pm′ (i, k, t ) −

∑
m′=m±1

V 2
mm′ (i, k)ρm′ (i, k)Pm(i, k, t )

+�(τ − t )
∑

m′=m,m±1

{
W 2

k−1k;m′m(i)ρm(i, k)Pm′ (i, k − 1, t ) + W 2
k+1k;m′m(i)ρm(i, k)Pm′ (i, k + 1, t )

−W 2
kk+1;mm′ (i)ρm′ (i, k + 1)Pm(i, k, t ) − W 2

kk−1;mm′ (i)ρm′ (i, k − 1)Pm(i, k, t )
}

−�N(i, k, m)Pm(i, k, t ) +
∑

k′
m′ = m, m + 1

�N(i − 1, k′ → k, m′ → m)Pm′ (i − 1, k′, t ). (1)

We have put h̄ = 1. The dot denotes the time derivative. The
equation takes into account three processes: (i) equilibration
of occupation probability of the different mp-mh classes at
constant energy (first line); (ii) dipole excitation and stimu-
lated dipole emission by the MeV laser pulse (second and
third line); and (iii) neutron evaporation populating nucleus
A − i − 1 at the expense of nucleus A − i (last line, where
we have defined Pm(−1, k, t ) = 0). The Heaviside function
� accounts for the fact that process (ii) occurs only for the
duration time τ of the laser pulse. The initial condition is
Pm(i, k, 0) = δi0δk0δm0.

In each nucleus i, the equilibration process (i) involves
the coupling of classes (i, k, m) at fixed energy kh̄ω0 by
the residual interaction. The rate is given by V 2

m′mρm(i, k),
with V 2

mm′ = V 2
m′m the mean square matrix element. We recall

here our basic picture: Dipole absorption primarily populates
distinct particle-hole states with somewhat different energies
(Landau damping) [13,14]. We assume that the states within
the same mp-mh class are quickly mixed by the residual two-
body interaction. The remaining part of the residual two-body
interaction mixes classes of states with different m with rate

V 2
m′mρm(i, k). Obviously only neighboring classes m′ = m ± 1

(see Fig. 1) are coupled. The inverse of the total time needed
for such mixing equals �↓/h̄. That picture is supported by
the temperature dependence of the hot GDR width which is
interpreted as being from two-body collisions [20,33]. Class

V 2
m−1,m V 2

m+1,m

F

V

k
m − 1

F

V

k
m

F

V

k
m + 1

FIG. 1. Transitions into class m from neighboring classes
m ± 1 described by the nucleon-nucleon interaction matrix element
Vm′m(i, k). Here F represents the Fermi energy and V the threshold
energy of the single-particle potential. Particles (blue filled circles)
are above F ; holes (white full circles) are below F .
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m−1m

W 2
k+1k;
m+1m

γ F

V

k − 1

m − 1

F

V

k
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γ

F

V

k + 1

m + 1

FIG. 2. Transitions into class (i, k, m) from neighboring classes
(i, k − 1, m − 1) and (i, k + 1, m + 1) owing to the laser-nucleus
interaction matrix element Wk′k;m′m(i) with m′ = m ± 1. See Fig. 1
for further notation.

(i, k, m) may gain (lose) occupation probability because of
feeding from (depletion to) classes (i, k, m ± 1), respectively.
Equilibrium is reached when Pm(i, k, t ) ∝ cρm(i, k) with a
constant c independent of m.

For processes (ii), the class (i, k, m) is fed by coherent
dipole excitation of classes (i, k − 1, m) and (i, k − 1, m −
1) and by stimulated dipole emission from classes (i, k +
1, m + 1) and (i, k + 1, m). Class (i, k, m) is depleted by
dipole absorption exciting classes (i, k + 1, m) and (i, k +
1, m + 1), and by stimulated dipole emission to classes
(i, k − 1, m) and (i, k − 1, m − 1). Processes where dipole
transitions change (do not change) particle-hole number are
illustrated in Fig. 2 (in Fig. 3, respectively). The rates feed-
ing class (i, k, m) are written as W 2

k′k;m′m(i)ρm(i, k) with k′ =
k − 1, m′ = m, m − 1 and k′ = k + 1, m′ = m, m + 1. Here
W 2

kk′;mm′ (i) = W 2
k′k;m′m(i) is the average square of the transition

matrix element. We have simplified the notation by summing
m′ indiscriminately over m and m ± 1. That requires that we
set W 2

k−1k;m+1m(i) = 0 = W 2
k+1k;m−1m(i).

The neutron decay process (iii) depletes the states in class
(i, k, m) at the rate �N (i, k, m). Neutron decay of the states
(i − 1, k′, m′) in the parent nucleus with mass number A +
1 − i feeds the states in class (i, k, m) with the rate �N (i −
1, k′ → k, m′ → m). We allow only for m = m′, m′ − 1.

The set of rate equations (1) is similar in spirit to but much
more involved than the master equation solved in the quasia-
diabatic case [25,26]. There, equilibration was assumed from
the outset. At fixed excitation energy only the total occupation
probability and the total level density (both summed over all
m) come into play. There are no particle-hole classes. In our
case, separate treatment of the particle-hole classes obviously

W 2
k−1k;
mm

W 2
k+1k;
mm

γ F

V

k − 1
m

F

V

k
m

γ

F

V

k + 1
m

FIG. 3. Transitions into class (i, k, m) from neighboring classes
(i, k − 1, m) and (i, k + 1, m) owing to the laser-nucleus interaction
matrix element Wk′k;mm(i). See Fig. 1 for further notation.

increases the number of coupled differential equations signif-
icantly.

B. Transition rates

In this section we give expressions for the rates of the
three processes. We mention in passing that for the adiabatic
case the rates for processes (ii) and (iii) have been defined,
calculated, and discussed in Refs. [25,26]. Because h̄ = 1 we
use the expressions “width” and “rate” interchangeably.

1. Equilibration rate

Equilibration is the result of the coupling of neighbor-
ing particle-hole classes at constant energy. To estimate that
coupling we use the optical model (see Ref. [16]). The imag-
inary part W (ε) of the optical model potential for nucleons
accounts for two-body collisions that remove a nucleon at
energy ε above the Fermi energy from the incident channel
and create a 2p-1h state. As function of time, the occupation
probability in the incident channel decreases exponentially
as exp{−2W (ε)t}. Therefore, we identify 2W (ε) with the
spreading width of a (quasiparticle) nucleon above the Fermi
surface. The concept of the optical model applies also to hole
states, with ε now the energy of the hole, i.e., the energy
below the Fermi energy. Each particle and each hole in an
mp-mh state at energy E may undergo a two-body collision
leading to an (m + 1)p-(m + 1)h state. The total spreading
width for such a particle (hole) is obtained by averaging the
optical model over the normalized probability Dp(m, ε, E ) for
finding the particle (hole) at energy ε in the mp-mh state at
energy E . The total spreading width for all m particles (holes)
is obtained by multiplying the result by m. Thus,

�
↓
m→m+1 = 2m

∫ V −F

0
Dp(m, ε, E )W (ε)dε

+ 2m
∫ F

0
Dh(m, ε, E )W (ε)dε. (2)

We recall that V is the threshold energy of the shell-model po-
tential and F the Fermi energy, respectively. The distributions
are given by [16]

Dp(m, ε, E ) = Kp
ρ̃m−1,m(i, E − ε)

ρm(i, E )
,

Dh(m, ε, E ) = Kh
ρ̃m,m−1(i, E − ε)

ρm(i, E )
. (3)

Here Kp and Kh are normalization constants, and ρ̃p,h(i, E )
with p 
= h is the density of pp-hh states at energy E . Finally
we use

�
↓
m→m+1 = 2πV 2

mm+1(i, k)ρm+1(i, k). (4)

For the process m → (m − 1) we use V 2
mm′ = V 2

m′m and de-
tailed balance so that

�
↓
m→m−1 = �

↓
m−1→m

ρm−1(i, k)

ρm(i, k)
. (5)
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Following Refs. [16,34], we use W (ε) = cε2, with c = 0.003
MeV−1. Further employing Eqs. (2)–(5), and the level den-
sities given in Sec. II B 4 below, we arrive at the numerical
values for the rates used in Eq. (1).

2. Dipole transitions

The effective dipole width for excitation starting from
the ground state is given by �̃dip. Among others, it depends
on the total number of photons in and on the aperture of
the pulse [21], both experimental parameters which are not
exactly known at this time. The value of �̃dip serves as an
input parameter for our calculation. We consider values in
the range 1–20 MeV and disregard any temperature depen-
dence which could be the consequence of increased spreading
widths for GDRs built up on highly excited states. Accord-
ing to the expression of �̃dip obtained in Ref. [21], such a
temperature dependence of �↓ would only slowly decrease
the effective dipole width. Following Ref. [26] we set �̃dip =
W 2

01;01(i, 1)ρ1(0, 1). Photon absorption at excitation energy
kh̄ω0 by an mp-mh state leading to an m′p-m′h state is then
governed by the effective absorption rate,

W 2
kk+1;mm′ (i, k + 1)ρm′ (i, k + 1)

= W 2
01;01(i, 1)ρacc

mm′ (i, k + 1). (6)

Here ρacc
mm′ (i, k + 1) with m′ = m, m + 1 is the density of

states in class (i, k + 1, m′) that are accessible from class
(i, k, m). Using symmetry of the matrix elements we find for
stimulated dipole emission,

W 2
kk−1;mm′ (i, k − 1)ρm′ (i, k − 1)

= W 2
01;01(i, 1)ρacc

mm′ (i, k)
ρm′ (i, k − 1)

ρm(i, k)
, (7)

with m′ = m, m − 1. The densities are worked out in
Sec. II B 4.

3. Neutron decay

Neutron decay is described as an evaporation process for
which we use the Weisskopf estimate [26]. Neutron decay of
states in class (i, k, m) populates states in the daughter nu-
cleus (i + 1). The latter cover a continuum of energies which
extends from zero to (k + 1/2)EL − (V − F ). Here V − F is
the neutron binding energy in the shell model. As described in
Sec. II A, the states are grouped into classes ((i + 1), k′, m′),
where k′h̄ω0 ranges from zero to an upper bound given by
kh̄ω0 − V + F . Neutron evaporation from a target nucleus
in class mp-mh leads to a state in class (m − 1)p-mh in the
daughter nucleus. As stated in Sec. II A we do not use such
states in our calculation. Instead, we approximate neutron
decay by considering only transitions with m′ = m and m′ =
m − 1. The rate for either transition is given by

�N (i, k → k′, m → m′)

= 1

2πρm(i, k)

∫ (k′+1/2)h̄ω0

(k′−1/2)h̄ω0

dE ρm′ (i + 1, E ). (8)

The total rate for depletion of class (i, k, m) is written as

�N (i, k, m) = 1

2πρm(i, k)

∫ (k+1/2)h̄ω0−(V −F )

0
dE

×
∑

m′=m,m−1

Am′ρm′ (i + 1, E ). (9)

To avoid double counting we must have Am + Am−1 = 1. As
shown below, the two terms in the summation in Eq. (9) are
practically equal, and we choose Am = 1, Am−1 = 0 in what
follows. The last term in Eq. (1) must be modified accord-
ingly. For the short chains i = 0, 1, 2, . . . , n that we actually
consider, we simplify the calculations by keeping V − F = 8
MeV fixed. We thereby neglect the odd-even staggering of
binding energies and level densities. These run in parallel and,
therefore, largely compensate each other in the neutron decay
widths.

4. Level densities

The level densities ρm(i, k) are calculated using the method
developed in Ref. [31] for the total level density of spin-zero
states in nucleus A as a function of excitation energy. The cal-
culation uses as input the single-particle level density ρ1(ε),
a continuous function of energy ε. In this work we consider
both an energy-independent function ρ1(ε) which yields a
constant spacing of single-particle levels of 0.88 MeV (used
for A = 42) and a linear energy dependence,

ρ
(1)
1 (ε) = 2A

F 2
ε, (10)

that is approximately valid for A = 100. The single-particle
energies ε j with j = 1, 2, . . . are obtained from Eq. (10) via
the condition j = ∫ ε j

0 dε′ ρ
(1)
1 (ε′). We use V = 45 MeV and

F = 37 MeV for all nuclei in the neutron decay chain. These
values determine the total number of bound single-particle
states [31]. For A = 42, that number is 51. For A = 100 and
the linear dependence of ρ

(1)
1 in Eq. (10), that number is 148.

It was shown in Ref. [31] that when the number of nucleons
is large the method of calculation fails to properly describe the
tails of the level densities ρm(i, k) at small excitation energies.
In that region we extrapolate the level densities. That is done
for a small fraction (typically approximately 10%, for certain
particle-hole classes, however, up to 35%) of the total relevant
part of the spectrum.

As in Ref. [31] the density ρacc
mm′ (E ) of accessible states is

calculated using the Fermi-gas model and ρ
(1)
1 as given in

Eq. (10). Here we sketch the modifications that arise from
the existence of particle-hole classes. The Fermi distributions
for holes and particles with single-particle energy ε are given,
respectively, by

nA−m,E (ε) = �(F − ε)

1 + exp{βε + αA−m} ,

nm,E (ε) = �(ε − F )

1 + exp{βε + αm} . (11)

The first expression describes A − m particles below the
Fermi level F (corresponding to the m holes). The second
expression describes m particles above F . Both expressions

044616-5



KOBZAK, WEIDENMÜLLER, AND PÁLFFY PHYSICAL REVIEW C 103, 044616 (2021)

FIG. 4. Density of accessible states ρacc
mm+1(E ) for case (i) (see

text) in the constant-spacing model as a function of excitation en-
ergy E for A = 42 particles, 51 single-particle states, V = 45 MeV,
F = 37 MeV, and h̄ω0 = 5 MeV. Colors and symbols correspond to
different transitions between particle-hole classes m → m + 1.

carry the same parameter β because particles and holes have
the same temperature. The parameters β, αA−m, αm are deter-
mined by the constraints

A − m =
∫ F

0
dε nA−m(ε)ρ1(ε),

m =
∫ V

F
dε nm(ε)ρ1(ε),

E =
∫ V

0
dε ε[nm(ε) + nA−m(ε)]ρ1(ε). (12)

These impose fixed hole number, fixed particle number, and
fixed total energy E , respectively.

The absorption of a photon of energy h̄ω0 involves either
one of two processes: (i) A nucleon absorbs the energy h̄ω0

and is thereby promoted from a single-particle state below F
to a single-particle state above F (without being promoted to
the continuum). That causes a transition from class (i, k, m)
to class (i, k + 1, m + 1). (ii) A particle absorbs the energy
h̄ω0 (without being promoted to the continuum), or a hole
absorbs h̄ω0 without exceeding the Fermi energy. That causes
a transition from class (i, k, m) to class (i, k + 1, m).

For case (i), the energy ε of the nucleon prior to photon
absorption must obey F − h̄ω0 < ε < F . The probability of
finding an occupied single-particle state at energy ε below F
is nA−m,E (ε), and the probability of finding an empty single-
particle state with energy ε + h̄ω0 > F is (1 − nm,E (ε +
h̄ω0)). The density of accessible states is, thus, given by

ρacc
mm+1(E ) =

∫ F

F−h̄ω0

dε nA−m,E (ε)[1 − nm,E (ε + h̄ω0)]

× ρ1(ε)ρ1(ε + h̄ω0). (13)

Figure 4 shows ρacc
mm+1(E ) versus energy E for several values

of m and for parameters given in the figure caption. The den-
sity of accessible states is a monotonically increasing function
of energy for all particle-hole classes. It decreases with in-
creasing m of the particle-hole class.

FIG. 5. Density of accessible states ρacc
mm(E ) for case (ii) (see text)

in the constant spacing model as a function of excitation energy
E . We use the same parameters as for Fig. 4. Colors and symbols
correspond to transitions within different particle-hole classes m.

For case (ii) we obtain analogously

ρacc
mm(E ) =

∫ F−h̄ω0

0
dε nA−m,E (ε)[1 − nA−m,E (ε + h̄ω0)]

× ρ1(ε)ρ1(ε + h̄ω0)

+
∫ V −h̄ω0

F
dε nm,E (ε)[1 − nm,E (ε + h̄ω0)]

× ρ1(ε)ρ1(ε + h̄ω0). (14)

For the same set of parameters as used in Fig. 4, Fig. 5 shows
results for ρacc

mm(E ) versus E for several values of m. For
large E that function decreases with increasing E . For such
energies, the sparseness of empty levels makes it increasingly
difficult to add the energy h̄ω0 to a particle or a hole. That
effect is absent in ρacc

mm+1(E ).

III. NUMERICAL RESULTS

We calculate the time-dependent occupation probabilities
Pm(i, k, t ) for two medium-weight target nuclei, A = 42 and
A = 100, that interact with a short pulse of MeV photons.
These nuclei are taken to be generic for their range of mass
values. We solve Eq. (1) numerically for several choices of
the effective dipole width �̃dip and of the length (n + 1) of
the decay chain. Equation (1) is written in matrix form as
Ṗ = MP. The elements of the column vector P are the oc-
cupation probabilities Pm(i, k, t ) labeled by an overall index
j covering the set (i, k, m). The initial condition Pm(i, k, 0) =
δi,0δk,0δm,0 mimics the ground state of the target nucleus. The
matrix M is independent of time. The number of elements
in M ranges from 670 for A = 42 to ∼10 000 for A = 100
per neutron decay generation. These elements vary over 8
orders of magnitude for nuclei with mass number A = 42,
and over 70 orders of magnitude for nuclei with mass number
A = 100. Diagonalization of this matrix, therefore, poses a
stiff problem. As in Ref. [26] we treat the extremely stiff
differential equations (1) via a matrix exponential method. We
use the Chebyshev rational approximation method (CRAM)
which is known for its success in solving burnup equations
[35,36]. For all the calculations we use CRAM with partial
fraction decomposition and an approximation of order 20 [35].
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FIG. 6. Contour plots of the time-dependent occupation proba-
bilities Pm(0, k, t ) of a light medium-weight nucleus with A = 42
as a function of excitation energy E for the accessible particle-hole
classes. Neutron evaporation is not included. The parameters used
are given in the text.

Despite the efficiency of CRAM, the size and stiffness of the
matrix M restricts our present calculations to nuclear mass
numbers A � 100.

Our numerical calculations yield values for the occupation
probability Pm(i, k, m). In the contour plots for Pm(i, k, m) we
convert k to energy E via E = kh̄ω0. We use h̄ω0 = 5 MeV
throughout. This value lies well within the planned range of
the Extreme Light Infrastructure [10] and the Gamma Factory
[11] facilities mentioned in the Introduction.

A. Light medium-weight nuclei (A = 42)

We first consider the comparatively simple case of small
nucleon number A = 42 and constant level density ρ1(ε) ≡
const = A/F with 51 single-particle states. Figure 6 shows
the occupation probabilities versus time and excitation energy
for the target nucleus in the absence of neutron decay (�N =
0) for �̃dip = 5 MeV and a duration time of the laser pulse
1/σ = 20 zs. During the process, particle-hole classes up to
m = 9 are populated, with the higher m values requiring larger
excitation energy.

A cut in the contour spectra of Fig. 6 at t = 20 zs (i.e., at
the end of the laser-nucleus interaction) is shown in Fig. 7. For
each class m of particle-hole numbers, the occupation proba-
bilities display a maximum. It occurs at the energy for which
the rates of dipole absorption and stimulated dipole emission
are equal. There the particle-hole level density ρm(0, k) has
its maximum. Beyond that peak, stimulated dipole emission
outweighs dipole absorption, the excitation process saturates,
and further excitation becomes increasingly unlikely. Inspec-
tion of Fig. 6 shows that prior to termination of the pulse at
t = 20 zs, classes m = 5 and m = 6 are closer to saturation
(the occupation probabilities run parallel to the abscissa) than

FIG. 7. A cut through the contour plots in Fig. 6 at the termi-
nation t = 20 zs of the laser pulse. The occupation probabilities are
shown as functions of the number of absorbed photons k for different
particle-hole classes.

classes with higher values of m. We conclude that for differ-
ent classes saturation is achieved at different times, and the
system as a whole is saturated when the “slowest” class is
saturated.

Figure 8 shows the total occupation probability
P(0, k, t ) = ∑

m Pm(0, k, t ) of the target nucleus. Quali-
tatively, that plot is similar to the quasiadiabatic results in
Ref. [26].

B. Medium-weight nuclei (A = 100)

For mass number A = 100 we use the single-particle level
density in Eq. (10). With a depth V = 45 MeV of the single-
particle potential, that gives a total of 148 single-particle
states. The increase in both particle number and number of
states causes a significant increase in the dimension of the

FIG. 8. Contour plot of the time-dependent total occupation
probability as a function of excitation energy E and time t for dipole
absorption and stimulated emission only (no neutron decay). We use
the same parameters as in Fig. 6 (see text).
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FIG. 9. Level densities ρm(0, k) for a medium-weight nucleus
A = 100 as functions of excitation energy (measured in units of the
number k of absorbed photons). For clarity of illustration we present
the densities only for every fourth particle-hole class.

matrix M. Fortunately, many matrix elements are zero and
one can exploit that sparseness to reduce the matrix dimen-
sion. The resulting matrix for the target nucleus has dimension
5328. The resulting matrix for n = 4 generations of nuclei has
dimension 21 088.

Our calculations were performed for pulse durations of
40 zs and for four choices of the effective dipole width,
�̃dip =1, 5, 10, and 20 MeV. We focus attention on �̃dip = 20
MeV (typical for the sudden regime) and on �̃dip = 5 MeV
(relevant for a comparison with results for the quasiadiabatic
regime in Ref. [26]).

For A = 100, particle-hole classes up to m = 48 can be
reached. For a better understanding of our results we first
show in Fig. 9 the density of states versus k for every fourth
particle-hole class. The excitation energy is given by the num-
ber k of absorbed photons, each with energy h̄ω0 = 5 MeV.
Particle-hole classes with small (large) m dominate at small
(large) energies, respectively. Densities with m ≈ 30 have the
largest values. The total density (summed over all particle-
hole classes) is the envelope to these curves, with a maximum
at ≈ 575 MeV.

1. No neutron evaporation

We first focus attention on the time evolution of the target
nucleus, disregarding neutron evaporation. Figure 10 presents
the occupation probabilities as functions of time and exci-
tation energy for �̃dip = 20 MeV. To be able to display the
populations of low m and high m particle-hole classes in the
same plot, the scale ranges from 10−7 to unity and comprises
two orders of magnitude more than the plot of Fig. 6. Classes
with small numbers of particle-hole pairs are populated in the
first stages of photoexcitation. Classes with m between 23 and
37 are then occupied rapidly and stay populated until the end
of the laser pulse. The classes with the highest particle-hole
numbers are populated poorly and only late when sufficient
energy was transferred to reach the domain of excitation en-
ergy where their densities are large. Figure 9 shows that these
densities reach their maxima at an energy higher than the
saturation energy, that these maxima are lower than those of
the middle classes, and that these maxima strongly decrease
with increasing m beyond the 36p-36h class. That is in con-

FIG. 10. Contour plots of the time-dependent occupation prob-
abilities Pm(0, k, t ) for every second accessible particle-hole class
from 1p-1h to 47p-47h as functions of excitation energy E for dipole
absorption and stimulated emission only (no neutron emission). The
parameters are mass number A = 100, the single-particle level den-
sity as given in Eq. (10), �̃dip = 20 MeV, and τ = 40 zs.

trast to the case of constant spacing; cf. Fig. 6 where the
maximum of the level density for the highest 9p-9h class is
not significantly smaller than that of the neighboring 8p-8h
class which dominates all the other classes.

Figure 10 shows that all classes reach saturation. The
same is true for the total occupation probability P(0, k, t ) =∑

m Pm(0, k, t ) shown in Fig. 11(a). Saturation is reached at
t ≈ 20 zs, and P(0, k, t ) remains constant thereafter. We note
the qualitative similarity with results obtained in Ref. [26]
for the quasiadiabatic regime. It is interesting to note that
the total occupation probability is sensitive to the mechanism
of photoabsorption. Indeed, allowing only for the processes
described in Fig. 2 (change of particle-hole class for each
photon absorption or emission process), the time scale for
excitation increases dramatically. Figure 11(b) shows the total
occupation probability calculated using m′ = m ± 1 only in
the dipole excitation and emission part of Eq. (1) for �̃dip =
20 MeV. Comparison with Fig. 11(a) shows the increase of the
time scale for photoexcitation. Saturation is not yet reached
even at t = 40 zs.

Figure 12 presents contour plots of the total occupation
probabilities for four choices of the effective dipole width,
�̃dip = 1, 5, 10, and 20 MeV. The comparison shows whether
and how quickly saturation is reached. For �̃dip = 1 MeV and
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FIG. 11. Contour plots of the time-dependent total occupation
probabilities P(0, k, t ). (a) Photon absorption or emission allows for
the two possible processes presented in Figs. 2 and 3. (b) Photon
absorption or emission allows only for the process in Fig. 2. The
parameters are the same as in Fig. 10.

�̃dip = 5 MeV saturation requires duration times longer than
the pulse duration 40 zs used. For �̃dip = 10 MeV saturation
is reached at 40 zs, and for �̃dip = 20 MeV, it is not possible
to further transfer energy into the nucleus for times t � 20 zs.
Comparing with the case of A = 42, �̃dip = 5 MeV, and con-
stant single-particle level spacing shown in Fig. 8, we notice

FIG. 12. Contour plots of the total time-dependent occupation
probabilities P(0, k, t ) versus time t and excitation energy E for four
values of �̃dip as indicated. The other parameters are the same as in
Fig. 10.

FIG. 13. Total excitation energy Etot (solid lines, left vertical
axis) and approximate time interval between two photon absorptions
1t (dashed lines, right vertical axis) as a function of time for
�̃dip = 5 MeV (blue circles) and �̃dip = 20 MeV (red squares). The
inset zooms in the interval of the first 10 zs for 1t .

that for A = 100 the same effective dipole rate �̃dip = 5 MeV
does not bring the nucleus to the same degree of saturation
at t = 20 zs. Saturation requires either a longer duration time
of the laser pulse or a greater effective dipole rate. That is
because saturation in the nucleus A = 100 occurs at a substan-
tially higher energy. For A = 42 (for A = 100), the maximum
of the total level density is at 165 MeV (at 533 MeV, re-
spectively). [For A = 100 and for the single-particle level
density as given in Eq. (10), the total level density is a slightly
asymmetric function of energy].

To compare results for different effective dipole widths we
use the total excitation energy Etot (t ) = h̄ω0

∑
k,m kPm(0, k, t )

of the nucleus at time t , and the time interval 1t (E ) = t (E +
h̄ω0) − t (E ), where t (E ) is the earliest time at which the total
energy E is reached. At very short times, Etot (t ) grows linearly
with time t , and 1t is a measure of the time interval between
the successive absorption of two photons. With increasing
excitation energy stimulated emission becomes important,
Etot (t ) grows less strongly than linearly, and 1t increases
correspondingly. Figure 13 shows Etot and 1t as functions
of time for �̃dip = 5 MeV and �̃dip = 20 MeV. As expected,
at short times Etot (t ) increases significantly faster for the big-
ger of the two effective dipole rates. The time between two
successive photon absorption processes is correspondingly
shorter and, thus, more competitive with the nuclear relaxation
time. We have to keep in mind, however, that the relaxation
time itself becomes shorter, too, with increasing excitation
energy. Moreover, Fig. 13 shows that induced photon emission
and, eventually, saturation become important very early for
�̃dip = 20 MeV, so that 1t ceases to be a measure of the time
interval between successive photon absorption processes.

2. Comparison with the quasiadiabatic case

In the quasiadiabatic regime, equilibration is instan-
taneous. Only total level densities and total occupation
probabilities enter the calculation. If in the sudden regime
the dipole width �̃dip is so small that equilibration happens
between each pair of subsequent photon processes, our values
for the total occupation probabilities must agree with the ones
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FIG. 14. Total occupation probabilities (solid lines) compared
with results from Ref. [26] for the quasiadiabatic regime (dashed
lines) as a function of the number k of absorbed photons at times
t = 2, 10, 40, and 100 zs and for �̃dip = 5 MeV.

calculated for the quasiadiabatic regime. In Fig. 14 we com-
pare our total occupation probabilities for �̃dip = 5 MeV and
100-zs pulse duration with results from Ref. [26]. The parame-
ters are the same as in our case with one exception. The dipole
matrix element used in the quasiadiabatic calculation differs
from that of the present calculation by a factor 2.3 because
its definition involves a different 1p-1h density ρ1(0, 1); see
Ref. [37]. In Fig. 14 we have accounted for that difference.
The figure shows snapshots of the occupation probability at
four time instants, t = 2, 10, 40, and 100 zs. The results
display good agreement. Slight differences in the wings can
be attributed to the different strategies to calculate the tails
of the level densities used here and in Ref. [26]. The two
calculations agree only if in our calculation photon absorption
and emission both without and with change of particle-hole
class as shown in Figs. 2 and 3 are included.

For the generic value �↓ = 5 MeV of the spreading
width for medium-weight nuclei, the nuclear relaxation time
would be 1/�↓ � 0.13 zs. However, our calculations us-
ing the rates of Sec. II B 1 show that the relaxation time
actually depends on energy and particle-hole configuration
and ranges from less than 1 zs to a few zs. That indi-
cates that for short times (i.e., at the beginning of the laser
pulse), photon absorption is faster than equilibration. As a
test, we compare in Fig. 15 the occupation probabilities
Pm(0, k, t ) obtained in our calculation with equilibrium val-
ues Peq

m (0, k, t ) = ρm(0, k)P(0, k, t )/ρ(0, k). Here ρ(0, k) is
the total level density and P(0, k, t ) is the total occupation
probability at energy k. We do so for �̃dip = 5 and 20 MeV,
for three instants of time (t = 2, 5, and 10 zs), and for
a range of k values (or excitation energies) and m values.
We display the relative difference Rm(k) = 2[Peq

m (0, k, t ) −
Pm(0, k, t )]/[Peq

m (0, k, t ) + Pm(0, k, t )] in a contour plot. With
increasing excitation energy E (or increasing k), the total
number of classes (0, k, m) increases strongly whereas each
absorbed photon creates at most one additional particle-hole
pair. Therefore we expect that for fixed k and prior to equi-
librium, classes with small m (large m) are overpopulated
(underpopulated), corresponding to Rm(k) < 0 (Rm(k) > 0,
respectively. That expectation is actually met for �̃dip =
5 MeV, small time t = 2 zs (upper left panel of Fig. 15)
and for excitation energies up to ≈100 MeV. The dashed line

FIG. 15. Relative difference Rm(k) = 2[Peq
m (0, k, t ) −

Pm(0, k, t )]/[Peq
m (0, k, t ) + Pm(0, k, t )] as a function of excitation

energy E and particle-hole class m. We consider snapshots
at t = 5, 10, and 20 zs for effective dipole absorption rates
�̃dip = 5 MeV and 20 MeV. The dashed line shows the function
E (m) = mh̄ω0 with h̄ω0 = 5 MeV. See text for further explanations.

corresponds to a process where each photon of energy h̄ω0 =
5 MeV generates an additional particle-hole pair. A similar
pattern can be observed also for t � 0.5 zs for �̃dip = 20 MeV,
though not displayed in Fig. 15.

At first surprisingly, for all other data shown in the figure
our expectation fails, and the pattern is actually reversed. The
occupation probabilities at fixed excitation energy are largest
for classes with large particle-hole numbers. The behavior
of the density of accessible states ρacc

mm(E ) in Fig. 5 explains
why this happens. The densities of accessible states ρacc

mm(E ),
and the associated dipole rates, are largest for classes with
large particle-hole numbers. Once equilibration provides a
sufficient minimum value for the occupation probabilities of
large-m classes, these classes are responsible for the bulk of
dipole absorption. It appears that at that time the excitation
processes within the same class described by ρacc

mm(E ) prevails
over the excitation generating additional particle-hole pairs.
This situation is reached at about 100-MeV excitation energy
in the upper left-hand panel of Fig. 15. The overall tendency
of dominant excitation of the large-m classes would be am-
plified with every dipole absorption process. However, each
absorbed photon promotes the nucleus to higher energy where
the level densities ρm(i, k) and, thus, also the rates for equi-
libration become larger. For that same reason, equilibration
is faster for �̃dip = 20 MeV. Here the difference between the
underpopulation of small m values and the overpopulation of
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FIG. 16. Comparison of total occupation probabilities for target
nucleus (i = 0) summed over all particle-hole classes as a function of
the number k of absorbed photons at times t = 2, 4, 6, and 8 zs. We
calculate the neutron decay rates considering only m′ = m (dashed
lines) or only m′ = m − 1 (solid lines). We use �̃dip = 5 MeV.

large m values is less pronounced at t = 5 zs and has almost
disappeared at t = 10 zs. The center region of equilibrated
occupation probabilities where Rm(k) ≈ 0 has the shape of a
stripe which runs almost parallel to but below the line k(m)
(not illustrated) defined by the k value where the density
ρm(0, k) versus m has its maximum. As time increases, that
central equilibrated stripe becomes wider, and it becomes
more steep than the line k(m).

Generally speaking, the occupation probabilities
Pm(0, k, t ) deviate most strongly from equilibrium at short
times (t � 2 zs) and, with increasing time, tend towards
equilibrium. That is expected and is true for both values of
the effective dipole width. Equilibration becomes faster as
energy increases while saturation slows photon absorption.
The difference between the quasiadiabatic and the sudden
regime is, therefore, manifest mainly at short times and at
comparatively low excitation energies and fades away as the
nucleus approaches saturation. We conclude that as long as
neutron emission is not taken into account, the sudden regime
is quite similar to the quasiadiabatic regime, except for the
initial phase of the process.

3. Neutron evaporation

To include neutron evaporation we consider the target nu-
cleus (A = 100, i = 0) plus three daughter nuclei with mass
numbers A = 99, A = 98, and A = 97 (i = 1, 2, and 3, respec-
tively). We disregard neutron emission of the last nucleus with
mass number A = 97 which, thus, serves as a dump for the
overall probability flow. Our numerical results show that the
contributions owing to m′ = m and to m′ = m − 1 in Eq. (8)
are almost equal. This is illustrated in Fig. 16 presenting the
respective total occupation probabilities as a function of the
number of absorbed photons k for i = 0 and �̃dip = 5 MeV.
That comparison looks similar for i = 1, 2, 3.

In the following we therefore simplify the calculation by
considering the term m′ = m only. The results for �̃dip = 5
MeV and �̃dip = 20 MeV are presented in Figs. 17 and 18,
respectively. Because the relevant neutron evaporation decays
take place within the first few zs, we consider here a pulse

FIG. 17. Contour plots of the time-dependent occupation prob-
abilities summed over all particle-hole classes as a function of
excitation energy E for target nucleus (i = 0) and three generations
of daughter nuclei (i = 1, 2, 3). The parameters are the mass number
A = 100, Eq. (10) for the single-particle level density, �̃dip = 5 MeV,
τ = 20 zs, and h̄ω0 = 5 MeV.

duration time of 20 zs. Both figures are qualitatively similar
to the quasiadiabatic case. Neutron evaporation sets in at en-
ergies much lower than saturation, interrupting the sequence
of photoabsorption processes. In Fig. 17, the occupation prob-
ability of the target nucleus is lost by neutron decay already
at t = 7 zs, and the occupation probabilities of nuclei with
i = 1 and i = 2 become significant. In comparison, for �̃dip =
20 MeV (Fig. 18) the occupation probability of the target nu-
cleus reaches higher energies more quickly and is completely
depleted at ≈3.5 zs, which is about a factor 2 sooner than for
�̃dip = 5 MeV. That trend is also seen for the nuclei with i = 1
and i = 2. By construction, in the present calculation neutron

FIG. 18. The same as in Fig. 17 for �̃dip = 20 MeV.
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decay does not change particle-hole class. The equilibration
in the daughter nucleus is therefore similar to the one in the
parent, modified only by the change of excitation energy from
the loss of one neutron.

We expect qualitatively similar results for a longer chain
of neutron evaporation processes. Neutron decay prevents the
nuclei in the chain from reaching saturation. The length of
the actual chain depends on the duration of the laser pulse. In
any case we expect that laser irradiation leads to proton-rich
medium-weight nuclei at high excitation energy. The proba-
bility distribution of the nuclei in the chain depends upon the
parameters of the laser pulse. Once experimental data become
available, such details can be explored further by calculations
as performed in the present paper.

We compare our results for the chain of four nuclei with
i = 0, 1, 2, 3 with corresponding results for the quasiadiabatic
regime in Ref. [26]. These were done for �̃dip = 5 MeV but
with a different 1p-1h density ρ1(0, 1) that was taken from
Ref. [37]. We adjust our calculations correspondingly. For the
target nucleus, the occupation probabilities are very similar
in the sudden and in the quasiadiabatic calculation (without
considering neutron evaporation). Neutron evaporation occurs
slightly faster in the quasiadiabatic regime. Inspection of the
quantities

∑
m �N (i, k, m)ρm(i, k)/ρ(i, k) and �N (i, k), where

ρ(i, k) and �N (i, k) are the level density and total neutron
evaporation rate in Ref. [26], respectively, shows that indeed
between k = 10 and k = 30, neutron evaporation is stronger
in the quasiadiabatic regime. The difference is largest at
≈E = 68 MeV. In Ref. [26], tails of the level density up to
an excitation energy of 68 MeV were calculated using the
Bethe formula [38] while the central part was calculated using
the approach of Ref. [31] also employed here. Because of
that procedure the level density ρ(i, k) of the quasiadiabatic
approach has a kink at E = 68 MeV. Such a kink does not
appear in the present work where we extrapolate the level den-
sity in the tails. We conclude that the observed difference in
the neutron evaporation rate is related to the different method
used in calculating the level densities at small energies. With
this proviso we conclude that for �̃dip = 5 MeV, the present
calculation confirms the previous results in Ref. [26] for the
quasiadiabatic regime. It is clear, nevertheless, that the occu-
pation probabilities in the decay chain are sensitive to details
of the calculation such as the precise form of the level densi-
ties and the manner in which photon absorption and stimulated
photon emission changes the occupation of the particle-hole
classes. Future experiments are yet to confirm the correct
assumptions required for more quantitative estimates.

IV. SUMMARY AND DISCUSSION

Previous work on the laser-nucleus interaction [25,26] was
focused on the quasiadiabatic regime where the compound
nucleus equilibrates after each photoabsorption process. For
the theoretical modeling, it suffices to use the total level
density at fixed excitation energy. In the present paper we
have investigated the sudden regime where equilibration is
incomplete. That regime requires a more detailed modeling.
We use classes of particle-hole states and assume that within
each class, equilibration is instantaneous. That assumption

is required to justify a statistical modeling and the use of
rate equations. The interaction between classes at the same
excitation energy leads to equilibration. Equilibration com-
petes with multiple photon absorption and induced photon
emission. We also allow for neutron evaporation feeding a
chain of proton-rich nuclei.

In the absence of neutron evaporation and for a compara-
tively small value �̃dip = 5 MeV of the effective dipole width,
equilibration competes successfully with dipole absorption,
and our results are in good agreement with those for the
quasiadiabatic regime of Ref. [26]. For �̃dip = 20 MeV, on
the other hand, the occupation probabilities of the particle-
hole classes deviate markedly from their equilibrium values in
the beginning stages of the multiphoton absorption process. In
later stages, they approach the equilibrium values, and the re-
sulting excitation pattern becomes qualitatively similar to that
of the quasiadiabatic regime. That happens before saturation
(caused by the equality of the rates for dipole absorption and
induced dipole emission) limits the further increase of excita-
tion energy. Neutron evaporation actually sets in long before
saturation, depletes the target nucleus, and feeds a chain of
proton-rich nuclei. Repeated neutron evaporation somewhat
decreases the excitation energy and slows down the path to
saturation for each nucleus in the decay chain.

Throughout the paper we have neglected both fission and
direct emission of nucleons by photoabsorption into the con-
tinuum. As shown in Ref. [25], these processes play only a
minor role for nuclei around A = 100, but may be competitive
with neutron decay for heavier nuclei. The effects of fission
for A = 200 were investigated in more detail in Ref. [26] for
the quasiadiabatic regime. The effective charges of neutrons
and protons being nearly equal in magnitude, direct photoab-
sorption might still be of interest also for medium-weigth
nuclei, especially for �̃dip = 20 MeV. That process would
populate highly excited states not only in the chain of proton-
rich nuclei reached by neutron emission, but also in all nuclei
that lie between the valley of stability and nuclei in the chain.

All our calculations were done for photons with energy
h̄ω0 = 5 MeV. Doubling that energy would lift it above the
nucleon binding energy. That would substantially increase di-
rect photoabsorption processes and might lead to a significant
loss of mass.

The sudden regime is bounded by a regime where dipole
excitation is so strong that equilibration is altogether ex-
cluded. Then our assumption that within every class of
particle-hole states equilibration is instantaneous fails. Mul-
tiple dipole excitation generates pairs of more or less
independent particle-hole states. It would be of substantial
interest to investigate the transition of the compound nucleus
from a strongly interacting system (realized in the adiabatic
regime) to a system of nearly independent particles (realized
in the extreme sudden regime of the laser-nucleus interaction).

ACKNOWLEDGMENTS

This work is part of and supported by the DFG Col-
laborative Research Center “SFB 1225 (ISOQUANT)”. A.P.
gratefully acknowledges support from the Heisenberg Pro-
gram of the Deutsche Forschungsgemeinschaft (DFG).

044616-12



LASER-NUCLEUS INTERACTIONS IN THE SUDDEN REGIME PHYSICAL REVIEW C 103, 044616 (2021)

[1] C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F.
Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi,
J. Hein, D. I. Hillier et al., High Power Laser Sci. Eng. 7, e54
(2019).

[2] T. Zh. Esirkepov, S. V. Bulanov, A. G. Zhidkov, A. S.
Pirozhkov, and M. Kando, Eur. Phys. J. D 55, 457 (2009).

[3] D. Kiefer, A. Henig, D. Jung, D. C. Gautier, K. A. Flippo, S. A.
Gaillard, S. Letzring, R. P. Johnson, R. C. Shah, T. Shimada
et al., Eur. Phys. J. D 55, 427 (2009).

[4] J. Meyer-ter-Vehn and H.-C. Wu, Eur. Phys. J. D 55, 433
(2009).

[5] G. Mourou and T. Tajima, Science 331, 41 (2011).
[6] D. Kiefer, M. Yeung, T. Dzelzainis, P. Foster, S. Rykovanov, C.

Lewis, R. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber et al.,
Nat. Commun. 4, 1763 (2013).

[7] S. V. Bulanov, T. Z. Esirkepov, M. Kando, A. S. Pirozhkov, and
N. N. Rosanov, Phys. Usp. 56, 429 (2013).

[8] J. Mu, F.-Y. Li, M. Zeng, M. Chen, Z.-M. Sheng, and J. Zhang,
Appl. Phys. Lett. 103, 261114 (2013).

[9] F. Y. Li, Z. M. Sheng, M. Chen, H. C. Wu, Y. Liu, J. Meyer-ter
Vehn, W. B. Mori, and J. Zhang, Appl. Phys. Lett. 105, 161102
(2014).

[10] Extreme Light Infrastructure Nuclear Physics (ELI-NP), https:
//www.eli-np.ro/.

[11] W. Płaczek et al., Acta Phys. Pol. B 50, 1191 (2019).
[12] A. Pálffy, J. Evers, and C. H. Keitel, Phys. Rev. C 77, 044602

(2008).
[13] C. Fiolhais, Ann. Phys. 171, 186 (1986).
[14] J. Speth and J. Wambach, in Theory of Giant Resonances (World

Scientific, Singapore, 1991), pp. 1–97.
[15] H. Feshbach, Rev. Mod. Phys. 36, 1076 (1964).
[16] M. Herman, G. Reffo, and H. Weidenmüller, Nucl. Phys. A 536,

124 (1992).
[17] H. A. Weidenmüller and G. E. Mitchell, Rev. Mod. Phys. 81,

539 (2009).
[18] D. Agassi, H. A. Weidenmüller, and G. Mantzouranis,

Phys. Rep. 22, 145 (1975).

[19] P. F. Bortignon, A. Bracco, D. Brink, and R. A. Broglia,
Phys. Rev. Lett. 67, 3360 (1991).

[20] D. Santonocito and Y. Blumenfeld, Eur. Phys. J. A 56, 279
(2020).

[21] A. Pálffy, P.-G. Reinhard, and H. A. Weidenmüller, Phys. Rev.
C 101, 034619 (2020).

[22] K. Yoshida, J. Kasagi, H. Hama, M. Sakurai, M. Kodama,
K. Furutaka, K. Ieki, W. Galster, T. Kubo, and M. Ishihara,
Phys. Lett. B 245, 7 (1990).

[23] B. Dietz and H. A. Weidenmüller, Phys. Lett. B 693, 316
(2010).

[24] H. A. Weidenmüller, Phys. Rev. Lett. 106, 122502 (2011).
[25] A. Pálffy and H. A. Weidenmüller, Phys. Rev. Lett. 112, 192502

(2014).
[26] A. Pálffy, O. Buss, A. Hoefer, and H. A. Weidenmüller,

Phys. Rev. C 92, 044619 (2015).
[27] M. Blann, Annu. Rev. Nucl. Sci. 25, 123 (1975).
[28] H. A. Weidenmüller (unpublished).
[29] V. Zelevinsky, B. Brown, N. Frazier, and M. Horoi, Phys. Rep.

276, 85 (1996).
[30] A. Pálffy and H. A. Weidenmüller, Phys. Lett. B 718, 1105

(2013).
[31] A. Pálffy and H. A. Weidenmüller, Nucl. Phys. A 917, 15

(2013).
[32] H. A. Weidenmüller, in Proceedings of the 2007 International

Workshop on Compound-Nuclear Reactions and Related Topics
- CNR* 2007, edited by J. Escher, F. S. Dietrich, T. Kawano,
and I. J. Thompson, AIP Conf. Proc. No. 1005 (AIP, New York,
2007), p. 151.

[33] A. Smerzi, A. Bonasera, and M. DiToro, Phys. Rev. C 44, 1713
(1991).

[34] C. Mahaux, P. Bortignon, R. Broglia, and C. Dasso, Phys. Rep.
120, 1 (1985).

[35] M. Pusa, Nucl. Sci. Eng. 169, 155 (2011).
[36] M. Pusa, Nucl. Sci. Eng. 182, 297 (2016).
[37] P. Obložinský, Nucl. Phys. A 453, 127 (1986).
[38] H. A. Bethe, Phys. Rev. 50, 332 (1936).

044616-13

https://doi.org/10.1017/hpl.2019.36
https://doi.org/10.1140/epjd/e2009-00172-y
https://doi.org/10.1140/epjd/e2009-00199-0
https://doi.org/10.1140/epjd/e2009-00081-1
https://doi.org/10.1126/science.1200292
https://doi.org/10.1038/ncomms2775
https://doi.org/10.3367/UFNe.0183.201305a.0449
https://doi.org/10.1063/1.4858960
https://doi.org/10.1063/1.4899136
https://www.eli-np.ro/
https://doi.org/10.5506/APhysPolB.50.1191
https://doi.org/10.1103/PhysRevC.77.044602
https://doi.org/10.1016/S0003-4916(86)80027-6
https://doi.org/10.1103/RevModPhys.36.1076
https://doi.org/10.1016/0375-9474(92)90249-J
https://doi.org/10.1103/RevModPhys.81.539
https://doi.org/10.1016/0370-1573(75)90028-9
https://doi.org/10.1103/PhysRevLett.67.3360
https://doi.org/10.1140/epja/s10050-020-00279-6
https://doi.org/10.1103/PhysRevC.101.034619
https://doi.org/10.1016/0370-2693(90)90155-Y
https://doi.org/10.1016/j.physletb.2010.07.061
https://doi.org/10.1103/PhysRevLett.106.122502
https://doi.org/10.1103/PhysRevLett.112.192502
https://doi.org/10.1103/PhysRevC.92.044619
https://doi.org/10.1146/annurev.ns.25.120175.001011
https://doi.org/10.1016/S0370-1573(96)00007-5
https://doi.org/10.1016/j.physletb.2012.11.037
https://doi.org/10.1016/j.nuclphysa.2013.08.011
https://doi.org/10.1103/PhysRevC.44.1713
https://doi.org/10.1016/0370-1573(85)90100-0
https://doi.org/10.13182/NSE10-81
https://doi.org/10.13182/NSE15-26
https://doi.org/10.1016/0375-9474(86)90033-3
https://doi.org/10.1103/PhysRev.50.332

