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Model calculation of the differential cross sections and angle-integrated cross sections of the emitted
triton for neutron-induced 6Li reactions at low incident energies
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Regarded as important for applications and theoretical studies, the differential cross sections of the emitted
triton for the neutron-induced 6Li reaction at low incident energies were calculated, based on the zero-range
distorted-wave Born approximation theory with the assumption of 6Li nucleus consisting of t +3 He or d + α.
As a function of widths and excited energies of the discrete energy levels, an effective excited energy formula
was proposed to describe their partial contributions. In addition, the optical model potential parameters, which
had been successfully used to reproduce the double-differential cross sections of the emitted neutrons in our
previous works in incident energy range from 5.0 to 20.0 MeV were extended in a low-energy range from 1.0 eV
to 3.0 MeV in this paper. The calculated results agreed well with the measured differential cross sections recently
published in 2020 and were further consistent with the measured angle-integrated cross sections. This indicates
that the knock-out process and heavy-particle knockout process were dominant in an energy range from 1.0 eV
to 3.0 MeV, whereas the shapes of the measured angular distributions in incident energy range from 0.1 to
1.0 MeV could be successfully explained by the Hauser-Feshbach model.
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I. INTRODUCTION

Lithium isotope 6Li is a structural material nucleus that
plays an important role in the fields of nuclear technology
and nuclear engineering. First, lithium is a major tritium
breeding material in a thermonuclear fusion reactor system
[1] whose performance is significantly affected by neutron-
induced 6Li reaction in its blankets. Second, the nuclear
reaction data of the neutron-induced 6Li reaction are widely
used in neutron spectrometry and calibration of detectors
[2]. The neutron-induced 6Li reaction in the intermediate
energy region (5.0–20.0 MeV) has been successfully calcu-
lated with the statistical theory of light nucleus reactions
(STLN) [3–6] in our previous works [7], which, however,
failed to explain the experimental data in the low incident
energy region [7]. Therefore, further theoretical investigations
in the low incident energy region are necessary to deepen
the understanding of the light nucleus reaction mechanism.
There are only (n, el ), (n, γ ), and (n, t) reaction channels
opened at incident neutron energy below 1 MeV for the
neutron-induced 6Li reaction. Moreover, contribution from
(n, t) reaction to total cross sections is dominant below
0.1 MeV. Thus, the knowledge of the (n, t) reaction is of great
significance to the theoretical study of the neutron-induced 6Li
reaction at low bombarding energies.

There are many experimental data of the differential cross
sections and angle-integrated cross sections for the 6Li(n, t)
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reaction in experimental nuclear reaction data [8]. According
to the new measurement reported in 2020 [9], the differen-
tial cross sections and angle-integrated cross sections for the
6Li(n, t) reaction are given in incident neutron energy range
from 1.0 eV to 3.0 MeV at 80 energy points. For 50 neutron
energy points below 0.1 MeV, the experimental data of the
differential cross sections for the 6Li(n, t) reaction are sys-
tematically available for the first time in this energy region.
These 50 energy points in the region from 1.0 eV to 0.1 MeV
are distributed at equal logarithm intervals; 20 energy points
in the region from 0.1 to 1.0 MeV are distributed at equal
logarithm intervals to better display the resonance peak from
0.1 to 0.4 MeV; and ten energy points in the region from 1.0
to 3.0 MeV are distributed with an equal separation of 0.2
MeV. Below 0.01 MeV, the measured angle-integrated cross
sections indicate a 1/v behavior. The resonance peak, which
does not appear in the measured angle-integrated cross sec-
tions below 0.1 MeV, first shows up at around 0.24 MeV due
to the 7.454-MeV energy level of the compound nucleus 7Li.

The differential cross sections of the 6Li(n, t) reaction
based on the R-matrix code EDA [10] at energy below 4 MeV
had been given in ENDF/B-VIII.0 [11] and JEFF-3.3 [12]. The
cross sections of the 6Li(n, t) reaction at energy up to 20 MeV
were taken from the fitting of experimental data by using the
R-matrix method in both libraries mentioned above. In JENDL-
4.0 [13,14], the differential cross sections of the 6Li(n, t) reac-
tion were not given. The cross sections of the 6Li(n, t) reaction
were calculated with the R-matrix method below 1.0 MeV.
Above 1.0 MeV, the experimental data were adopted, and the
evaluation curve was determined by a least-squares method.
The agreements of the results by the R-matrix method and
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experiments demonstrate that the R-matrix method was able
to fit the 6Li(n, t) reaction but failed to clearly explain the
reaction mechanisms. Therefore, a better understanding of the
reaction mechanism for the 6Li(n, t) reaction is necessary in
the low-energy region.

In addition to the R-matrix method, several other theories
were developed to analyze the 6Li(n, t) reaction. A micro-
scopic refined resonating group model calculation [15] that
uses semirealistic N-N potentials has been performed to ana-
lyze the 6Li(n, t) reaction. The cross-section resonances from
this calculation are generally too broad and not always in the
right positions [15]. The STLN [3–6] taking into account the
preequilibrium mechanism, and the equilibrium mechanism
has been successfully applied to calculate neutron-induced 6Li
reaction [7] in the incident energy range from 5.0 to 20.0 MeV
because the preequilibrium mechanism is dominant in this en-
ergy region [4,6]. But the STLN failed to explain the cross sec-
tions with resonance structures at energy below 3.0 MeV [7].
Based on the assumption of deuteron exchange, the S-matrix
theory has been applied to calculate the differential cross
sections of the 6Li(n, t) reaction. The obvious discrepancies
between the calculated results from the S-matrix theory and
the experimental data have been reported at low energies [16].

Newly measured differential cross sections [9] indicate
that the anisotropy of the emitted triton is noticeable above
100 eV and that the angular distributions are markedly raised
forward above 1 keV. So it is inspired that the direct re-
action model may be applicable to analyze the differential
cross sections of the emitted triton. Several light nucleus reac-
tions [17–24] have been successfully analyzed by the direct
reaction model based on the distorted-wave Born approx-
imation (DWBA) theory. Furthermore, many studies, such
as 12C(d, p), 13C(d, p), 13C(d, t), and 13C(d, α) reactions at
Ed = 0.41–0.81 MeV [25], the 13C(d, p) reaction at Ed =
0.2–0.35 MeV [26], the 12C(d, pγ ) reaction at Ed = 2.80,
3.23, and 3.70 MeV [27], the 7Li(d, d) and 7Li(d, p) reactions
at Ed = 1.0–2.6 MeV [28], and the 12C(d, p) and 10B(d, p)
reactions below Ed = 3.0 MeV [29], indicate that the DWBA
theory, under certain conditions, can be adopted to analyze
the light nucleus reactions even in a relatively low incident
energy region. Actually, the optical model potential (OMP)
and the DWBA theory can be applied if the energy levels
of the compound nucleus are broad enough to make appre-
ciable overlapping, which means the cross sections may vary
smoothly [25,30]. The cross sections of the 6Li(n, t) reaction
are, in fact, smooth at incident neutron energy below 0.1
MeV with no resonances. The energy levels of the compound
nucleus 7Li are broad except for the fourth and seventh energy
levels in incident energy below 3.0 MeV. An effective excited
energy formula, which is applied to describe the effects from
the energy levels of the compound nucleus 7Li, will be pro-
posed and discussed later.

One of the first questions concerning the direct reaction
model calculation is whether the mechanism is pickup or
knockout. A pickup model [31,32] has been used to calculate
the differential cross sections of the 6Li(n, t) reaction for sev-
eral neutron energies. The theoretical values of the differential
cross sections for large angles are far too low. In some cases,
the theoretical values of the differential cross sections for

large angles can be improved if the knockout model is applied
[33,34]. To date there is no significant evidence to identify
the dominant mechanism in the 6Li(n, t) reaction as pickup
or knockout. Unlike the pickup model, the knockout model
has been scarcely applied to the 6Li(n, t) reaction so far. Fur-
thermore, some successful applications of the knockout model
for the light nuclear reactions have been reported [34–37].
Consequently, it is essential to investigate the availability of
the knockout model for the 6Li(n, t) reaction.

The ground state of 6Li is dominated by two overlap-
ping configurations: t +3He and d + α [38]. Under these
two-cluster assumptions of the target nucleus, there are two
reaction processes in the knockout model, namely, the knock-
out process and the heavy-particle knockout process [35,39].
In the knockout process for the 6Li(n, t) reaction, the incident
neutron knocks out a triton from the target, so the effective
interaction is between the neutron and the triton. In the heavy-
particle knockout process for the 6Li(n, t) reaction, the α

particle in the target nucleus 6Li is supposed to be emitted
from the ground state, and the incident neutron is captured by
the deuteron to form the residual triton. The effective interac-
tion is, thus, between the incident neutron and the α particle.
In addition to the knockout process, the heavy-particle
knockout process based on DWBA or plane-wave Born ap-
proximation is also very important to explain the experimental
data of the differential cross sections [20,35,39–42]. In con-
clusion, based on the two-cluster assumption that 6Li consists
of t +3He or d + α, the knockout process and heavy-particle
knockout process are both considered in our DWBA calcula-
tion in the energy range from 1.0 eV to 3.0 MeV.

Due to the effects of the discrete excited energy levels
of the compound nucleus, the reaction cross sections with
resonance structures cannot be reproduced by the direct nu-
clear reaction model. In this paper, an effective excited energy
formula is proposed to consider the contributions from the en-
ergy levels of the compound nucleus. Four optimal parameters
contained in this formula are all obtained by the simulated
annealing algorithm [43].

The shapes of the measured differential cross sections,
presenting 90◦ approximate symmetry in the incident energy
range from 0.1 to 1.0 MeV, indicate that the contribution of the
compound nuclear reaction cannot be ignored in this energy
region. The Hauser-Feshbach model with width fluctuation
correction is a general and basic tool used for the analysis of
the compound nuclear reactions. However, the cross sections
with resonance peaks can hardly be adequately calculated
with the Hauser-Feshbach model since the statistical hypoth-
esis is not held in this energy region. Therefore, a tentative
method is used to analyze the experimental angular distribu-
tions without considering its absolute cross sections in the
energy range from 0.1 to 1.0 MeV. The contributions from
the knockout process, heavy-particle knock-out process, and
Hauser-Feshbach model are considered by this method for the
calculations of the angular distributions in the energy range
from 0.1 to 1.0 MeV.

In this paper, the knockout process and heavy-particle
knockout process based on zero-range DWBA theory are
considered in the analysis of the 6Li(n, t) reaction in the
energy range from 1.0 eV to 3.0 MeV. The Weierstrass
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formula [44] is employed to accurately calculate the Coulomb
phase shift. An effective excited energy formula is proposed
to describe the effects of energy levels of the compound
nucleus. In addition, the Hauser-Feshbach model is used to
improve the calculated results in the energy range from 0.1
to 1.0 MeV. The model calculations of the differential cross
sections and angle-integrated cross sections of the emitted
triton for neutron-induced 6Li reaction in the energy range
from 1.0 eV to 3.0 MeV are performed to reproduce the recent
experimental data [9]. The calculated results are also com-
pared with other available experimental data and the evaluated
data from ENDF/B-VIII.0 and JEFF-3.3

In Sec. II, the framework of theoretical models is intro-
duced. The comparisons of the calculated results with the
experimental data and evaluated data are given in Sec. III. The
summary and conclusion are given in Sec. IV.

II. THEORETICAL MODELS

A. Knockout model

For the knockout model, this is visualized as a process
in which the target A consists of a “core” C and an emit-
ted particle b, A = C + b, whereas the residual nucleus B is
composed of a core C and an incident particle a, B = C + a.
The conventional DWBA theory in the zero-range approxi-
mation has been developed to calculate the differential cross
sections and angle-integrated cross sections of the knockout
model. Angular momentum coupling and parity effects are
considered in the formulas, so their conservations are held.
In this paper, the knockout model is used to describe the
knockout process and heavy-particle knockout process. For
illustrating the physical picture, the fundamental formulas are
simply given in this subsection. The detailed description can
be found in Refs. [45–47].

To conveniently describe the formulas of the differen-
tial cross section and angle-integrated cross section for the
A(a, b)B reaction, some quantities are defined as follows:

A, B, a, b, and C are the nucleon numbers of the target
nucleus, residual nucleus, incident particle, emitted particle,
and core, respectively.

ka and kb are the wave numbers of the incident particle and
emitted particle, respectively.

EL is the kinetic energy of the incident particle in labora-
tory system (LS).

Ea and Eb are the kinetic energies of the incident particle
and emitted particle in the center-of-mass system (CMS),
respectively.

Ma, Mb, MA, and MB are the masses of the incident par-
ticle, emitted particle, target nucleus, and residual nucleus,
respectively.

α(k) is the spectroscopic factor.
G0 is the strength of a zero-range interaction.
Uk is the excited energy of the residual nucleus.
La, Ia, and Ja are the orbital, spin, and total angular mo-

mentum of the incident particle, respectively.
Lb, Ib, and Jb are the orbital, spin, and total angular mo-

mentum of the emitted particle, respectively.
l is the transfer angle momentum.
IA and IB are the spins of the target nucleus and residual

nucleus, respectively.
IC is the spin of the core.
The angular momentum coupling relations are given below,
Ja = Ia + La,
Jb = Ib + Lb,
l = La − Lb,
JBA = IB − IA,
Jba = Ib − Ia.
According to the conservation of angular momentum,
Ia + La + IA = Ib + Lb + IB.
JBA and l can be written as
JBA = Ja − Jb,
l = JBA + Jba.
πA and πB are the parities of the target nucleus and residual

nucleus, respectively.
The conservation of parity, δ[πAπB, (−1)l ].
The differential cross section can be expressed as

dσab(Ea, Eb, θ )

d�
= kb

ka

10

(2IA + 1)(2Ia + 1)

×α(k)G2
0

∑
JBA

σJBA (θ ), (1)

where σJBA (θ ) can be expressed as

σJBA (θ ) =
∑

mJBA mbma

∣∣∣∣∣
∑

JbaLaJaLbJbl

δ[πAπB(k), (−1)l ](−1)JBA−Ja−Jb Ĵba L̂aĴb〈La, 0, Ia, ma|Ja, ma〉

× 〈Lb,−mJBA , Ib, mb | Jb,−mJBA + mb〉〈Jb, mb − mJBA , JBA, mJBA − mb + ma|Ja, ma〉

×
⎧⎨
⎩

Ja Ia La

Jb Ib Lb

JBA Jba l

⎫⎬
⎭X LbJbLaJa

lJbaJBA
(−1)mJBA

[
(2Lb + 1)(Lb − mJBA )!

4π (Lb + mJBA )!

]1/2

P
mJBA
Lb

(θ )

∣∣∣∣∣, (2)

where mJBA , ma, and mb are the magnetic quantum numbers of JBA, Ia, and Ib, respectively. P
mJBA
Lb

(θ ) are the Legendre

polynomials. X LbJbLaJa
lJbaJBA

can be written as

X LbJbLaJa
lJbaJBA

= 1√
EaEb

L̂aL̂biLa+Lb−l〈Lb, 0, La, 0|l, 0〉B

A

∫
draχ

Jb
Lb

(
kb,

A

B
ra

)
χ

Ja
La

(ka, ra)F ZR
lJbaJBA

(ra), (3)
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where χ
Ja
La

(ka, ra) and χ
Jb
Lb

(kb,
A
B ra) are the distorted-wave functions of the incident channel and the ejected channel, respectively,

which are calculated by the optical model. F ZR
lJbaJBA

(ra) can be written as

F ZR
lJbaJBA

(ra) = 1√
4π

il−lα+lβ (−1)IA−IC+ jβ+2Ib+2Ia ÎAÎBl̂α ĵα l̂β ĵβ ĴBAĴba〈lα, 0, lβ, 0|l, 0〉

×W ( jα, IB, jβ, IA; IC, JBA)
( A

C

)3

Unα lα jα

( A

C
ra

)
Unβ lβ jβ

( A

C
ra

)⎧⎨
⎩

jα Ia lα
jβ Ib lβ

JBA Jba l

⎫⎬
⎭, (4)

where Unα lα jα ( A
C ra) and Unβ lβ jβ ( A

C ra) are the wave functions of
the target nucleus and residual nucleus, respectively. nα, lα ,
and jα are the radial quantum number, orbital angular momen-
tum, and total angular momentum of the emitted particle in the
target nucleus; nβ, lβ , and jβ are the radial quantum number,
orbital angular momentum, and total angular momentum of
the incident particle in the residual nucleus.

The definition
∧
j ≡ √

2 j + 1 is used in the above equations.
The angle-integrated cross section can be expressed as

σ ab(Ea, Eb) = α(k)G2
0

kb

ka

10

(2IA + 1)(2Ia + 1)

× 2π
∑
JBA

∫ 180

0
σJBA (θ ) sin θ dθ. (5)

B. Effective excited energy

Due to the influences of the discrete excited energy levels
of the compound nucleus, it is difficult to reproduce resonance
structures by the direct reaction model. Therefore, the energy
levels of the compound nucleus 7Li are systematically investi-
gated, and an effective excited energy formula is proposed to
describe their effects.

Considering the energy-momentum conservation in the
CMS, the total energies of the incident channel and emitted
channel can be expressed as

E∗ = MA

MC
EL + Bn, (6)

E∗ = MC

MB
εt + Bt + Uk, (7)

where Bn and Bt are the binding energies of the incident neu-
tron and emitted triton in the compound nucleus, respectively.
E∗ is the total energy of the compound system. EL and εt

are the energies of the incident neutron and emitted triton,
respectively. Uk is the excited energy of the residual nucleus,
and Uk is 0 in our calculations. MA, MB, and MC are the
masses of the target nucleus, residual nucleus, and compound
nucleus, respectively.

Considering the conservation of energy between the inci-
dent channel and the emitted channel, one can get Eq. (8),

MA

MC
EL + Bn = MC

MB
εt + Bt . (8)

Equation (8) can be further simplified as

εt = MB

MC

[
MA

MC
EL + (Bn−Bt )

]
or

EL = MC

MA

(MC

MB
εt + Bt−Bn

)
. (9)

To consider the energy levels of the compound nucleus 7Li,
a part of E∗, labeled as EC (k), is assumed to contribute to
the energy levels of the compound nucleus rather than triton
emission. However, the residual part of E∗, labeled as E∗

eff ,
totally contributes to the triton emission. Therefore, E∗ can be
written as

E∗ = EC (k) + E∗
eff , (10)

where E∗
eff is named as the effective excited energy.

According to Eq. (7), the relationship between the effective
excited energy and the effective triton emitted energy ε′

t can
be written as

E∗
eff = MC

MB
ε′

t + Bt . (11)

Inserting Eqs. (7) and (10) into Eq. (11), one can get
Eq. (12),

ε′
t = εt − MB

MC
EC (k). (12)

Considering the conservation of energy between the inci-
dent channel and the emitted channel, one can get Eq. (13),

MA

MC
E ′

L + Bn = MC

MB
ε′

t + Bt , (13)

where E ′
L is named as effective incident energy, contributing

to the direct reaction model calculation.
Inserting Eq. (12) into Eq. (13), one can get Eq. (14),

MA

MC
E ′

L + Bn = MC

MB

[
εt − MB

MC
EC (k)

]
+ Bt , (14)

then,

E ′
L = MC

MA

{
MC

MB

[
εt − MB

MC
EC (k)

]
+ Bt−Bn

}

= MC

MA

[
MC

MB
εt + (Bt−Bn) − EC (k)

]

= EL − MC

MA
EC (k). (15)
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Furthermore, it is assumed that EC (k) is a function of
widths and excited energies of the energy levels with an ap-
proximate Gaussian distribution form. EC (k) can be expressed
as

EC (k) =
∑

i

AiELexp

(
−4(E∗ − Ei )

2

9�2
i

)
, (16)

where Ei and �i are the energy and width of the ith discrete
energy level of the compound nucleus, respectively. Ai is
adjustable parameter.

According to our assumption Eq. (16), the expected value
of energy distribution is dependent on Ei. The standard devi-
ation of energy distribution is determined by the energy level
width �i. A low �i indicates that the energy of the energy
level tends to be close to the maximum value, whereas a high
�i indicates that the energy of the energy level is spread out
over a wide range.

The binding energy of the incident neutron in the com-
pound nucleus 7Li is 7.25 MeV, whereas the energies of the
first three energy levels of 7Li are less than 7 MeV. Moreover,
according to the calculations, the postseven energy levels have
no contribution to the cross sections for the 6Li(n, t) reaction
in incident neutron energy below 3.0 MeV. So only fourth–
seventh energy levels are adopted in the calculation.

The energy Ei (i = 4–7) and width �i (i = 4–7) of the
discrete energy levels of the compound nucleus are derived
from the experimental measurements [48–50] as fixed input
parameters. Ai (i = 4–7) are treated as adjustable parameters
determined by fitting the experimental data.

In terms of Eq. (16), Eq. (15) can be rewritten as

E ′
L = EL − MC

MA

∑
i=4

AiELexp

(
−4(E∗ − Ei )

2

9�2
i

)
. (17)

Equation (17), named the effective incident energy for-
mula, is employed in the knockout model.

C. Hauser-Feshbach model with width fluctuation correction

The general formula of the differential cross section for
the Hauser-Feshbach model is given in Refs. [51,52]. For the
incident particle and the outgoing particle with spins of 1

2 ,
the coefficients of the Legendre polynomials in the general
formula can be reduced to a recurrence formula [53]. The
differential cross section expressed by a recurrence formula
in the j- j coupling scheme can be written as

dσa,b

d�
= 1

8k2
a (2I0 + 1)

∑
LJπ l jl ′ j′

{
δ[π, (−1)lπ0]

× δ[π, (−1)l ′πk, ]QJ
L(I0I ′

k j j′)(2J + 1)

× Tl j (E )Tl ′ j′ (E ′)
T Jπ

PL(cos θ )W Jπ
al j,bl ′ j′

}
, (18)

where l and j are the orbital angular momentum and total
angular momentum of the incident particle, respectively. l ′
and j′ are the orbital angular momentum and total angular mo-
mentum of the emitted particle, respectively. I0 and I ′

k are the
spins of the target nucleus and residual nucleus, respectively.
π0 and π ′

k are the parities of the target nucleus and residual
nucleus, respectively. L is the transfer angle momentum. J
and π are the total angular momentum and parity of the
total reaction channel, respectively. ka is the wave number
of the incident particle. PL(cos θ ) represents the Legendre
polynomials. Tl j (E ), Tl ′ j′ (E ′), and T Jπ are the penetration
coefficients of the incident channel, the outgoing channel,
and the total reaction channel, respectively. W Jπ

al j,bl ′ j′ is the
width fluctuation correction factor. The recurrence formula of
QJ

L(I0I ′
k j j′) can be expressed as

QJ
L+2(I0I ′

k j j′) =
(

L + 1

L + 2

)2(2L + 5

2L + 1

)
[(2J + L + 3)(2J + L + 2)(2J − L − 1)(2J − L)(2 j + L + 2)

×(2 j − L)(2 j′ + L + 2)(2 j′ − L)]−1ωL+2(JI0 j)ωL+2(JI ′
k j′)QJ

L(I0I ′
k j j′), QJ

0(I0I ′
k j j′) = 1. (19)

The recurrence formula of ωL+2(JI0 j) can be expressed as

ωL+2(JI0 j) = αL+1αL − βL+1 − αL+1βL

αL−1
− αL+1βLβL−1

αL−1ωL(JI0 j)
,

ω2(JI0 j) = 6A(A + 1) − 8J (J + 1) j( j + 1),

A = I0(I0 + 1) − J (J + 1) − j( j + 1). (20)

The coefficients αL and βL can be written as

αL = 2L + 1

L + 1
[−2A − L(L + 1)],

βL = L

L + 1
[(2 j + 1)2 − L2][(2J + 1)2 − L2]. (21)

D. Optical model

The phenomenological spherical OMP is employed in
the calculations of the distorted wave functions. The OMP
adopted in this paper is the Woods-Saxon type [54] for the real
part, the Woods-Saxon, the derivative Woods-Saxon type for
the imaginary parts corresponding to the volume and surface
absorptions, respectively, and the Thomas form for the spin-
orbit part.

The energy dependence of the OMP depths is expressed as
follows:

The real part,

Vr (EL ) = V0 + V1EL + V2E2
L + V3

A − 2Z

A
+ V4

( Z

A1/3

)
.

(22)
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TABLE I. Neutron and triton parameters of the OMP obtained from Ref. [56]. Only two neutron parameters ar and rr are slightly adjusted
in this paper.

Parameter Neutron Triton Parameter Neutron Triton

V0 36.8312 155.56735 U2 −0.03566 0.13199
V1 −0.75812 −0.17920 Vso 6.24281 8.90004
V2 0.004462 −0.44748 rr 1.546276 2.13954
V3 −24 0.03094 rs 1.338627 1.50830
V4 0 6.93479 rv 1.99 1.97878
W0 0.323586 10.19150 rso 1.526276 1.93601
W1 1.030198 0.72566 ar 0.670343 1.20778
W2 −12.0 0.00021 as 0.340605 0.96054
U0 −0.75004 −8.80010 av 0.797172 0.92900
U1 0.75 3.24032 aso 0.736343 1.62509

The imaginary part of surface absorption,

Ws(EL ) = max

{
0,W0 + W1EL+W2

(A − 2Z )

A

}
. (23)

The imaginary part of volume absorption,

Wv (EL )= max 0,U0+U1EL+U2EL
2 , (24)

where Z and A are the charge number and mass number of the
target nucleus or residual nucleus, respectively. EL is the inci-
dent neutron energy in the LS. The radius of the real part, the
surface absorption, the volume absorption, and the spin-orbit
couple potential are rr, rs, rv , and rso. The diffuseness width
of the real part, the surface absorption, the volume absorption,
and the spin-orbit couple potential are ar, as, av , and aso. The
unit of the potential depth Vr, Ws, Wv , and Vso are in MeV;
the lengths rr, rs, rv, rso, ar, as, av , and aso are in fermis.
The unit of the energy EL is in MeV.

E. Simulated annealing algorithm

The four parameters Ai (i = 4–7) in the effective excited
energy formula (17) can be properly adjusted to fit the mea-
sured differential cross sections for the 6Li(n, t) reaction.
The simulated annealing algorithm [43], which automatically
searches the global minimum or maximum of the cost func-
tion, is used to obtain a set of optimal parameters in the model
calculation.

The best parameters are optimized with the usual min-
imization of the cost function χ2, which represents the
deviation of the calculated results from the experimental
values.

The cost function χ2 can be expressed as

χ2 = 1

N

∑
i

[σi,theo(θ ) − σi,exp(θ )]2. (25)

TABLE II. The parameters of phenomenological formula (17)
optimized with the simulated annealing algorithm.

A4 A5 A6 A7

0.2400386 0.0000345 0.7192635 0.0217633

The simulated annealing algorithm, which reportedly per-
formed well in the presence of a high number of variables
[55], is able to jump out of the local optimization and search
the next point. Therefore, it is reliable to obtain optimal values
of the parameters Ai (i = 4–7).

III. RESULTS AND ANALYSIS

The parameters of the OMP are rather critical in the
DWBA calculation. The neutron and triton parameters of
the OMP for the 6Li(n, t) reaction were searched automat-
ically by fitting the experimental data of total nonelastic
elastic-scattering cross sections and angular distributions in
the energy range from 5.0 to 20.0 MeV [56] by the APMN

code [57] in our previous works. The extrapolation had been
successfully applied to determine the parameters of the OMP
at low energies in the previous DWBA calculations of the
light nucleus reaction [25,30]. Therefore, the parameters of
the OMP for the 6Li(n, t) reaction in the energy range from
5.0 to 20.0 MeV [56] are extrapolated to the present DWBA
calculation. Only two neutron parameters (ar and rr) of the

FIG. 1. The excited energy dependence of Eq. (26) for the
6Li(n, t) reaction below 3 MeV. The positions of the fourth–seventh
energy levels of the compound nucleus are shown in this figure.
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FIG. 2. The incident energy dependence of the weighting coef-
ficients for the knockout process and the heavy-particle knockout
process in the energy range from 1 eV to 3 MeV.

OMP are slightly adjusted from 0.736 343 and 1.526 276
to 0.670 343 and 1.546 276, respectively. The neutron and
triton parameters of the OMP used in this paper are given in
Table I.

Based on the 1200 measured differential cross sections of
80 energy points from 1.0 eV to 3.0 MeV [9], the minimal
deviation between the experimental data and the model cal-
culation is searched by the simulated annealing algorithm. In
Table II for the optimal parameters of the effective excited
energy formula (17), the values of A4 and A6 are obviously
much larger than those of A5 and A7. It implies that the effects
from the fourth and sixth energy levels of the compound
nucleus on cross sections are larger than those of others. It
is reasonable because there is an obvious resonance peak
at around 0.24 MeV in the measured angle-integrated cross

FIG. 3. Comparison of the calculated angle-integrated cross sec-
tions of the emitted triton for the neutron-induced 6Li reaction with
the experimental data [9] and the evaluated data from ENDF/B-VIII.0
and JEFF-3.3.

FIG. 5. The same as Fig. 3 but for different experimental data
[9,79–88] as labeled in this figure.

sections due to the fourth energy level of the compound nu-
cleus. Because of the large energy width of the sixth energy
level (�6 = 2.752 MeV), there is no obvious resonance peak
caused by the sixth energy level in the angle-integrated cross
sections.

According to Eq. (17), the ratio of the effective incident
energy to the actual incident energy can be written as

E ′
L

EL
= 1 − MC

MA

∑
i=4

Aiexp

(
−4(E∗ − Ei )

2

9�2
i

)
. (26)

The excited energy E∗ dependence of the ratio for the
6Li(n, t) reaction in the incident energy range from 1.0 eV
to 3.0 MeV is shown in Fig. 1. It can be seen that the effects
of the energy levels of the compound nucleus cover the whole
excited energy region, and the effective incident energy is less
than one-third of the actual incident energy in this region.
Obviously, the ratio reaches its minimum value at 7.454 MeV
corresponding to the fourth energy level of the compound
nucleus.

FIG. 4. The same as Fig. 3 but incident energy only in 1.0–
3.0 MeV.
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FIG. 6. The same as Fig. 3 but incident energy only in 0.5–
3.0 MeV for different experimental data [9,79–88] as labeled in this
figure.

The spectroscopic factor is related to the preformation
probability of a cluster configuration in a nucleus [58]. For the
configuration of t +3 He in 6Li, the spectroscopic factors can
be found in Refs. [38,59–64]. The results are between values
of 0.1 and 0.9. Similarly, the published spectroscopic factors
for the configuration of d + α vary from 0.42 to 1.39 [59,65–
78]. Obviously, the spectroscopic factors extracted from the
different reaction types at different energies fail to agree with
each other. Due to lack of self-consistent research on the
spectroscopic factors for configurations of t +3 He and d + α,
the spectroscopic factors of the knockout process and heavy-
particle knockout process are assumed to be 1.0 in this paper.

In order to illustrate the relative contributions from these
two different reaction processes, the different values of the

FIG. 7. Comparisons of the calculated differential cross sections
of the emitted triton for the neutron-induced 6Li reaction with the
experimental data [9] and the evaluated data from ENDF/B-VIII.0 and
JEFF-3.3.

FIG. 8. The same as Fig. 7 but for different incident energies as
labeled in this figure.

weighting coefficients for the knockout process and heavy-
particle knockout process are used in this paper. The energy
dependence of the weighting coefficients is particularly
noticeable. In other words, the relative contributions from
these two processes are energy dependent. Furthermore, the
calculated results can precisely reproduce the experimental
data at most of the energy points if the weighting coefficients
represent a cubic function of energy. The relationship between
the weighting coefficients and the incident energy for the
knockout process can be, thus, expressed as

Pknockout = 1.0 − 0.64934EL + 0.27411E2
L

− 0.02608E3
L , EL � 3 MeV. (27)

FIG. 9. The same as Fig. 7 but for different incident energies as
labeled in this figure.
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FIG. 10. The same as Fig. 7 but for different incident energies as
labeled in this figure.

The weighting coefficients for the heavy-particle knockout
process are (1 − Pknockout ). The incident energy dependence of
the weighting coefficients in the energy range from 1.0 eV to
3.0 MeV is shown in Fig. 2.

The comparisons of the calculated results with the
measurements of the differential cross sections and angle-
integrated cross sections for the 6Li(n, t) reaction in the
incident neutron energy range from 1.0 eV to 3.0 MeV was
performed.

The comparisons of the calculated angle-integrated cross
sections with the recently measured data [9] and the evaluated
data from ENDF/B-VIII.0 and JEFF-3.3 for the 6Li(n, t) reaction
are shown in Figs. 3 and 4. In Fig. 3, the calculated results
below 0.1 MeV agree well with the measurement except in
the energy range from 1 to 100 eV due to the fluctuation of

FIG. 11. The same as Fig. 7 but for different incident energies as
labeled in this figure.

FIG. 12. The same as Fig. 7 but for different incident energies as
labeled in this figure.

neutron energy spectrum for experimental measurement in
this region [9]. The shape of experimental data above 0.1 MeV
can be reasonably reproduced by the calculated results,
whereas the calculations are slightly worse in the energy range
from 0.1 to 0.6 MeV. In Fig. 4, the evaluations are obviously
higher than our calculations as well as the experimental data
in the energy range from 1.0 to 3.0 MeV.

Previous measurements can be used as a consistency check
of the new measurement. So the available experimental data
of the angle-integrated cross sections for the 6Li(n, t) reaction
after 1977 [9,79–88] are given in Figs. 5 and 6. It can be seen
that the calculated cross sections are in agreement with most
of the experimental data.

FIG. 13. The same as Fig. 7 but for different incident energies as
labeled in this figure.
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FIG. 14. The same as Fig. 7 but for different incident energies as
labeled in this figure.

The comparisons of the calculated differential
cross sections with the available experimental data
[2,9,81,82,84,85,89–99] and the evaluated data from ENDF/B-
VIII.0 and JEFF-3.3 for the 6Li(n, t) reaction are shown in
Figs. 7–24. It can be seen that the calculated results agree very
well with the measurements and the evaluations below 0.1
MeV except some discrepancies in the energy range from 1 to
100 eV due to the fluctuation of the neutron energy spectrum
for experimental measurement as illuminated in Ref. [9]. The
reason of the discrepancies between the calculated results
and the experimental data in the energy range from 0.1 to 1.0
MeV is probably that the equilibrium reaction mechanism
was not taken into consideration. The calculated results above
1.0 MeV are reasonable in accordance with the experimental

FIG. 15. The same as Fig. 7 but for different incident energies
and different experimental data [9,84,89] as labeled in this figure.

FIG. 16. The same as Fig. 7 but for different incident energies
and different experimental data [9,90] as labeled in this figure.

data and the evaluated data except for small angles at some
energy points above 2.0 MeV. The discrepancies for small
angles grow with the increase in incident energy. The reason
could be the emergence of other reaction mechanisms, i.e.,
the preequilibrium mechanism [7].

It is worth mentioning that Engdahl’s experimental data at
0.0228 MeV from EXFOR [8] is lower than the calculated result
with two orders of magnitude, and the appropriate experimen-
tal data can be found in Ref. [84] and used in Fig. 15.

Figure 25 shows the partial differential cross sections of
the emitted triton from the knockout process and heavy-
particle knockout process at incident energies of 1.4, 2.4, and
3.0 MeV. The black solid lines denote the total differential
cross sections of the emitted triton for the neutron-induced 6Li

FIG. 17. The same as Fig. 7 but for different incident energies
and different experimental data [9,91,92] as labeled in this figure.
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FIG. 18. The same as Fig. 7 but for different incident energies
and different experimental data [9,91–94] as labeled in this figure.

reaction. The red dashed lines and blue dotted lines denote the
contributions from the knockout process and heavy-particle
knockout process, respectively. Obviously, the differential
cross sections of the emitted triton from the knockout process
have a forward trend. On the other hand, the heavy-particle
knockout process is found to dominate at backward angles.

Disagreements between the calculated differential cross
sections and the experimental data are mostly significant in the
energy range from 0.1 and 1.0 MeV. With the increase in the
incident energy, the shapes of the measured differential cross
sections change from the forward trend to approximate 90◦
symmetry and back to the forward trend again. Furthermore,
it is arduous to fit the shapes of the measured differential cross

FIG. 19. The same as Fig. 7 but for different incident energies
and different experimental data [9,91,92,94,95] as labeled in this
figure.

FIG. 20. The same as Fig. 7 but for different incident energies
and different experimental data [9,81,91,94,95] as labeled in this
figure.

sections in the energy range from 0.1 to 1.0 MeV by means
of the knockout process and heavy-particle knockout process.
The features displayed by the measured differential cross sec-
tions suggest that the equilibrium reaction is very important in
this energy region. The Hauser-Feshbach model is a general
and basic tool used in the analysis of the equilibrium reaction.
However, due to the statistical hypothesis inapplicable to this
energy region, the cross sections with the resonance peak
can hardly be adequately calculated by the Hauser-Feshbach
model, which fails to reproduce the measured angle-integrated
cross sections for the 6Li(n, t) reaction below 3.0 MeV. In
order to investigate the effect of the equilibrium reaction

FIG. 21. The same as Fig. 7 but for different incident energies
and different experimental data [9,81,91,96] as labeled in this figure.
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FIG. 22. The same as Fig. 7 but for different incident energies
and different experimental data [9,81,82,85,97,98] as labeled in this
figure.

mechanism, a tentative method is used to analyze the shapes
of the measured angular distributions without considering
its absolute cross sections in the energy range from 0.1 to
1.0 MeV. First of all, the absolute differential cross sections in
ENDF-6 formats can be represented as a Legendre polynomial
series [100],

dσ

d�
= σs(EL )

2π

∑
l=0

2l + 1

2
flPl (cos θ ), (28)

where σs(EL ) is the angle-integrated cross section at EL MeV.
And fl represents the coefficients of the Legendre polynomi-
als. The absolute differential cross sections calculated with

FIG. 23. The same as Fig. 7 but for different incident energies
and different experimental data [2,91,92,94–96] as labeled in this
figure.

FIG. 24. The same as Fig. 7 but for different incident energies
and different experimental data [2,85,91,96,99] as labeled in this
figure.

different reaction mechanisms can also be expressed as

dσ i

d�
= σ i

s (EL )

2π

∑
l=0

2l + 1

2
f i
l Pl (cos θ ), (29)

where i represents the type of reaction mechanism.
It is assumed that only the direct reaction mechanism

and the equilibrium reaction mechanism contribute to total
differential cross sections in the energy range from 0.1 to
1.0 MeV. The knockout process and heavy-particle knockout
process are both considered in the direct reaction mechanism.

FIG. 25. The partial differential cross sections of the emitted
triton for the neutron-induced 6Li reaction from the knockout process
and heavy-particle knockout process at incident energies of 1.4, 2.4,
and 3.0 MeV.
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TABLE III. The weighting coefficients σ
equ
s (EL )

σ total
s (EL )

of the equilibrium reaction in the incident energy range from 0.1 to 1.0 MeV.

En (MeV) 0.1 0.113 0.127 0.144 0.162 0.183 0.207 0.234 0.264 0.298

σ
equ
s (E )

σ total
s (E )

0.0 0.04 0.05 0.06 0.2 0.4 0.55 1.0 1.0 1.0

En (MeV) 0.336 0.379 0.428 0.483 0.546 0.616 0.695 0.785 0.886 1.0
σ

equ
s (E )

σ total
s (E )

1.0 1.0 0.9 0.8 0.77 0.7 0.45 0.42 0.4 0.35

Obviously, the total differential cross sections are equal to
the sum of the partial differential cross sections caused by
different reaction mechanisms,

dσ total

d�
= dσ dir

d�
+ dσ equ

d�
. (30)

With the insertion of Eq. (29) into Eq. (30), based on the
orthogonality and completeness of the Legendre polynomials,
the relationship between the coefficients of the Legendre poly-
nomials for different reaction mechanisms can be expressed as

f total
l = σ dir

s (EL )

σ total
s (EL )

f dir
l + σ

equ
s (EL )

σ total
s (EL )

f equ
l , (31)

where σ dir
s (EL )

σ total
s (EL ) and σ

equ
s (EL )

σ total
s (EL ) are weighting coefficients of

the direct reaction mechanism and equilibrium reaction
mechanism, respectively. The σ

equ
s (EL )

σ total
s (EL ) ’s are treated as pa-

rameters to represent the contribution from the equilibrium

reaction mechanism. Obviously, the σ dir
s (EL )

σ total
s (EL ) ’s are equal to

(1 − σ
equ
s (EL )

σ total
s (EL ) ).

According to the discussions mentioned above, Eqs. (29)
and (31) can be used to analyze the measured angular
distributions. By inserting Eq. (31) into Eq. (29), one can get

FIG. 26. The same as Fig. 7 but for different incident energies
and different experimental data [9,91,92] as labeled in this figure.

Eq. (32),

dσ total

d�
= σ total

s (EL )

2π

∑
l=0

2l + 1

2
Pl (cos θ )

×
[(

1 − σ
equ
s (EL )

σ total
s (EL )

)
f dir
l + σ

equ
s (EL )

σ total
s (EL )

f equ
l

]
.

(32)

The σ total
s (EL )’s are treated as fixed input parameters taken

from the measured angle-integrated cross sections. The pa-
rameters σ

equ
s (EL )

σ total
s (EL ) are determined by fitting the experimental

angular distributions.
By fitting the recent experimental data [9] in the energy

range from 0.1 to 1.0 MeV, the parameters σ
equ
s (EL )

σ total
s (EL ) are listed

in Table III.
As can be seen, the contribution from the equilibrium re-

action mechanism is much important in this energy region.
Moreover, the weighting coefficients of the equilibrium reac-
tion vary with the incident energy and peak at 0.234 MeV. The
calculated differential cross sections from Eq. (32) are com-
pared with the experimental data [9,81,91–95] in the energy
range from 0.1 to 1.0 MeV as shown in Figs. 26–29. It can be
seen that the theoretical values of the newly calculated differ-
ential cross sections increase at large angles and small angles
in 0.1–1.0 MeV, compared with the results by the DWBA.
And the minimum values appear at around 90◦. For the en-

FIG. 27. The same as Fig. 7 but for different incident energies
and different experimental data [9,91–94] as labeled in this figure.
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FIG. 28. The same as Fig. 7 but for different incident energies
and different experimental data [9,91,92,94,95] as labeled in this
figure.

ergy above 0.234 MeV, the comparisons of the calculated
results with the experimental data are considerably improved,
whereas the calculated results below 0.234 MeV are barely
changed. Obviously, there are almost uniform agreements be-
tween calculated results and experimental data in the energy
range from 0.298 to 1.0 MeV.

IV. SUMMARY AND CONCLUSION

With the combination of an effective excited energy for-
mula proposed in this paper, the knockout process and
heavy-particle knockout process based on zero-range DWBA
theory well reproduced most of the available experimental
data for the differential cross sections and angle-integrated
cross sections of the emitted triton for the neutron-induced
6Li reaction in the energy range from 1.0 eV to 3.0 MeV. The
effects of the energy levels of the compound nucleus were
reasonably taken into account. The weighting coefficients
illustrating the relative contributions from the knockout pro-
cess and heavy-particle knockout process, were determined
by fitting the recent experimental data [9]. Furthermore, we
found that the weighting coefficients could be expressed as a

FIG. 29. The same as Fig. 7 but for different incident energies
and different experimental data [9,81,91,94,95] as labeled in this
figure.

cubic function of energy. The shapes of the measured angular
distributions in the energy range from 0.1 to 1.0 MeV were
successfully explained by a tentative method through con-
sidering the contribution from the Hauser-Feshbach model.
This investigation indicates that the 6Li(n, t) reaction at low
incident neutron energies still proceeds mainly through the
direct reaction process, and the effects of the energy levels of
the compound nucleus must be considered in the theoretical
calculation. However, the contribution from the equilibrium
reaction should not be ignored in the incident neutron en-
ergy range from 0.1 to 1.0 MeV. These theoretical methods
are expected to analyze other light nucleus reactions at low
energies.

ACKNOWLEDGMENTS

We thank N. Wang, L. Ou, M. Liu, H. Y. Peng, Y. Liang, X.
D. Sun, X. F. Wu, C. Zhang, and Y. X. Qi for some valuable
suggestions. This work was supported by the National Natural
Science Foundation of China (Grants No. 12065003 and No.
11775166) and the Natural Science Foundation of Guangxi
(Grant No. 2019GXNSFDA185011).

[1] G. H. Zhang et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 566, 615 (2006).

[2] M. Devlin et al., International Conference on Nuclear Data for
Science and Technology, Nice, France, 2007 (EDP, Les Ulis,
France, 2008), p. 1243.

[3] X. J. Sun and J. S. Zhang, EPJ Web Conf. 146, 12026 (2017).
[4] X. J. Sun and J. S. Zhang, Phys. Rev. C 93, 014609 (2016).
[5] J. S. Zhang, Statistical Theory of Neutron Induced Reactions

of Light Nuclei, 2nd ed. (Science, Beijing, 2015) [in Chinese].
[6] J. Hu, X. Sun, J. Zhang, S. Wang, and Y. Han, Phys. Rev. C

101, 034616 (2020).
[7] J. S. Zhang and Y. L. Han, Commun. Theor. Phys. 36, 437

(2001).

[8] V. Semkova et al., EPJ Web Conf. 146, 07003 (2017).
[9] H. Y. Bai et al., Chin. Phys. C 44, 014003 (2020).

[10] G. M. Hale, Nucl. Data Sheets 109, 2812 (2008).
[11] D. A. Brown et al., Nucl. Data Sheets 148, 1 (2018).
[12] M. A. Kellett and O. Bersillon, EPJ Web Conf. 146, 02009

(2017).
[13] K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011).
[14] S. Chiba and K. Shibata, JAERI-M 88-164 (1988).
[15] G. M. Hale and H. M. Hofmann, in International Conference

on Nuclear Data for Science and Technology, edited by R. C.
Haight, M. B. Chadwick, T. Kawano, and Patrick Talou, AIP
Conf. Proc. No. 769 (AIP, New York, 2005), p. 75.

[16] H. Weigmann and P. Manakos, Z. Phys. A 289, 383 (1979).

044611-14

https://doi.org/10.1016/j.nima.2006.06.064
https://doi.org/10.1051/epjconf/201714612026
https://doi.org/10.1103/PhysRevC.93.014609
https://doi.org/10.1103/PhysRevC.101.034616
https://doi.org/10.1088/0253-6102/36/4/437
https://doi.org/10.1051/epjconf/201714607003
https://doi.org/10.1088/1674-1137/44/1/014003
https://doi.org/10.1016/j.nds.2008.11.015
https://doi.org/10.1016/j.nds.2018.02.001
https://doi.org/10.1051/epjconf/201714602009
https://doi.org/10.1080/18811248.2011.9711675
https://www-nds.iaea.org/publications/indc/indc-jpn-0117.pdf
https://doi.org/10.1007/BF01409389


MODEL CALCULATION OF THE DIFFERENTIAL CROSS … PHYSICAL REVIEW C 103, 044611 (2021)

[17] P. D. Kunz et al., Phys. Lett. B 112, 5 (1982).
[18] R. M. Devries, J. L. Perrenoud, and I. Slaus, Nucl. Phys. A

188, 449 (1972).
[19] T. Y. Li and S. K. Mark, Can. J. Phys. 47, 257 (1969).
[20] J. F. Cavaignac, N. Longequeue, and T. Honda, Nucl. Phys. A

167, 207 (1971).
[21] S. E. Abdel-Kariem, Turk. J. Phys. 30, 1 (2006).
[22] A. A. Cowley, Int. J. Mod. Phys. E 28, 1950050 (2019).
[23] S. Chiba et al., J. Nucl. Sci. Technol. 22, 771 (1985).
[24] S. Chiba et al., Phys. Rev. C 58, 2205 (1998).
[25] G. D. Putt, Nucl. Phys. A 161, 547 (1971).
[26] A. A. Naqvi, M. N. Nagadi, S. Kidwai, Khateeb-ur-Rehman,

Phys. Rev. C 65, 054615 (2002).
[27] D. G. Gerke et al., Nucl. Phys. 75, 609 (1966).
[28] J. M. Lombaard and E. Friedland, Z. Physik. 268, 413 (1974).
[29] R. V. Poore et al., Nucl. Phys. A 92, 97 (1967).
[30] P. W. Chudleigh, C. K. Gowers, and E. G. Muirhead, Nucl.

Phys. A 123, 114 (1969).
[31] J. Dabrowski and J. Sawicki, Phys. Rev. 97, 1002 (1955).
[32] T. I. Kopaleishvili, Sov. Phys. JETP 6, 606 (1958).
[33] T. S. Cheng, Nuclear Physics for Low and Medium High

Energy, (Peking University Press, Beijing, 1997) [in Chinese].
[34] M. Y. M. Hassan, E. H. Ismail, and A. Rabie, Z. Phys. A: At.

Nucl. 285, 37 (1978).
[35] M. Tanifuji, Nucl. Phys. 40, 357 (1963).
[36] D. R. Ober and O. E. Johnson, Phys. Rev. 170, 924 (1968).
[37] B. B. Srivastava, S. W. Cosper, and O. E. Johnson, Phys. Rev.

153, 1221 (1967).
[38] N. Burtebayev et al., Nucl. Phys. A 909, 20 (2013).
[39] G. Gambarini et al., Nucl. Phys. A 126, 562 (1969).
[40] T. Honda and H. Ui, Nucl. Phys. 34, 593 (1962).
[41] T. Honda et al., Phys. Lett. 10, 99 (1964).
[42] T. Honda et al., Nucl. Phys. 62, 561 (1965).
[43] A. Corana et al., ACM Trans. Math. Software 13, 262 (1987).
[44] R. M. Young, An Introduction to Nonharmonic Fourier Series,

(Academic, New York, 1980).
[45] G. R. Satcher, Direct Nuclear Reaction, (Oxford University

Press, New York, 1983).
[46] G. R. Satcher, Nucl. Phys. 55, 1 (1964).
[47] J. Y. Park, Prog. Theor. Phys. 30, 45 (1963).
[48] D. R. Tilley et al., Nucl. Phys. A 541, 1 (1992).
[49] D. R. Tilley et al., Nucl. Phys. A 708, 3 (2002).
[50] D. R. Tilley et al., Nucl. Phys. A 745, 155 (2004).
[51] W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
[52] J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258

(1952).
[53] Z. D. Su et al., At. Energ. Sci. Technol. 13, 445 (1979).
[54] F. D. Becchetti, Jr. and G. W. Greenlees, Phys. Rev. 182, 1190

(1969).
[55] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science 220,

671 (1983).
[56] G. C. Chen et al., Nucl. Sci. Eng. 163, 272 (2009).
[57] Q. B. Shen, Nucl. Sci. Eng. 141, 78 (2002).
[58] Sh. Hamada, N. Burtebayev, and N. Amangeldi, Int. J. Mod.

Phys. E 23, 1450061 (2014).
[59] R. G. Lovas et al., Nucl. Phys. A 474, 451 (1987).
[60] A. M. Young, S. L. Blatt, and R. G. Seyler, Phys. Rev. Lett.

25, 1764 (1970).
[61] E. Ventura, C. C. Chang, and W. E. Meyerhof, Nucl. Phys. A

173, 1 (1971).

[62] V. N. Bragin et al., Phys. Atom. Nucl. 44, 312 (1986).
[63] N. Burtebaev et al., Phys. Atom. Nucl. 58, 540 (1995).
[64] I. V. Kurdyumov, V. G. Neudatchin, and Yu. F. Smirnov, Phys.

Lett. B 31, 426 (1970).
[65] W. Dollhopf et al., Phys. Lett. B 58, 425 (1975).
[66] D. Albrecht et al., Nucl. Phys. A 338, 477 (1980).
[67] R. G. H. Robertson, P. Dyer, R. A. Warner, R. C. Melin, T. J.

Bowles, A. B. McDonald, G. C. Ball, W. G. Davies, and E. D.
Earle, Phys. Rev. Lett. 47, 1867 (1981).

[68] P. G. Roos et al., Phys. Rev. C 15, 69 (1977).
[69] P. G. Roos et al., Nucl. Phys. A 257, 317 (1976).
[70] G. R. Plattner, M. Bornand, and K. Alder, Phys. Lett. B 61, 21

(1976).
[71] D. R. Lehman and M. Rajan, Phys. Rev. C 25, 2743 (1982).
[72] V. I. Kukulin et al., Nucl. Phys. A 417, 128 (1984).
[73] R. Beck, F. Dickmann, and R. G. Lovas, Nucl. Phys. A 446,

703 (1985).
[74] K. Varga and R. G. Lovas, Phys. Rev. C 43, 1201 (1991).
[75] A. Csoto and R. G. Lovas, Phys. Rev. C 46, 576 (1992).
[76] H. Walliser and Y. C. Tang, Phys. Lett. B 135, 344 (1984).
[77] T. Yoshimura et al., Nucl. Phys. A 641, 3 (1998).
[78] N. Burtebaev et al., Phys. Atom. Nucl. 59, 29 (1996).
[79] L. E. Kirsch et al., Nucl. Instrum. Methods Phys. Res., Sect. A

874, 57 (2017).
[80] C. Romano et al., Nucl. Instrum. Methods Phys. Res., Sect. A

562, 771 (2006).
[81] G. H. Zhang et al., Nucl. Sci. Eng. 153, 41 (2006).
[82] G. H. Zhang et al., Nucl. Sci. Eng. 143, 86 (2003).
[83] M. Drosg, D. M. Drake, and J. Masarik, Nucl. Instrum.

Methods Phys. Res., Sect. B 94, 319 (1994).
[84] J. C. Engdahl, G. F. Knoll, and J. C. Robertson, Nucl. Sci. Eng.

78, 44 (1981).
[85] C. M. Bartle, Nucl. Phys. A 330, 1 (1979).
[86] R. L. Macklin, R. W. Ingle, and J. Halperin, Nucl. Sci. Eng.

71, 205 (1979).
[87] G. P. Lamaze, R. A. Schrack, and O. A. Wasson, Nucl. Sci.

Eng. 68, 183 (1978).
[88] C. Renner et al., Bull. Am. Phys. Soc. 23, 526 (1978).
[89] C. Mahaux and G. Robaye, Nucl. Phys. 74, 161 (1965).
[90] C. Beets et al., Nucl. Phys. 69, 145 (1965).
[91] J. C. Overley, R. M. Sealock, and D. H. Ehlers, Nucl. Phys. A

221, 573 (1974).
[92] S. J. Bame Jr and R. L. Cubitt, Phys. Rev. 114, 1580 (1959).
[93] Y. Baudinet-Robinet et al., J. Phys. 24, 803 (1963) [in French].
[94] L. E. Darlington et al., Phys. Rev. 90, 1049 (1953).
[95] G. Robaye, L. Winand, and J. M. Delbrouck-Habaru,

European-American Nuclear Data Committee Documents,
No. 50-S, 1, 18 (1965), http://www-nds.ciae.ac.cn/exfor/
servlet/X4sDownloadPdf?x4coding=2&x4ref=R,EANDC-
50-S,(1),(18),1965.

[96] J. B. Weddell and J. H. Roberts, Phys. Rev. 95, 117 (1954).
[97] V. P. Perelygin and K. D. Tolstov, Journal of Nuclear Energy.

Parts A/B. Reactor Science and Technology 16, 497 (1962).
[98] M. Drosg, Nucl. Sci. Eng. 183, 143 (2016).
[99] D. Rendic et al., Zentralinst. f. Kernforschung Rossendorf

Reports, No.130, p.143 (1967), http://www-nds.ciae.ac.cn/
exfor/servlet/X4sDownloadPdf?x4coding=2&x4ref=R,ZFK-
130,143,196712.

[100] A. Trkov and D. A. Brown, Brookhaven National Laboratory
Report No. BNL-203218-2018-INRE, 2018.

044611-15

https://doi.org/10.1016/0370-2693(82)90893-0
https://doi.org/10.1016/0375-9474(72)90213-8
https://doi.org/10.1139/p69-034
https://doi.org/10.1016/0375-9474(71)90594-X
https://journals.tubitak.gov.tr/physics/issues/fiz-06-30-1/fiz-30-1-1-0412-7.pdf
https://doi.org/10.1142/S0218301319500502
https://doi.org/10.1080/18811248.1985.9735728
https://doi.org/10.1103/PhysRevC.58.2205
https://doi.org/10.1016/0375-9474(71)90386-1
https://doi.org/10.1103/PhysRevC.65.054615
https://doi.org/10.1016/0029-5582(66)90982-5
https://doi.org/10.1007/BF01668918
https://doi.org/10.1016/0375-9474(67)90678-1
https://doi.org/10.1016/0375-9474(69)90893-8
https://doi.org/10.1103/PhysRev.97.1002
http://jetp.ac.ru/cgi-bin/dn/e_006_03_0606.pdf
https://doi.org/10.1007/BF01410221
https://doi.org/10.1016/0029-5582(63)90280-3
https://doi.org/10.1103/PhysRev.170.924
https://doi.org/10.1103/PhysRev.153.1221
https://doi.org/10.1016/j.nuclphysa.2013.04.008
https://doi.org/10.1016/0375-9474(69)90847-1
https://doi.org/10.1016/0029-5582(62)90009-3
https://doi.org/10.1016/0031-9163(64)90594-3
https://doi.org/10.1016/0029-5582(65)90581-X
https://doi.org/10.1145/29380.29864
https://doi.org/10.1016/0029-5582(64)90124-5
https://doi.org/10.1143/PTP.30.45
https://doi.org/10.1016/0375-9474(92)90635-W
https://doi.org/10.1016/S0375-9474(02)00597-3
https://doi.org/10.1016/j.nuclphysa.2004.09.059
https://doi.org/10.1103/PhysRev.87.366
https://doi.org/10.1103/RevModPhys.24.258
http://www.aest.org.cn/CN/abstract/abstract14209.shtml
https://doi.org/10.1103/PhysRev.182.1190
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.13182/NSE163-272
https://doi.org/10.13182/NSE01-19CCA
https://doi.org/10.1142/S021830131450061X
https://doi.org/10.1016/0375-9474(87)90626-9
https://doi.org/10.1103/PhysRevLett.25.1764
https://doi.org/10.1016/0375-9474(71)90744-5
https://doi.org/10.1016/0370-2693(70)90143-7
https://doi.org/10.1016/0370-2693(75)90579-1
https://doi.org/10.1016/0375-9474(80)90045-7
https://doi.org/10.1103/PhysRevLett.47.1867
https://doi.org/10.1103/PhysRevC.15.69
https://doi.org/10.1016/0375-9474(76)90635-7
https://doi.org/10.1016/0370-2693(76)90551-7
https://doi.org/10.1103/PhysRevC.25.2743
https://doi.org/10.1016/0375-9474(84)90327-0
https://doi.org/10.1016/0375-9474(85)90638-4
https://doi.org/10.1103/PhysRevC.43.1201
https://doi.org/10.1103/PhysRevC.46.576
https://doi.org/10.1016/0370-2693(84)90290-9
https://doi.org/10.1016/S0375-9474(98)00432-1
https://doi.org/10.1016/j.nima.2017.08.046
https://doi.org/10.1016/j.nima.2006.02.052
https://doi.org/10.13182/NSE153-41
https://doi.org/10.13182/NSE03-A2320
https://doi.org/10.1016/0168-583X(94)95371-6
https://doi.org/10.13182/NSE81-A19605
https://doi.org/10.1016/0375-9474(79)90532-3
https://doi.org/10.13182/NSE79-A20412
https://doi.org/10.13182/NSE78-A27288
http://www-nds.ciae.ac.cn/exfor/servlet/X4sDownloadPdf?x4coding=2&x4ref=J,BAP,23,526(BI3),197804
https://doi.org/10.1016/0029-5582(65)90255-5
https://doi.org/10.1016/0029-5582(65)90508-0
https://doi.org/10.1016/0375-9474(74)90484-9
https://doi.org/10.1103/PhysRev.114.1580
https://doi.org/10.1051/jphys:019630024011080301
https://doi.org/10.1103/PhysRev.90.1049
http://www-nds.ciae.ac.cn/exfor/servlet/X4sDownloadPdf?x4coding=2&x4ref=R,EANDC-50-S,(1),(18),1965
https://doi.org/10.1103/PhysRev.95.117
https://doi.org/10.1016/0368-3230(62)90165-9
https://doi.org/10.13182/NSE15-65
http://www-nds.ciae.ac.cn/exfor/servlet/X4sDownloadPdf?x4coding=2&x4ref=R,ZFK-130,143,196712

