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Background: Johnson, Al-Khalili, and Tostevin constructed a theory for one-neutron halo-nucleus scattering,
taking (1) the adiabatic approximation and (2) neglecting the interaction between a valence neutron and a target,
and yielding a simple relationship between the elastic scattering of a halo nucleus and of its core. The core-target
scattering is calculated with the reduced mass between a halo nucleus and a target, and hence is not measured
with the experiment.
Purpose: Our first aim is to apply their theory for �p + 6He elastic scattering as two-neutron halo-nucleus
scattering and improve the theory with (3) the eikonal approximation. Our second aim is to investigate how
good the improved theory is.
Methods: An improved valence-target-cutting (VTC) theory and cluster-folding (CF) model.
Results: The improved VTC theory shows a new relation between two differential cross sections measured for
�p + 4,6He scattering. Using the relation, we show that the analyzing power Ay(q) for 6He is the same as for 4He.
In the improved theory, the ratio of measured differential cross section for 4He to that for 6He determines a
radius rα−2n between 4He and the center of mass of two valence neutrons; the value is rα−2n = 3.54 fm. Among
the approximations (1)–(3), the approximation (2) is essential. In order to investigate the approximation (2), we
apply the CF model for �p + 6He scattering at 200 MeV, where the potential between �p and 4He is fitted to data
on �p + 4He scattering at 200 MeV. For �p + 6He scattering at 200 MeV, the CF model reproduces the measured
differential cross section with no free parameter. The CF model shows that the approximation (2) is good in
0.9 � q � 2.4 fm−1, where h̄q is the transfer momentum. Using the improved theory, in 0.9 � q � 2.4 fm−1,
we predict Ay(q) for 6He from measured Ay(q) for 4He.
Conclusions: The improved VTC theory shows shows that Ay(q) for 6He is the same as for 4He.
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I. INTRODUCTION

In the shell model, the central and spin-orbit potentials
are important for understanding nuclear structure. The impor-
tance was first discovered by Mayer and Jensen. The central
and spin-orbit potentials in various stable nuclei are similar
to the real part of the optical potential in the �p elastic scatter-
ing on the corresponding stable nuclei. The optical potentials
are well determined by measured differential cross sections
dσ/d� and analyzing powers Ay.

In general, the central and spin-orbit potentials in the scat-
tering of unstable nuclei on a �p target are different from the
case of stable nuclei, since unstable nuclei have larger radii
than the stable nuclei with the common mass number [1,2].

For scattering of 6He on a �p target at an incident energy
Elab = 71 MeV/nucleon, the Ay was obtained in the inverse
measurement [3–5]. In the experiment, the dσ/d� is mea-
sured in 1.1 � q � 2.2 fm−1 (42◦ � θc.m. � 87◦) and the Ay

is in 1.0 � q � 1.9 fm−1 (37◦ � θc.m. � 74◦) [3–5], where h̄q
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and θc.m. are the transfer momentum and the scattering angle
in the center-of-mass (c.m.) frame, respectively. The measured
Ay is reproduced by the the cluster-folding (CF) model [5].
It is shown in Ref. [5] that the spin-orbit part of the phe-
nomenological optical potential is shallow and long-ranged.
This problem is not solved yet.

The same measurement was made for Elab = 200
MeV/nucleon [6], since the nucleon-nucleon (NN) total cross
section has a minimum around there. However, the result was
shown only for dσ/d� in 1.7 � q � 2.7 fm−1 (36◦ � θc.m. �
59◦).

The �p + 4,6He scattering at Elab = 200 MeV/nucleon were
analyzed by the Melbourne g-matrix folding model [1]. The
model predicted dσ/d� and Ay for 6He, but not does account
for the data [7] for 4He in q � 3.3 fm−1 (θc.m. � 80◦). Ab
initio folding potentials based on no-core shell-model [8] were
constructed and applied for �p + 4,6He scattering at Elab = 200
MeV/nucleon. The model reproduces the data on dσ/d� for
6He, but not dσ/d� for 4He in q � 2.5 fm−1 (θc.m. � 60◦).

Crespo and Moro calculated dσ/d� and Ay for the �p +
4,6,8He scattering at Elab = 297 MeV/nucleon, using the mul-
tiple scattering expansion [9]. Microscopic optical potentials
derived from NN t matrix and nonlocal density was applied
for the �p + 4He scattering at Elab = 200 MeV/nucleon [10],
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and reproduced the data of Ref. [7] in q � 4.1 fm−1 (θc.m. �
110◦).

Johnson, Al-Khalili, and Tostevin constructed a theory for
one-neutron halo-nucleus scattering, using (1) the adiabatic
approximation and (2) neglecting the interaction between a
valence neutron and a target [11]. They yield a simple rela-
tionship between the elastic scattering of a halo nucleus and
of its core from a stable target. They applied the theory for
11Be + 12C and 19C + 12C scattering, since the core mass is
much larger than the valence-neutron mass. Nevertheless, they
found that the approximation (2) is not negligible. There is
no statement on Ay in Ref. [11]. For simplicity, we refer to
the theory as valence-target cutting (VTC) theory. The case of
multinucleon valence halo systems is described in Ref. [12].

In Ref. [11], the differential cross section of the core-target
scattering is calculated with the reduced mass μ between a
halo nucleus and a target, and not measured with the experi-
ment.

In this paper, we apply the VTC theory for a two-neutron
halo nucleus scattering and improve the extended theory with
(3) the eikonal approximation. Among the three approxima-
tions used, the approximation (2) is most essential for �p + 6He
elastic scattering, since the core mass is comparable with the
two-neutron mass. We consider �p + 6He scattering at Elab =
71, 200 MeV/nucleon. As a second aim, we investigate how
good the improved VTC theory is for the �p + 6He scattering,
that is, how good the approximation (2) is for the �p + 6He
scattering.

The improved VTC theory shows that Ay(q) for 4He is the
same as Ay(q) for 6He. This makes it possible to determine
Ay(q) for 6He from the data on Ay(q) for 4He. The ratio
F (q/3) of dσ/d� for 6He to that for 4He is related to the wave
function of 6He in the improved VTC theory. This allows us
to determine the radius rα−2n between 4He and the center-of-
mass of valence two neutrons from F (q/3).

Using the CF model, we confirm that the approximation (2)
is good in 0.9 � q � 2.4 fm−1 for Elab = 200 MeV/nucleon,
but good only in the vicinity of q = 0.9 fm−1 for Elab = 71
MeV/nucleon.

The improved VTC theory and the results are shown in
Sec. II. The CF model is explained and its results are shown
in Sec. III. Section IV is devoted to a summary.

II. IMPROVED VTC THEORY AND ITS RESULTS

We extend the VTC theory for 6He elastic scattering on a
target �p at Elab = 71 and 200 MeV/nucleon as two-neutron
halo-nucleus scattering. For this purpose, we start with the
p + n1 + n2 + 4He four-body model; see Fig. 1 for two sets
of coordinates in the four-body system.

The four-body Hamiltonian is

H = − h̄2

2μ6
∇2

R + U + H6, (1)

U = Upn1

(
rpn1

) + Upn2

(
rpn2

) + Upα (rpα ) + V Coul
pα (rpα ), (2)

where μ6 is the reduce mass between �p and 6He and the
Hamiltonian H6 of 6He is described by the n1 + n2 + 4He
three-body model. The coordinates rpγ for γ = n1, n2, α are

FIG. 1. Two sets of coordinates in four-body model.

shown in Fig. 1 (a). The Upγ is the nuclear interaction between
�p and γ .

The exact T matrix of the elastic scattering is

T = 〈eik′ ·R�| U | �〉 (3)

for the total wave function �, the incident and final momenta,
h̄k and h̄k′. The ground state �(ξ, ζ ) of 6He has an energy ε0.

We take the adiabatic approximation (H6 ≈ ε0) for H and
neglect the interactions Upn1 and Upn2 . The resulting Hamilto-
nian is

HAD = − h̄2

2μ6
∇2

R + Upα (rpα ) + V Coul
pα (rpα ) + ε0. (4)

In HAD, ζ is a constant, because of no derivative with respect
to ζ . We then get ∇2

R = ∇2
rpα

for R = rpα − ζ/3. Eventually,
we get

HAD = − h̄2

2μ6
∇2

rpα
+ Upα (rpα ) + V Coul

pα (rpα ) + ε0. (5)

The solution �AD to the Schrödinger equation [Ec.m. −
HAD]�AD = 0 is

�AD = iε

Ec.m. − HAD + iε
eik·R�

= iε

Ec.m. − HAD + iε
eik·rpα e−ik·ζ/3�

= e−ik·ζ/3�
iε

Ec.m. − HAD + iε
eik·rpα

= e−ik·ζ/3�χk(rpα ) (6)

with the distorting wave function

χk(rpα ) = iε

Ec.m. − HAD + iε
eikrpα (7)

for infinitesimally small ε and the incident energy Ecm =
h̄2k2/(2μ6) in the center of mass (c.m.) system. Inserting
Eq. (6) in Eq. (3), we can obtain an approximate T matrix
TAD as

TAD = 〈eik′R�| Upα + V Coul
pα (rpα )|e−ikζ/3�χk(rpα )〉

= F ((k
′ − k)/3)〈eik′ ·rpα |Upα + V Coul

pα |χk(rpα )〉rpα , (8)
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where the subscript rpα shows the integral over rpα . The F (Q)
as a function of Q ≡ (k′ − k) = q/3 is the form factor defined
by

F (Q) ≡ F ((k
′ − k)/3) = 〈ei(k′−k)·ζ/3|�|2〉ζ ξ , (9)

where the subscript ζ ξ shows the integral over ζ and ξ .
The χk(rpα ) is the distorting wave function between �p and

4He with the reduced mass μ6, and not the distorting wave
function of the �p + 4He elastic scattering with the reduced
mass μ4 between �p and 4He.

Using Eq. (8), we can get the differential cross section of
�p + 6He scattering as(

dσ

d�

)
p+6He

= |F (Q)|2
(

dσ

d�

)point

. (10)

In the limit of F (Q) = 1, the distance between 6He and the
c.m. of two valence neutrons tends to zero. In this sense,
( dσ

d�
)
point

is called the point cross section. The equation is a
four-body version of Ref. [11].

The ( dσ
d�

)
point

is calculated in Ref. [11] for one-neutron

halo-nucleus scattering, since the ( dσ
d�

)
point

cannot be mea-
sured with experiments.

In order to determine |F (Q)| from experimental data on
p + 4,6He scattering, we find a relationship between the
(dσ/d�)point and the differential cross section (dσ/d�)p+4He

for p + 4He elastic scattering with μ4.
In the c.m. system, the velocity vA is defined with h̄kA =

vAμA for A = 4 or 6, and hence

EA
c.m. = (h̄kA)2

2μA
= μA

v2
A

2
= A

A + 1
MN

v2
A

2
(11)

for nucleon mass MN . In the laboratory system, the energy EA
lab

per nucleon is described with the velocity vA
lab as

EA
lab = MN

(
vA

lab

)2

2
. (12)

The transform from EA
c.m. to the incident energy AEA

lab leads to

EA
c.m. = 1

A + 1
AEA

lab = A

A + 1
MN

(
vA

lab

)2

2
. (13)

Comparing Eq. (11) with Eq. (13), we show that

vA = vA
lab. (14)

This means that the velocity v defined with h̄kA = vAμA in
the c.m. system is the same as the the velocity vA

lab in the
laboratory system.

From now on, we consider the case of v ≡ v4 = v6. This
case corresponds to taking the case of

E4
lab = E6

lab = MN
v2

lab

2
= MN

v2

2
, (15)

because of Eqs. (12) and (14).
Now we improve Eq. (10) in order to determine |F (Q)|

from experimental data on �p + 4,6He scattering at the same
Elab. Using the eikonal approximation for the �p + 4He scat-
tering in the center-of-mass system, we get the scattering

amplitude fpα as

fpα = iμ4v

2π h̄

∫
db e−iq·b(1 − eiχ (b) ) (16)

with the phase shift function

χ (b) = − 1

h̄v

∫ ∞

−∞
dz [Upα (b, z) + V Coul

pα (b, z)F (rpα )], (17)

where rpα ≡ (b, z) and the screened Coulomb potential
V Coul

pα (z, b)F (rpα ) has been used instead of V Coul
pα (b, z).

Glauber shows how to treat the screening function F (rpα )
below Eq. (117) in Ref. [13]. The spin-orbit part of Upα (z, b)
is approximated as

U LS
pα (rpα )�pασ p ≈ U LS

pα (rpα )(h̄k4 × rpα )σ p

= U LS
pα (rpα )(h̄k4 × rpα )σ (y)

p

= U LS
pα (rpα )(μ4v × rpα )σ (y)

p , (18)

where v × rpα = v × b = vbey since v is in the z direction and
the unit vector ey is in the y direction, i.e., the vertical direction
of the scattering plane. It is possible to define σ

(y)
p as σ

(y)
p =

diag(1,−1); namely, �pα · σ p = μ4vb for proton having up-
spin and, �pα · σ p = −μ4vb for proton having down-spin. The
χ+ for up-spin is decoupled from the χ− for down-spin. This
property is essential for the derivation of Eq. (24), as shown
later.

Equation (18) shows that χ (b) depends on the reduced
mass, i.e., χ (b) = χ (b, μ4). Note that the reduced-mass de-
pendence of χ (b, μ4) comes from the LS potential only.
Under the the eikonal approximation, the ( dσ

d�
)
point

reads

(
dσ

d�

)point

=
∣∣∣∣ iμ6v

2π h̄

∫
db e−iq·b(1 − eiχ (b,μ6 ) )

∣∣∣∣
2

≈
∣∣∣∣ iμ6v

2π h̄

∫
db e−iq·b(1 − eiχ (b,μ4 ) )

∣∣∣∣
2

. (19)

The replacement from χ (b, μ6) to χ (b, μ4) is good ap-
proximation, because of μ6/μ4 ≈ 1. The replacement hardly
changes the difference cross section and Ay.

This leads to(
dσ

d�

)point

=
(

μ6

μ4

)2∣∣∣∣ fpα

∣∣∣∣
2

=
(

μ6

μ4

)2( dσ

d�

)
p+6He

. (20)

In the c.m. system, we then obtain
(

dσ

d�

)
p+6He

= |F (Q)|2
(

dσ

d�

)
p+4He

(
μ6

μ4

)2

(21)

from Eqs. (10) and (20), where the two differential cross
sections are for �p + 4,6He scattering at a common v, i.e.,
a common Elab. This new relation (21) allows us to deter-
mine |F (Q)| from two differential cross sections measured for
�p + 4,6He scattering at a common Elab.

The derivation from Eqs. (5) to (21) is the same for incident
proton having up-spin (+) and incident proton down-spin
(−), although Upα for incident proton having up-spin (+) is
different from that for incident proton having down-spin (−).
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Eventually, we can get(
dσ

d�

)+

p+6He

= |F (Q)|2
(

dσ

d�

)+

p+4He

(
μ6

μ4

)2

(22)

and (
dσ

d�

)−

p+6He

= |F (Q)|2
(

dσ

d�

)−

p+4He

(
μ6

μ4

)2

, (23)

where F (Q) is common between incident proton having up-
spin (+) and incident proton down-spin (−) since F (Q) is not
related to the spin of incident proton.

Using Eqs. (22) and (23), one can get a relation for the
analyzing power A6

y for 6He as

A6
y ≡

(
dσ
d�

)+
p+6He − (

dσ
d�

)−
p+6He(

dσ
d�

)+
p+6He + (

dσ
d�

)−
p+6He

=
(

dσ
d�

)+
p+4He − (

dσ
d�

)−
p+4He(

dσ
d�

)+
p+4He + (

dσ
d�

)−
p+4He

≡ A4
y . (24)

This equation shows that Ay(q)6 = Ay(q)4 in the improved
VTC theory. In fact, Eq. (24) is well satisfied in Ay for 71
MeV; see Fig. 4.

The relation (21) between ( dσ
d�

)
Elab

p+6He and ( dσ
d�

)
Elab

p+4He is
good, when the eikonal and adiabatic approximations are
good and Upn1 = Upn2 = 0. It is shown in Ref. [14] that the
eikonal and adiabatic approximations are good for a few hun-
dred MeV. The approximation Upn1 = Upn2 = 0 is good in
0.9 � q � 2.4 fm−1 for 200 MeV as shown in Sec. III B, but
good only near q = 0.9 fm−1 for 71 MeV as mentioned in
Sec. III C.

A. Determination of |F| from measured differential
cross sections for�p + 4,6He scattering

Using Eq. (21), we can determine |F (Q)| from experimen-
tal data on the cross sections of p + 4,6He scattering at the
same Elab, when the most essential condition Upn1 = Upn2 = 0
is good and the angular momentum between n1 and n2 is zero.

As for Elab = 200 MeV/nucleon, the data are available in
Ref. [7] for 4He and in Ref. [6] for 6He. As for Elab = 71
MeV/nucleon, the data are available in Refs. [5,15] for 6He,
but not for 4He. We then take the data [16] on �p + 4He
scattering at Elab = 72 MeV/nucleon. The resulting |F (Q)| is
smooth, as shown in Fig. 2. The approximation Upn1 = Upn2 =
0 is good in 0.9 � q � 2.4 fm−1 for 200 MeV as shown in
Sec. III B, but good only in the vicinity of q = 0.9 fm−1 for
71 MeV as mentioned in Sec. III C. In Fig. 2, the resulting
|F (Q)| is thus reliable in 0.3 � Q � 0.8 fm−1.

The Fourier transform |F (ζ )| of |F (Q)| is a function of
ζ . We then assume that the potential between 4He and the
center of mass of n1 and n2 is a one-range Gauss function
V (ζ ), and can obtain |F (Q)| by solving the Schrödinger
equation with the potential. The solid line denotes a result
of V (ζ ) = −25 exp[−(ζ/1.41)2], and reproduces the exper-
imental |F (Q)| for 200 MeV. The resulting radius between
4He and the center of mass of n1 and n2 is 3.54 fm. The
corresponding binding energy is 0.172 MeV.

0 0.5 1.0
0

0.5

1.0

1.5

Q= q/3 (fm
-1

)

|F
(Q

)|

 71 MeV
 200 MeV

FIG. 2. Q dependence of |F |. The solid (open) circles are the
result determined from the experimental data at 71 (200) MeV. The
solid line is a result of V (ζ ) = −25 exp[−(ζ/1.41)2]. Experimental
data are taken from Refs. [5,15,16] for 71 MeV and Refs. [6,7] for
200 MeV.

B. Model independent prediction on Ay for�p + 4,6He
scattering at 200 MeV

When p is polarized, the factor |F (h̄(k′ − k))/3|μ6/μ4 is
common between the cross section for the incident proton
having up-spin and that for the proton having down-spin. This
means that the vector analyzing Ay(q) for �p + 6He scatter-
ing is the same as Ay(q) for �p + 4He, when the condition
Upn1 = Upn2 = 0 is good. As mentioned later in Sec. III B, the
condition is well satisfied in 0.9 � q � 2.4 fm−1.

We make a model-independent prediction on Ay(q) for 6He
by using Eq. (24). The measured Ay(q) of Ref. [7] for 4He is
transformed into Ay(θc.m.).

Figure 3 shows the predicted Ay(θc.m.) for 6He. The pre-
dicted Ay(θc.m.) is reliable in 20◦ � θc.m. � 55◦ (0.9 � q �
2.4 fm−1). The reliable prediction in 20◦ � θc.m. � 55◦ is
denoted by closed circles. It should be noted that our predic-
tion shown by open circles are not good.

FIG. 3. θc.m. dependence of predicted Ay for �p + 6He scattering
at 200 MeV. See the text for closed and open circles.
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0 1.0 2.0 3.0
-1.0

-0.5

0

0.5

1.0

q (fm
-1

)

A
y

p+
4
He at 72 MeV

p+
6
He at 71 MeV

 p+
4
He

 p+
6
He

FIG. 4. q dependence of measured Ay (closed circles) for �p +
4He scattering at Elab = 72 MeV and measured Ay (open circles) for
�p + 6He scattering at Elab = 71 MeV. Data are taken from Ref. [5]
for 6He and Ref. [16] for 4He.

C. Ay for 71 MeV

Figure 4 shows q dependence of Ay measured for �p + 4He
scattering at Elab = 72 MeV/nucleon and that for �p + 6He
scattering at Elab = 71 MeV/nucleon. The Ay for 6He is close
to that for 4He, except for a data at q = 1.71 fm−1. The prop-
erty can be analyzed quantitatively by the Jensen-Shannon
(JS) divergence [17]. We show the analysis in the Appendix,
since the analysis is new but has recently been used by LIGO
Scientific and Virgo Collaborations [18].

III. CLUSTER-FOLDING MODEL

In order to investigate the approximation (2), we use the CF
model for �p + 6He scattering at 200 MeV, where the potential
between �p and 4He is fitted to data on �p + 4He scattering
at 200 MeV. The CF model reproduces the differential cross
section for �p + 6He scattering with no free parameter. We then
predict Ay.

We consider the cluster folding (CF) model for the �p + 6He
at Elab = 200 MeV. In addition, we recalculate the scattering
for Elab = 71 MeV in order to obtain F .

In the cluster model, the nuclear potential UCF(R) between
�p and 6He is defined as

UCF(R) =
∫

Upn1 ρCF
n (r1) dr1 +

∫
Upn2 ρCF

n (r2) dr2

+
∫

Upα ρCF
α (rα ) drα (25)

with

Upn1 = U 0
pn(rpn1 ) + U LS

pn (rpn1 )�pn1 (σ p + σn1 ), (26)

Upn2 = U 0
pn(rpn2 ) + U LS

pn (rpn2 )�pn2 (σ p + σn2 ), (27)

Upα = U 0
pα (rpα ) + U LS

pα (rpα )�pασ p, (28)

where the coordinates r1, r2, and rα are the position vectors
of n1, n2, and the α core from the center of mass of 6He,
respectively, and ρCF

n and ρCF
α are the neutron and α densities,

respectively. These densities of 6He are calculated with αnn
OCM in Refs. [19,20].

Following Ref. [5], we can rewrite the UCF(R) into

UCF = U CF
0 (R) + U CF

LS (R) Lσ p (29)

with the central part

U CF
0 (R) = 2

∫
U 0

pn(|r1 − R|) ρCF
n (r1) dr1

+
∫

U 0
pα (|rα − R|) ρCF

α (rα ) drα (30)

and the spin-orbit part

U CF
LS (R) = 1

3

∫
U LS

pn (|r1 − R|)
{

1 − r1 · R
R2

}
ρCF

n (r1) dr1

+2

3

∫
U LS

pα (|rα − R|)
{

1 − rα · R
R2

}
ρCF

α (rα ) drα.

(31)

The Upα is the optical potential (OP), and Upn1 and Upn1 are
the CEG [21–23]. The g matrix, derived from the Hamada-
Johnston potential [24], is successful in reproducing the data
on �p elastic scattering from many nuclei in a wide range of
incident energies, Elab = 20–200 MeV [21–23]. For �p + 6He
elastic scattering at 71 MeV, the CF model well reproduces
the data on differential cross sections and Ay [5].

A. Potential fitting of�p + 4He scattering and results
of CF model�p + 6He scattering

We now fit the OP potential Upα to data [7] for �p + 4He
scattering at Elab = 200 MeV with a Woods-Saxon form:

Upα = −V0 fr (rpα ) − i W0 fi(rpα )

+ 4i aid Wid
d

drpα
fid (rpα )

+Vs
2

rpα

d

dR
fs(rpα ) �pασ p (32)

with

fx(rpα ) =
[

1 + exp

(
rpα − rxA1/3

ax

)]−1

(33)

for x = r, i, id, s, where σ p stands for the Pauli spin operator
of an incident proton. The Coulomb potential between the
proton and 4He (6He) is obtained from the uniformly charged
sphere with the radius 1.4A1/3, where A = 4 for 4He and
A = 6 for 6He.

The best-fit potential parameters are obtained by minimiz-
ing the χ2 values of dσ/d� and Ay. The resulting parameter
set is tabulated in Table I, together with the case of Elab = 72
MeV of Ref. [5].

First of all, we briefly shows results of the OP and the CF
model in Fig. 5. The left panel shows that our fitting is good
for �p + 4He scattering at Elab = 200 MeV. The right panel
indicates that the CF model reproduces �p + 6He scattering
at Elab = 200 MeV/nucleon and that the condition Upn1 =
Upn2 = 0 is good for dσ/d� and Ay in θc.m. � 52◦. Now we
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TABLE I. Parameters of the optical potentials for �p + 4He scattering at Elab = 200 MeV/nucleon. For 72 MeV/nucleon, the parameter set
is taken from Ref. [5].

V0 rr ar W0 ri ai Wid rid aid Vs rs as

(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm)

p + 4He 200 −26.528 0.7839 0.1446 17.098 1.205 0.5268 – – – 6.689 0.8215 0.2641
p + 4He 72 54.87 0.8566 0.09600 – – – 31.97 1.125 0.2811 3.925 0.8563 0.4914

predict Ay for �p + 6He scattering at Elab = 200 MeV/nucleon,
using the CF model.

Further analyses based on the improved VTC theory are
made below by using q instead of θc.m..

B. Model-dependent prediction on Ay for�p + 4,6He
scattering at Elab = 200 MeV/nucleon

Figure 6 shows q dependence of dσ/d� for �p + 4,6He
scattering at Elab = 200 MeV/nucleon in the upper panel and
the form factor |F (Q)| in the lower panel. In the upper panel,
the CF model (solid line) reproduces the data [6] for �p + 6He
scattering at Elab = 200 MeV/nucleon with no free parameter.
In the lower panel, the solid line denotes the |F (Q)| calculated
with the CF-folding model, while Upn1 and Upn2 are switched
off in the dashed line. The difference between the two lines
shows that effects of Upn1 and Upn2 are small in the region
0.3 � Q � 0.8 fm−1 (0.9 � q � 2.4 fm−1).

Figure 7 shows q dependence of Ay for �p + 6H scattering.
The solid line denotes the Ay calculated with the CF-folding

model, while Upn1 and Upn2 are switched off in the dashed line.
The difference between the solid and dashed lines show that
the condition Upn1 = Upn2 = 0 is good in q � 2.4 fm−1. Even-
tually, the condition is good in 0.9 � q � 2.4 fm−1, when we
see both dσ/d� and Ay.

Now we predict Ay for �p + 6He scattering at Elab = 200
MeV/nucleon, using the CF model. In 0.9 � q � 2.4 fm−1,
open circles are the Ay for 6He derived from the measured Ay

of Ref. [7] for 4He. The CF model reproduces the derived Ay

in 0.9 � q � 2.0 fm−1.

C. CF results on dσ/d� and Ay for 71 MeV/nucleon

Figure 8 shows the results of the CF-model for dσ/d�

and Ay of �p + 6He scattering at Elab = 71 MeV/nucleon in
the upper and middle panels. The CF model reproduces the
data [4,5] with no free parameter. The upper and middle
panels also show the results of the best optical poten-
tial for dσ/d� and Ay of �p + 4He scattering at Elab = 72
MeV/nucleon.

FIG. 5. θc.m. dependence of dσ/d� and Ay for �p + 4,6He scattering at Elab = 200 MeV/nucleon. In the left panel, the solid line is a result
of our fitting based on the optical potential model (OPM). In the right panel, the solid and dashed lines denote results of CF model (CFM) with
and without Upn1 and Upn2 , respectively. Experimental data are taken from Ref. [7] for 4He and Ref [6] for 6He.

044605-6



PREDICTION OF THE ANALYZING POWER FOR … PHYSICAL REVIEW C 103, 044605 (2021)

FIG. 6. q dependence of dσ/d� for �p + 4,6He scattering at
Elab = 200 MeV/nucleon in the upper panel and the form factor
|F (Q)| in the lower panel. Experimental data are taken from Ref. [7]
for �p + 4He scattering and Ref. [6] for �p + 6He scattering.

The lower panel shows the |F (Q)| calculated with the CF
model. The difference between the solid and dashed lines
indicates that the condition Upn1 = Upn2 = 0 is good only in
the vicinity of Q = 0.3 fm−1.

IV. SUMMARY

In order to make the model-independent prediction for
�p + 6He scattering at 200 MeV, we improve the VTC theory,
using the eikonal approximation in addition to the Upn1 =
Upn2 = 0 approximation and the adiabatic approximation. In
the improved VTC theory, the Ay for 6He is the same as that
for 4He. The Upn1 = Upn2 = 0 approximation is most essential
among the three approximations. Using the CF model, we
have confirmed that the Upn1 = Upn2 = 0 approximation is
good in 0.9 � q � 2.4 fm−1 for 200 MeV/nucleon, but good
only near q = 0.9 fm−1 for 71 MeV/nucleon. In 0.9 � q �
2.4 fm−1, we predict Ay(q) for �p + 6He scattering at 200 MeV
from measured Ay(q) for �p + 4He scattering at 200 MeV. This
is a model-independent prediction in 0.9 � q � 2.4 fm−1

(20◦ � θc.m. � 55◦); see Fig. 3.
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6
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 p+
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FIG. 7. q dependence of Ay for �p + 6He scattering at Elab = 200
MeV/nucleon. The solid line denotes a result of the CF-folding
model, while Upn1 and Upn2 are switched off in the dashed line.
The thin solid line is a result of the fitting for �p + 4He scattering
at Elab = 200 MeV/nucleon. Open circles show the experimental
data [7] for �p + 4He scattering. In 0.9 � q � 2.4 fm−1, open cir-
cles can be regarded as measured Ay for the �p + 6He scattering at
Elab = 200 MeV/nucleon. Experimental data are taken from Ref. [7]
for 4He.

We have applied the cluster-folding (CF) model for �p +
6He scattering at 200 MeV, where the optical potential be-
tween �p and 4He is fitted to data for �p + 4He scattering at
200 MeV/nucleon; see Fig. 5. The CF model reproduces the
differential cross section of �p + 6He scattering with no free
parameter. We then predict Ay, as shown in Fig. 7. The solid
line is our prediction based on the CF model, while the open
circles are our model-independent prediction in 0.9 � q �
2.4 fm−1.

The ratio |F (Q)| of measured differential cross sections for
6He to that for 4He is related to the wave function of 6He. We
have then determined the radius between 4He and the center
of mass of valence two neutrons. The radius is 3.54 fm. This
is close to the radius 3.79 fm calculated with the 6He density.

The Jensen-Shannon (JS) divergence [17] is new data anal-
yses used by LIGO Scientific and Virgo Collaborations [18].
The present work is a first application of JS divergence in
nuclear physics. Since the analysis is too new, we show it in
Appendix.

We improved the JS divergence and applied two data on
Ay for 4,6He. As for Elab = 71 MeV/nucleon, the improved
JS divergence shows that Ay for 6He is close to that for 4He,
although the approximation (2) is not good. This is an inter-
esting future work. We hope that new measurements will be
made for 6He +�p scattering at 71 MeV/nucleon.
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FIG. 8. q dependence of dσ/d� and Ay for �p + 4,6He scattering
at Elab ≈ 71 MeV/nucleon in the upper and middle panels and the
form factor |F (Q)| in the lower panel. The solid and dashed lines
denote results of CF model with and without Upn1 and Upn2 for ,6He,
respectively. The thin solid line denotes the result of fitting for 4He.
Data are taken from Refs. [5,15] for 6He and from Ref. [16] for 4He.

viding his code and Prof. Kouno for making comments, and
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APPENDIX: JENSEN-SHANNON DIVERGENCE
FOR Ay FOR 71 MeV/NUCLEON

The Jensen-Shannon (JS) divergence consider two prob-
abilities and make the comparison between their shapes
quantitatively. We apply the JS divergence to Ay measured
for �p + 4He scattering at Elab = 72 MeV/nucleon and that
for �p + 6He scattering at Elab = 71 MeV/nucleon. This is a
first application in nuclear physics. For this quantification,
we start with two probability distributions, p(qi ) and p(qi ),
having 0 � p(qi ) � 1 and 0 � q(qi ) � 1. The JS divergence

is defined as [17]

DJS(p||q) =
N∑

i=1

DJS(qi ) (A1)

with

DJS(qi ) = 1

2

[
p(qi ) ln

(
p(qi )

M(qi )

)
+ q(qi ) ln

(
q(qi )

M(qi )

)]
,

(A2)

for M(qi ) = (p(qi ) + q(qi ))/2. The DJS(p||q) satisfies

DJS(p||q) = DJS(q||p),

0 � DJS(p||q) � ln rgb]0, 0, 12 = 0.693. (A3)

The DJS is finite; note that the word “divergence” is
maintained for historical reasons. When the probability dis-
tributions are perfectly matched with each other, the DJS

becomes exactly zero. The DJS becomes ln 2 = 0.693, when
there are no overlap between the probability distributions.

In the present data analysis, the number N of data is 5. The
{pi} are a normalized distribution of measured (Ay + 1)/2 for
4He, while the {qi} are a normalized distribution of measured
(Ay + 1)/2 for 6He. The reason why we take (Ay + 1)/2 is
that 0 � (Ay + 1)/2 � 1.

Our result DJS ≈ 0.0028 is much smaller than ln 2 =
0.693. This indicates that the shapes of the two probabilities
are closed to each other. The average of {pi} ({qi}) describes
the magnitude M4 (M6) for 4He (6He). The results are M4 =
2.434 and M6 = 2.539. The two magnitudes are closed to each
other, since the difference (M6 − M4)/M6 is 4%.

When the two magnitudes are close to each other, we can
improve the JS divergence as

DJS(p||q)Mav =
N∑

i=1

DJS(qi )Mav (A4)

with

DJS(qi )Mav ≈ 1

2

[
A1

y (qi ) ln

(
2A1

y (qi )

A1
y (pi ) + A1

y (qi )

)

+ A1
y (pi ) ln

(
2A1

y (pi )

A1
y (pi ) + A1

y (qi )

)]
, (A5)

for the average Mav = (M4 + M6)/2 and A1
y (qi ) ≡ (Ay(qi ) +

1)/2. The DJS(p||q)Ma describes the magnitude and the shape
for two curves. Our result is DJS(p||q)Ma = 0.007 that is
much smaller than the maximum ln 2 ∗ Ma = 1.7236. The
improved JS divergence thus shows that measured Ay for 4,6He
are close to each other.

Now we neglect the data at q = 1.71 fm−1. The result
is DJS(p||q)Ma = 0.002. This value is much smaller than
DJS(p||q)Ma = 0.007. The data at q = 1.71 fm−1 thus make
the similarity between data for 4,6He worse. We hope that
new measurements will be made for �p + 6He scattering at 71
MeV/nucleon, particularly around q = 1.71 fm−1.
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