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New empirical formula for nucleon-induced nonelastic cross sections based on two physical effects

Masahiro Nakano ,1 Yuji Yamaguchi ,2 and Yusuke Uozumi 3

1New Medical Statistics Research Institute, 1245-11 Tateiwa, Iizuka, Fukuoka 820-0003, Japan
2J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan

3Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

(Received 10 December 2020; revised 13 March 2021; accepted 24 March 2021; published 13 April 2021;
corrected 28 April 2021)

A simple universal parametrization of nucleon-induced nonelastic cross sections is presented for a wide range
of targets that is valid for the entire energy range from zero to a few gigaelectronvolts. We review several early
studies by Letaw et al., Pearlstein, Shen, Niita et al., and Tripathi et al., and our proposed approach differs
completely from the formulas therein. The present formula is constructed based on recently discovered physical
effects involving Coulomb repulsion and the discrete-level constraint and is based on the assumption that cross
sections are continuous in both incident energies and targets. Our formula is given by a set of smooth functions of
the mass number, which differs from the best formula to date by Tripathi et al. To compare our formula precisely
with that by Tripathi et al., we proposed the relative error index, which indicates the relative error between
experimental data and predicted values. For the 12C, 27Al, 56Fe, natAg, natCd, natSn, 197Au, and 208Pb targets used
in this paper, the corresponding relative error indices show clearly that our formula is superior to that by Tripathi
et al.
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I. INTRODUCTION

Defined as the total cross section minus the elastic-
scattering cross section, the nucleon-induced nonelastic cross
section (sometimes referred to as the total reaction cross
section) includes all the reactions other than elastic scat-
tering, such as particle emissions, inelastic scatterings, and
absorptions. Nonelastic cross-section data below several gi-
gaelectronvolts (GeV) are useful in many applications, such
as designing nuclear plants, estimating medical treatment ex-
posures, and material testing by cosmic rays. As these and
related applications have become more sophisticated, a cor-
responding need has developed for detailed analysis tools
in the form of both reliable theoretical models and accurate
empirical formulas.

There are several dynamic models for describing nucleon-
induced reactions, such as the intranuclear cascade (INC)
model [1], quantum molecular dynamics [2], and antisym-
metrized molecular dynamics [3]. Of these, INC models
have been developed for better theoretical explanations of
experimental data [4–8]. Recently, we have further developed
the INC model to describe reaction data at lower energies
[9–12], especially below 100 MeV including quantum effects
[13–15]. As explained later, the results of those studies are
used in the present paper.

Meanwhile, general empirical formulas to express nonelas-
tic cross sections precisely are useful for phenomenological
descriptions of data for any target and any incident energy, and
there have been several such formulas for nucleon-induced
nonelastic cross sections [16–21]. Those by Pearlstein [17],
Shen [18], and Niita et al. [19] are old-fashioned formulas that

were not aimed at fitting cross sections below the Coulomb
barrier, for example, below 10 MeV. However, since then there
has been an accumulation of cross-section data from below
the Coulomb barrier, thereby making that restriction obsolete.
Therefore, in this paper we widen the range of incident energy
to be from zero to a few GeV.

To construct our empirical formula, we use a completely
different method from that used for the conventional formulas.
It has been pointed out that quantum effects are important
when applying the INC model at very low energies below the
Coulomb barrier [13–15], and so we use that knowledge when
creating our empirical formula.

The aim of this paper is to derive a new empirical for-
mula for nucleon-induced nonelastic cross sections based on
knowledge obtained from analyzing the INC model and in
doing so show another way to construct empirical formulas.
The derived empirical formula should be universal for any
target mass and any incident energy and more precise than
the conventional formulas. It is also important that the derived
formula be expressed by differentiable functions, which is
different from the formula by Tripathi et al. [21].

The proposed formula is aimed at being applicable to a
wide range of targets from 12C to 208Pb and incident energies
from zero to 2000 MeV, at least. The model parameters are
adjusted to reproduce the nucleon-induced nonelastic cross
sections of 12C, 27Al, 56Fe, and 208Pb targets, given that these
nuclei were chosen as the targets of the INC model calcula-
tions in Refs. [13–15]. To test the parameters further, natAg,
natCd, natSn, and 197Au targets are added, although data above
100 MeV are scarce for these targets.
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II. CONVENTIONAL EMPIRICAL FORMULAS

A. Formula by Letaw et al. and Pearlstein

For neutron-induced nonelastic cross sections, Letaw et al.
[16] constructed a formula to reproduce the asymptotic value
at high energies of a few GeV. The expression is very simple
and comprises separate functions of the target mass number A
and the incident energy E [16],

σn = 45 A0.7 f n(A)gn(E ),

f n(A) = 1 + 0.016 sin [5.3 − 2.63 ln (A)], (1)

gn(E ) = 1 − 0.62 exp
(

− E

200

)
sin(10.9E−0.28).

The cross sections and the incident energy are expressed
in units of millibarns (mb) and megaelectronvolts (MeV),
respectively. Although Eq. (1) was derived originally for
proton-induced nonelastic cross sections, Pearlstein [17]
claimed that at energies above the Coulomb barrier, the
neutron-induced nonelastic cross section is about the same
as the proton-induced one in which case Eq. (1) can also be
used for neutron nonelastic cross sections above the Coulomb
barrier.

B. Formula by Shen

For proton-induced nonelastic cross sections, based on
Eq. (1) by Letaw et al. [16], Shen [18] generalized the formula

by Pearlstein [17] to include the Coulomb effect by incorpo-
rating a multiplicative dumping function hp(A, E ) due to the
Coulomb effect,

σ p = 42.6 A0.701 f p(A)gp(E )hp(A, E ),

f n(A) = 1 + 0.0144 sin[3.63 − 2.82 ln (A)],

gp(E ) = 1 − 0.67 exp
(

− E

150

)
sin(12E−0.289),

hp(A, E ) = 1/[1 + (0.018A2 − 1.15A)E−2]. (2)

Here, the function hp(A, E ) should be determined carefully
because it has singular behavior. It gives negative values when
A < 64 and E2 < abs(0.018A2 − 1.15A).

C. Formula by Niita et al.

Following the formulas by Pearlstein [17] and Shen [18],
Niita et al. [19] produced a generalized formula for low en-
ergies by incorporating multiplicative functions of the target
mass and incident energy. The cross sections for neutron in-
jection are given as

σ n =
{
σHE(A, E )hHE(A, E ) (E � Ec)

σLE(A, E )hLE(A, E ), (E < Ec),

σHE(A, E ) = 45A0.7 f n(A)gn(E ), (3)

where f n(A) and gn(E ) are as expressed in Eq. (1). The func-
tions hHE and hLE are given as follows:

hHE(A, E ) = 1 + {[pσLE(A, Ec) + (1 − p)1.1σHE(A, Ec)]σHE(A, Ec)−1 − 1} exp{− min [50, 0.1(E − Ec)]},
σLE(A, E ) = 1000π [0.14A1/3 + 0.122(A + 1)A−1

√
14.1E−1]2,

hLE(A, E ) = 1 + {[pσLE(A, Ec) + (1 − p)1.1σHE(A, Ec)]σLE(A, Ec)−1 − 1} exp{− min [50, 0.1(Ec − E )]},
Ec = 0.0575A + 12.31,

p = min(1, 0.684 + 1.327 × 10−3A), (4)

where min(a, b) indicates the smaller of a and b. The cross sections for proton injection are given by multiplying by the Coulomb
factor fCoul,

σ p = σn fCoul. (5)

The Coulomb factor fCoul is unity above 200 MeV, and below 200 MeV it is written as

fCoul = fC1 fC2 q,

fC1 = (1 + exp{max[−50, (ECoul − E )(3.816 + 0.1974Z )−1]})−1,

fC2 = (1 + exp{max[−50, 0.5(ECoul − E )]})−1, (6)

q =
{

1 − exp{− min[50, E2(0.07246Z + 6.058)−2]} (Z � 10),
1 − exp{−min(50, E2/144)} (Z < 10),

ECoul = 1.44Z (8.2 + 0.68A1/3)−1,

where Z is the atomic number and max(a, b) indicates the
larger of a and b.

D. Formula by Tripathi et al.

Starting from the nonelastic cross section in the form given
by Bradt and Peters [20], Tripathi et al. [21] developed a

formula that they claimed gave better agreement between
calculated values and experimental data than could any earlier
formula. However, the formula by Tripathi et al. [21] is very
complicated, has many separate cases depending on mass A
and charge Z of the target, and does not depend smoothly
on target mass and energy. Because it is lengthy, the detailed
expressions of the formula are given in the Appendix.
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III. PROPOSED FORMULA BASED ON THE INC MODEL

Our strategy for formula development differs completely
from those of the aforementioned pioneering studies. It is
based on the physics of nucleon-induced reactions revealed
by INC model analysis, which has been extended recently to
reproduce cross sections at low energies below 100 MeV. It
has been noted that two effects are important in this energy
region, namely, that due to the discrete-level constraint (DLC)
and that due to the Coulomb effect for proton injection, and
it has been found that the DLC effect works for both proton-
and neutron-induced reactions [15].

Here, we explain the two physical effects which were found
in the extended INC model proposed recently [13–15]. The
DLC effect is introduced to explain the limited freedom of
excitation of the target nucleus induced by a nucleon with
very low incident energy. When a very low-energy nucleon
collides, the target cannot be excited unless a discrete excited
state corresponding to the transition energy exists. Such a
low-energy transition is then strongly restricted, which leads

to a sharp drop in the cross section at very low incident energy.
This mechanism arises from quantum effects due to the few
discrete levels at very low excitation energies. Thus, we refer
to this effect as the DLC effect. For both neutron and proton
injections, the DLC effect is confined to below ∼50 MeV for
light 12C nuclei and to below 70 MeV for heavy 208Pb nuclei.
Importantly, the DLC effect is common for both neutron and
proton injections, whereas the Coulomb effect appears only
for proton injection. Herein, we follow these conclusions, and
so each term of the proposed formula has physical meaning. If
the two effects disappear completely, then a “bone structure”
(as which we refer to) appears in the form of a gradually
decreasing function of the incident energy, which comes from
the nature of the bare two-body cross sections [22]. The target
energy region of our formula is 0–2000 MeV as shown in
this paper with experimental data, and moreover to 10 GeV
if expanded without experimental data.

The neutron- and proton-induced nonelastic cross sections
σn and σ p, respectively, are given by

σn = Sn
bone f DLC f 2G + σreso f 2G + σasy for n injection,

σ p = Sp
bone f DLC f Coul f 2G + σreso f 2G + σasy for p injection, (7)

where Sbone represents the cross section of the bone structure,
fDLC is the factor indicating the DLC effect of the target,
and σreso is the cross section originating from resonances,
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FIG. 1. Comparison between formula-predicted values by the
three formulas and data of neutron-induced nonelastic cross sections
for 12C (red), 27Al (blue), 56Fe (green), and 208Pb (brown) below 100
MeV. The solid red lines indicate our simulation results, the dashed
blue lines indicate those by Tripathi et al. and the dotted green lines
indicate those by Pearlstein. Note that for 12C the experimental error
bars are present but are covered by the plotting symbols.

such as 33� in the high-energy region above 1000 MeV.
The factor fDLC has the same form for both neutron and
proton injections, and σreso is also assumed to be common
for neutrons and protons, but fCoul representing the Coulomb
effect is for protons only. As shown later, the corrections
f 2G and σasy are necessary when the formula is used for
calculations with incident energy greater than 2000 MeV;
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FIG. 2. As in Fig. 1 but with incident energies in the range of
0–2000 MeV for neutron-induced nonelastic cross sections.
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FIG. 3. Comparison between formula-predicted values and data for neutron-induced nonelastic cross sections for natAg, natCd, natSn, and
197Au below 100 MeV. The solid red lines indicate our simulation results, the dashed blue lines indicate those by Tripathi et al., and the dotted
green lines indicate those by Pearlstein.

for calculations below 2000 MeV, results are the same as those
as f 2G = 1 and σasy = 0.

The bone structure Sn
bone for neutron injection is given as

follows:

Sn
bone = S1 f1 f2,

S1 = K1

{
1 − 0.1 exp

[
−

(
E − 250

300

)2]}

×
{

1 + 0.09 exp
[
−

(
E − 60

40

)2]}
,

K1 = 178(A + 30)0.385exp
(

−E1.07

30

)
f 3 + C1 + C2,

C1 = 10π (A1/3 + 0.17A0.42)2,

C2 = 6A0.5exp
[
−

(
E − 400

80

)2]

+ 6A0.5exp
[
−

(
E − 600

400

)2]
,

f 1 = 1 + 0.1 exp
[
−

(
A − 50

20

)2]
,

f 2 = 1+0.07 exp
[
−

(
A−60

20

)2]
exp

[
−

(
E − 700

200

)2]
,

f 3 =
{

1 + A1.2

400
exp

[
−

(
E − 70

50

)2]}

× {1 − 0.06(A − 45)exp[−0.01(A − 41)2]}, (8)

where E (MeV) is the incident energy, A is the mass number,
and the cross section is given in units of mb. The DLC factor
fDLC is given by

f DLC = 1/{1 + exp[−(E − E1)]}

× 1

/{
1 + f 4exp

[
−

(
E − 10

10

)]}
,
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FIG. 4. As in Fig. 3 but with incident energies in the range of 0–2000 MeV for neutron-induced nonelastic cross sections.

E1 =
(

1.95 + 180

A1.4

)[
1 − 0.85 exp

(
− (A − 100)2

200

)]

×
[

1 − 0.2exp
(

− (A − 60)2

200

)]
,

f 4 = 0.28 exp
(

−A − 12

10

)
+ 0.22 exp

(
A − 208

50

)
.

(9)

The resonance cross section σreso is given by

σreso =
(

0.04 + A1.5

20 000

)
(E − 1000)

× 1/{1 + 0.01exp[−(E−1000)]}. (10)

The bone structure Sp
bone for proton injection is given as

follows:

Sp
bone = K2exp

(
−E1.05

40

)
+ C3 + C4,

K2 = (210+20A)

{
1−0.12

/[
1+exp

(
−A−160

20

)]}
f 5,

f 5 = 1 − 0.05(A − 45)exp[−0.01(A − 41)2],

C3 = 10π (A1/3 + 0.1A0.5)2,

C4 = 80

(
A

200

)0.2

exp
[
−

(
E − 1100

800

)2]
. (11)

The Coulomb factor fCoul is given by

f Coul = f 6 f 7 f 8,

f 6 = 1/{1 + exp[−(E/V M − 1.2)/0.75]}
f 7 = 1/{1 + exp[−(E/V M − 1.0)/0.1]}
f 8 = 1/{1 + exp[−(E − 1.4V M )/E8]},

E8 = 1.6(A + 3)0.45

{
1 + 0.5

/[
1 + exp

(
−A − 80

10

)]}
,

(12)

where VM is the maximum height of the Coulomb barrier for
protons, which is the maximum of the sum of the Coulomb
potential and nuclear potential; VM and its radius RM are given
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FIG. 5. Comparison between formula-predicted values and data
for proton-induced nonelastic cross sections for 12C (red), 27Al
(blue), 56Fe (green), 208Pb (brown) below 100 MeV. The solid red
lines indicate our simulation results, the dashed blue lines indicate
those by Tripathi et al., and the dotted green lines indicate those by
Shen.

by the following overall fitting formula:

V M = 0.2124 Z0.93

[
1 − 0.72

(
N − Z

A

)]
,

RM = 6.56 + 0.06Z
[

1 − 1.2

(
N − Z

A

)]
. (13)

These relations are derived from the INC model [15]. Fi-
nally, the corrections f2G and σasy are used to reproduce the
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FIG. 6. As in Fig. 5 but with incident energies in the range of
0–2000 MeV for proton-induced nonelastic cross sections.

asymptotic cross section in the limit of very high energy up to
10 GeV and are given as

f 2G = 1/{1 + exp[(E − 2500)/500]},
σasy = 45A0.7/{1 + exp[−(E − 2500)/500]}. (14)

Because these factors have no effect on the nonelastic cross
section below 2000 MeV, the corrections can be neglected for
calculations below 2000 MeV by setting f2G = 1 and σasy =
0.

IV. RESULTS AND DISCUSSION

We show the results separately in two regions of incident
energy: The first is 0–100 MeV where our INC model [15]
predictions agree excellently with experimental data [23], and
the other is a wider range of 0–2000 MeV where some targets
have few data points. The data points are insufficient in num-
ber and sometimes deviate considerably from the trend. We
present our predicted results in Figs. 1–8, and for comparison
we include those from other typical models, namely, Pearl-
stein [17] for neutron injection, Shen [18] for proton injection,
and Tripathi et al. [21] for both cases. In the figures, the
abnormal divergences given by Pearlstein and Shen near zero
energy (which are explained later) are removed and smoothed
for simplicity.

V. RELATIVE ERROR INDEX

The formulas by Pearlstein [17], Shen [18], and Niita
et al. [19] have the merit of being given by simple equations.
However, they have singular behavior at very low energies as
shown in Fig. 9. The dotted lines by Shen have unphysical
peaks and even negative values for A < 63 at energies below
5 MeV, the dashed lines by Niita et al. go to infinity because
σLE(A, E ) contains the term 1/

√
E in Eq. (4), and the solid

lines by Pearlstein have unnatural peaks at very low energy
because of the sine function in gn(E ) of Eq. (1). However, as
noted earlier, these old-fashioned formulas were not aimed at
reproducing the very low-energy region.

Only two formulas behave suitably and describe the exper-
imental data satisfactorily in the entire incident-energy region,
namely, our proposed formula and that by Tripathi et al. [21].
To compare these two formulas further, we require a quantity
that indicates precisely the extent to which the experimental
data are reproduced. For this purpose, we introduce the rela-
tive error (RE) index as

RE = 1

N

∑ √
(di − Ci )

2(
Eu

i + Ed
i

) , (15)

where di is the value of experimental datum i, ci is its formula-
calculated value, Eu

i and Ed
i are the up and down error bar

values for the datum i, and N is the total number of data
in the summation. The RE index is akin to the χ2 error but
weighted by the error bars of the data. Thus, RE can be used
as an indicator of model reproducibility. If RE < 1, then the
calculated errors are small, being within the error bars of the
measurements on average. In Table I, the values of the RE
index for the proposed formula and that by Tripathi et al.
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FIG. 7. Comparison between the predicted values by the three formulas and data of proton-induced nonelastic cross-sections for natAg,
natSn, and 197Au below 100 MeV. The solid red line indicates the result by our simulation, the dashed blue line indicates the result by Tripathi
et al., and the dotted green line by indicates the result Pearlstein.

[21] are given separately for neutron and proton injection. The
RE index for the Cd target with proton injection is omitted
because of the absence of data.

Table I shows clearly that the proposed formula is superior
to that by Tripathi et al., given that the values of the RE index
for the former are smaller than those for the latter for all the
targets. Note that the RE index with the proposed formula is
less than one in every case except for n + Au. This indicates
that the errors between the calculated values and the data
are smaller than the experimental error bars on average. The
reason why the RE index with the proposed formula is much
bigger than one in the case of Au with neutron injection is
that the cross-section data for Au at very low energies deviate
largely from those for the other targets, for example, Pb. The
prediction by the formula of Tripathi et al. is worse because
the peak of the calculated cross section shifts to higher energy
as shown in Fig. 3(d).

VI. TWO PHYSICAL EFFECTS

A. DLC effect from the proposed formula

We can separate out the DLC effect for any target by setting
the factor f DLC in Eq. (9) to one. The resulting cross sections
without the DLC effect are compared with the full calculations
with the DLC effect in Fig. 10. The DLC effect is shown by
the difference between the solid and the dashed lines. In the
neutron-induced cross section, the DLC effect is decisive for
reproducing the experimental data at very low energies below
50 MeV.

B. Effect of Coulomb repulsion

The Coulomb effect can be recognized by setting f Coul = 1
in Eq. (12). The dotted lines in Fig. 11 including the DLC ef-
fect alone show that the DLC effect makes the proton-induced
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FIG. 8. As Fig. 7 but with incident energies in the range of 0–2000 MeV for proton-induced nonelastic cross sections.
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FIG. 9. Singular behavior of original formulas. The solid blue
lines indicate the results using the formula by Pearlstein, the dashed
green lines indicate those by Niita et al. for the n injection, and the
dotted red lines indicate those by Shen for the p injection.

nonelastic cross sections similar to those of neutron injection.
The difference between the dotted and the solid lines in Fig. 11
is due to the Coulomb effect, although the Coulomb effect
overlaps partially with the DLC effect.

It is generally thought that proton-induced cross sections
can be explained by the effect of Coulomb repulsion alone.
All the earlier formulas are erroneous in constructing the

TABLE I. Comparison of values of the relative error index for
the proposed formula and that of Tripathi et al. for neutron (n) and
proton (p) injections.

n C Al Fe Pb Ag Cd Sn Au Average

Tripathi et al. 0.79 0.81 0.72 0.77 0.68 1.29 0.84 6.89 1.60
Proposed 0.45 0.58 0.61 0.70 0.55 0.79 0.82 3.04 0.94
p C Al Fe Pb Ag Sn Au Average

Tripathi et al. 0.79 0.77 0.98 0.79 1.48 1.34 0.5 0.95
Proposed 0.77 0.53 0.53 0.53 0.99 0.88 0.42 0.67
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FIG. 10. Comparison between two calculations of neutron-
induced nonelastic cross sections. The solid blue lines indicate the
results of full calculations with the DLC effect, and the dashed green
lines indicate those without the DLC effect.

proton-induced nonelastic cross section by multiplying the
neutron-induced nonelastic cross section by the Coulomb
dumping factor; this is a mistake because the DLC and
the Coulomb effects coexist. Importantly, the two effects in
Figs. 10 and 11 agree completely with those elucidated by our
INC model calculations in Ref. [15].

VII. CONCLUSIONS

We have presented a simple universal parametrization of
nucleon-induced nonelastic cross sections for any target and
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FIG. 11. Comparison between three calculations of proton-
induced nonelastic cross sections. The solid blue lines indicate the
results of full calculations with DLC and Coulomb effects, the dotted
red lines show those without the Coulomb effect but with the DLC
effect, and the dashed green lines show the bone structure resulting
from neither DLC nor Coulomb effects. The difference between
the dotted and the solid lines indicates the extent of the effect of
Coulomb repulsion.

valid for the entire energy range from zero to a few giga-
electronvolts. There are many ways to construct an empirical
formula to describe experimental data, and in this paper we
did so based on recently discovered physical effects. We
began with the bone structures that are similar for neutron-
and proton-induced nonelastic cross section, then we modi-
fied them by incorporating the physical effects of the DLC
and Coulomb repulsion. The developed formula that includes
these two physical effects can estimate their contributions
separately for any target and any incident energy.

An important feature is that our formula is constructed
based on the assumption that nonelastic cross sections change
gradually with both incident energy and target, which is differ-
ent from the formula by Tripathi et al. with its many separate
cases. We note that the present formula cannot predict sharp
changes if they exist, for example, sharp peaks, such as the
shell effect in the very low-energy region. Instead, the formula
should be considered as giving average values of nonelastic
cross sections.

In this paper, we proposed the RE index that indicates the
relative error between the experimental data and the predicted
values. The quoted values of the RE index showed clearly that
our formula is superior to that by Tripathi et al. for 12C, 27Al,
56Fe, natAg, natCd, natSn, 197Au, and 208Pb targets. Finally, we
note that accumulating more complete experimental data in
the future will allow a more precise formula to be constructed.
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APPENDIX

Tripathi et al. [21] started from the nonelastic cross section
in the form given by Bradt and Peters [20],

σR = πr2
0

(
A1/3

P + A1/3
T + δ

)2
, (A1)

where r0 is a unit radius, Ap and AT are the projectile
and target mass numbers, respectively, and δ is an energy-
dependent parameter. This cross section originates from the
geometrical cross section of the target nucleus plus projectile.
Bradt and Peters aimed to describe nucleus-nucleus reaction

TABLE II. Values of kB.

Target kB

AT > 56 0.9
Ca 1.3
Si 1.4
Mg 1.8
13 � AT � 16 AT /7
AT = 12 3.5
AT = 4 27
AT < 4 21
AT = 1 212

Others 1
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TABLE III. Values of T1 for protons.

Target T1

Mg, Si, Ar, and Ca 40
AT > 45 (except for above four) 40 + AT /3
AT < 4 55
Others 40

cross sections, which include nucleon-induced reaction cross
sections as a typical case. The simple expression in Eq. (A1)
deviates from experimental data in the low-energy region

below 100 MeV, although it gives a better description at
higher energies. Therefore, Tripathi et al. [21] gave the reac-
tion cross-section σR by modifying the Bradt-Peters form by
incorporating complex dependences on the energy and target
as follows:

σR = 10Mπr2
0

(
A1/3

P + A1/3
T + δE

)2(
1 − BE−1

cm

)
, (A2)

where r0 = 1.1 fm and the unit of σR is mb. For protons, the
normalization factor M = 1 in Eq. (A2), whereas for neutrons
M is given as

M =
{{

1−0.3 exp
[−E−1

15

]}{1 − exp [−(E−0.9)]} (AT � 200),

1 − M1exp
( − Ek−1M−1

1

)
(AT < 200).

M1 = max
(
1, 2.83 − 0.031AT + 1.7 × 10−4A2

T

)
, (A3)

k =
⎧⎨
⎩

0.6 (AT < 12),
1.6 (AT = 12),
1 (AT > 12),

where E is the incident kinetic energy in the laboratory frame of reference. This is converted into the center-of-mass energy Ecm

(MeV) in the collision frame of reference using the following equations:

Ecm = Ecm p + Ecm T ,

Ecm p = γ (E + 938)Ap − βγ Plab − 938Ap,

Ecm T = 938AT (γ − 1),

Plab = Ap

√
E2 + 2 × 938E ,

β =
√

1 − γ −2,

γ = {Ap(1 + E/938) + AT }{A2
p + A2

T + 2ApAT (E/938 + 1)
}−1/2

. (A4)

The quantity B in Eq. (A2) is the energy-dependent Coulomb barrier and is given as

B = 1.44kBZpZT R−1,

R = rp + rT + 1.2
(
A1/3

p + A1/3
T

)
E−1/3

cm ,

ri = 1.29rrms, i (i = p, T ),

rrms, i = 0.84A1/3
i + 0.55, (A5)

where Zp and ZT are the atomic numbers of the projectile and target, respectively. The factor kB is listed in Table II.
The energy-dependent factor δE is given by

δE = 1.85S − CE + 0.16SE−1/3
cm + 0.91(AT − 2ZT )ZpA−1

T A−1
p ,

S = A1/3
p A1/3

T

(
A1/3

p + A1/3
T

)−1
, (A6)

CE = D
{
1 − exp

(−ET −1
1

)} − 0.292 exp(−E/792) cos(0.229E0.453),

where T1 is listed in Tables III and IV for protons and neutrons, respectively.
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For protons, the coefficient D in Eq. (A6) is written as

D =

⎧⎪⎨
⎪⎩

1.7 (for AT < 4),
2.05 − d/{1 + exp[0.1(E − 20)]} (for Mg, Si, Ar)
2.05 − 1/{1 + exp[0.1(E − 40)]} (for Ca),
2.05 − 0.05/{1 + exp[(250 − E )/75]} (for others)

(A7)

where d is listed in Table V.

For neutrons, D is written

D = D0 +
5∑

i=1
ciDi

D0 = 2 × 0.134 457
{
0.5

(
ρAp + ρAT

)}−1

D1 = ZT (AT − ZT )−1

D2 = 1.5(AT − 2ZT )A−1
T

D3 = 2{1 + exp [0.05(E − 20)]}−1

D4 = 0.25{1 + exp [−0.01(170 − E )]}−1

D5 = {1 + exp [0.1(E − 20)]}−1

c1 =
{−1, ZT > 82,

0, others,

c2 =
{−1, AT < 60, 140 < AT < 200,

0, others,

c3 =
{−1, ZT � 82,

0, others,

c4 =
{

1, AT � 40,

0, others,

c5 =
{−1, 10 � ZT � 20,

0, others,

ρAi = Ai
(4

3
πr3

i

)−1
(i = p, T )

. (A8)

The formula by Tripathi et al. [21] is very complicated and
has many separate cases for different masses A and charges Z.

Consequently, their predicted nonelastic cross sections at very
low energies differ largely in different cases, even if dealing
with two targets that are proximate elements, such as 197Au
and 208Pb.

TABLE IV. Values of T1 for neutrons.

Target T1

Si 35
Fe 30
11 � AT < 40 (except for Si) 30
Others 40

TABLE V. Values of d .

Target d

Mg 3
Si 1.75
Ar 2
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