Prediction of the analyzing power for \vec{p} + ⁶He elastic scattering at 200 MeV from \vec{p} + ⁴He elastic scattering at 200 MeV

Masahiro Ishii,^{1,*} Yasunori Iseri,^{2,†} and Masanobu Yahiro^{1,‡}

¹Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka 819-0395, Japan ²Chiba-Keizai College, Chiba 263-0021, Japan

(Received 6 April 2020; revised 9 January 2021; accepted 3 February 2021; published 5 April 2021)

Background: Johnson, Al-Khalili, and Tostevin constructed a theory for one-neutron halo-nucleus scattering, taking (1) the adiabatic approximation and (2) neglecting the interaction between a valence neutron and a target, and yielding a simple relationship between the elastic scattering of a halo nucleus and of its core. The core-target scattering is calculated with the reduced mass between a halo nucleus and a target, and hence is not measured with the experiment.

Purpose: Our first aim is to apply their theory for $\vec{p} + {}^{6}$ He elastic scattering as two-neutron halo-nucleus scattering and improve the theory with (3) the eikonal approximation. Our second aim is to investigate how good the improved theory is.

Methods: An improved valence-target-cutting (VTC) theory and cluster-folding (CF) model.

Results: The improved VTC theory shows a new relation between two differential cross sections measured for $\vec{p} + {}^{4,6}$ He scattering. Using the relation, we show that the analyzing power $A_y(q)$ for ⁶He is the same as for ⁴He. In the improved theory, the ratio of measured differential cross section for ⁴He to that for ⁶He determines a radius $r_{\alpha-2n}$ between ⁴He and the center of mass of two valence neutrons; the value is $r_{\alpha-2n} = 3.54$ fm. Among the approximations (1)–(3), the approximation (2) is essential. In order to investigate the approximation (2), we apply the CF model for $\vec{p} + {}^{6}$ He scattering at 200 MeV, where the potential between \vec{p} and ⁴He is fitted to data on $\vec{p} + {}^{4}$ He scattering at 200 MeV. For $\vec{p} + {}^{6}$ He scattering at 200 MeV, the CF model reproduces the measured differential cross section with no free parameter. The CF model shows that the approximation (2) is good in $0.9 \leq q \leq 2.4$ fm⁻¹, where $\hbar q$ is the transfer momentum. Using the improved theory, in $0.9 \leq q \leq 2.4$ fm⁻¹, we predict $A_y(q)$ for ⁶He from measured $A_y(q)$ for ⁴He.

Conclusions: The improved VTC theory shows shows that $A_v(q)$ for ⁶He is the same as for ⁴He.

DOI: 10.1103/PhysRevC.103.044605

I. INTRODUCTION

In the shell model, the central and spin-orbit potentials are important for understanding nuclear structure. The importance was first discovered by Mayer and Jensen. The central and spin-orbit potentials in various stable nuclei are similar to the real part of the optical potential in the \vec{p} elastic scattering on the corresponding stable nuclei. The optical potentials are well determined by measured differential cross sections $d\sigma/d\Omega$ and analyzing powers A_y .

In general, the central and spin-orbit potentials in the scattering of unstable nuclei on a \vec{p} target are different from the case of stable nuclei, since unstable nuclei have larger radii than the stable nuclei with the common mass number [1,2].

For scattering of ⁶He on a \vec{p} target at an incident energy $E_{\text{lab}} = 71 \text{ MeV/nucleon}$, the A_y was obtained in the inverse measurement [3–5]. In the experiment, the $d\sigma/d\Omega$ is measured in $1.1 \leq q \leq 2.2 \text{ fm}^{-1}$ ($42^\circ \leq \theta_{\text{c.m.}} \leq 87^\circ$) and the A_y is in $1.0 \leq q \leq 1.9 \text{ fm}^{-1}$ ($37^\circ \leq \theta_{\text{c.m.}} \leq 74^\circ$) [3–5], where $\hbar q$

and $\theta_{c.m.}$ are the transfer momentum and the scattering angle in the center-of-mass (c.m.) frame, respectively. The measured A_y is reproduced by the the cluster-folding (CF) model [5]. It is shown in Ref. [5] that the spin-orbit part of the phenomenological optical potential is shallow and long-ranged. This problem is not solved yet.

The same measurement was made for $E_{\rm lab} = 200$ MeV/nucleon [6], since the nucleon-nucleon (*NN*) total cross section has a minimum around there. However, the result was shown only for $d\sigma/d\Omega$ in $1.7 \leq q \leq 2.7$ fm⁻¹ ($36^{\circ} \leq \theta_{\rm c.m.} \leq 59^{\circ}$).

The \vec{p} + ^{4,6}He scattering at $E_{\rm lab} = 200$ MeV/nucleon were analyzed by the Melbourne *g*-matrix folding model [1]. The model predicted $d\sigma/d\Omega$ and A_y for ⁶He, but not does account for the data [7] for ⁴He in $q \gtrsim 3.3$ fm⁻¹ ($\theta_{\rm c.m.} \gtrsim 80^{\circ}$). Ab *initio* folding potentials based on no-core shell-model [8] were constructed and applied for \vec{p} + ^{4,6}He scattering at $E_{\rm lab} = 200$ MeV/nucleon. The model reproduces the data on $d\sigma/d\Omega$ for ⁶He, but not $d\sigma/d\Omega$ for ⁴He in $q \gtrsim 2.5$ fm⁻¹ ($\theta_{\rm c.m.} \gtrsim 60^{\circ}$).

Crespo and Moro calculated $d\sigma/d\Omega$ and A_y for the \vec{p} + ^{4,6,8}He scattering at $E_{\rm lab} = 297$ MeV/nucleon, using the multiple scattering expansion [9]. Microscopic optical potentials derived from *NN t* matrix and nonlocal density was applied for the \vec{p} + ⁴He scattering at $E_{\rm lab} = 200$ MeV/nucleon [10],

^{*}ishii@phys.kyushu-u.ac.jp

[†]iseri@chiba-kc.ac.jp

^{*}yahiro@phys.kyushu-u.ac.jp

and reproduced the data of Ref. [7] in $q \lesssim 4.1 \text{ fm}^{-1}$ ($\theta_{\text{c.m.}} \lesssim 110^{\circ}$).

Johnson, Al-Khalili, and Tostevin constructed a theory for one-neutron halo-nucleus scattering, using (1) the adiabatic approximation and (2) neglecting the interaction between a valence neutron and a target [11]. They yield a simple relationship between the elastic scattering of a halo nucleus and of its core from a stable target. They applied the theory for ¹¹Be + ¹²C and ¹⁹C + ¹²C scattering, since the core mass is much larger than the valence-neutron mass. Nevertheless, they found that the approximation (2) is not negligible. There is no statement on A_y in Ref. [11]. For simplicity, we refer to the theory as valence-target cutting (VTC) theory. The case of multinucleon valence halo systems is described in Ref. [12].

In Ref. [11], the differential cross section of the core-target scattering is calculated with the reduced mass μ between a halo nucleus and a target, and not measured with the experiment.

In this paper, we apply the VTC theory for a two-neutron halo nucleus scattering and improve the extended theory with (3) the eikonal approximation. Among the three approximations used, the approximation (2) is most essential for $\vec{p} + {}^{6}$ He elastic scattering, since the core mass is comparable with the two-neutron mass. We consider $\vec{p} + {}^{6}$ He scattering at $E_{\text{lab}} = 71,200 \text{ MeV/nucleon}$. As a second aim, we investigate how good the improved VTC theory is for the $\vec{p} + {}^{6}$ He scattering, that is, how good the approximation (2) is for the $\vec{p} + {}^{6}$ He scattering.

The improved VTC theory shows that $A_y(q)$ for ⁴He is the same as $A_y(q)$ for ⁶He. This makes it possible to determine $A_y(q)$ for ⁶He from the data on $A_y(q)$ for ⁴He. The ratio F(q/3) of $d\sigma/d\Omega$ for ⁶He to that for ⁴He is related to the wave function of ⁶He in the improved VTC theory. This allows us to determine the radius $r_{\alpha-2n}$ between ⁴He and the center-of-mass of valence two neutrons from F(q/3).

Using the CF model, we confirm that the approximation (2) is good in $0.9 \leq q \leq 2.4$ fm⁻¹ for $E_{lab} = 200$ MeV/nucleon, but good only in the vicinity of q = 0.9 fm⁻¹ for $E_{lab} = 71$ MeV/nucleon.

The improved VTC theory and the results are shown in Sec. II. The CF model is explained and its results are shown in Sec. III. Section IV is devoted to a summary.

II. IMPROVED VTC THEORY AND ITS RESULTS

We extend the VTC theory for ⁶He elastic scattering on a target \vec{p} at $E_{lab} = 71$ and 200 MeV/nucleon as two-neutron halo-nucleus scattering. For this purpose, we start with the $p + n_1 + n_2 + {}^{4}$ He four-body model; see Fig. 1 for two sets of coordinates in the four-body system.

The four-body Hamiltonian is

$$H = -\frac{\hbar^2}{2\mu_6} \nabla_R^2 + U + H_6, \tag{1}$$

$$U = U_{pn_1}(r_{pn_1}) + U_{pn_2}(r_{pn_2}) + U_{p\alpha}(r_{p\alpha}) + V_{p\alpha}^{\text{Coul}}(r_{p\alpha}), \quad (2)$$

where μ_6 is the reduce mass between \vec{p} and ⁶He and the Hamiltonian H_6 of ⁶He is described by the $n_1 + n_2 + {}^4$ He three-body model. The coordinates $r_{p\gamma}$ for $\gamma = n_1, n_2, \alpha$ are

FIG. 1. Two sets of coordinates in four-body model.

shown in Fig. 1 (a). The $U_{p\gamma}$ is the nuclear interaction between \vec{p} and γ .

The exact T matrix of the elastic scattering is

$$T = \langle e^{i\mathbf{k}\cdot\mathbf{R}}\Phi | U | \Psi \rangle \tag{3}$$

for the total wave function Ψ , the incident and final momenta, $\hbar k$ and $\hbar k'$. The ground state $\Phi(\xi, \zeta)$ of ⁶He has an energy ε_0 .

We take the adiabatic approximation $(H_6 \approx \varepsilon_0)$ for H and neglect the interactions U_{pn_1} and U_{pn_2} . The resulting Hamiltonian is

$$H_{\rm AD} = -\frac{\hbar^2}{2\mu_6} \nabla_R^2 + U_{p\alpha}(r_{p\alpha}) + V_{p\alpha}^{\rm Coul}(r_{p\alpha}) + \varepsilon_0.$$
(4)

In H_{AD} , ζ is a constant, because of no derivative with respect to ζ . We then get $\nabla_R^2 = \nabla_{r_{p\alpha}}^2$ for $\mathbf{R} = \mathbf{r}_{p\alpha} - \zeta/3$. Eventually, we get

$$H_{\rm AD} = -\frac{\hbar^2}{2\mu_6} \nabla_{r_{p\alpha}}^2 + U_{p\alpha}(r_{p\alpha}) + V_{p\alpha}^{\rm Coul}(r_{p\alpha}) + \varepsilon_0.$$
(5)

The solution Ψ_{AD} to the Schrödinger equation $[E_{c.m.} - H_{AD}]\Psi_{AD} = 0$ is

$$\Psi_{AD} = \frac{i\varepsilon}{E_{c.m.} - H_{AD} + i\varepsilon} e^{ik \cdot \mathbf{R}} \Phi$$

$$= \frac{i\varepsilon}{E_{c.m.} - H_{AD} + i\varepsilon} e^{ik \cdot \mathbf{r}_{p\alpha}} e^{-ik \cdot \zeta/3} \Phi$$

$$= e^{-ik \cdot \zeta/3} \Phi \frac{i\varepsilon}{E_{c.m.} - H_{AD} + i\varepsilon} e^{ik \cdot \mathbf{r}_{p\alpha}}$$

$$= e^{-ik \cdot \zeta/3} \Phi \chi_{\mathbf{k}}(\mathbf{r}_{p\alpha})$$
(6)

with the distorting wave function

$$\chi_{\boldsymbol{k}}(\boldsymbol{r}_{p\alpha}) = \frac{i\varepsilon}{E_{\text{c.m.}} - H_{\text{AD}} + i\varepsilon} e^{i\boldsymbol{k}\boldsymbol{r}_{p\alpha}}$$
(7)

for infinitesimally small ε and the incident energy $E_{\rm cm} = \hbar^2 k^2 / (2\mu_6)$ in the center of mass (c.m.) system. Inserting Eq. (6) in Eq. (3), we can obtain an approximate T matrix $T_{\rm AD}$ as

$$T_{\rm AD} = \langle e^{i\mathbf{k}'\mathbf{R}} \Phi | U_{p\alpha} + V_{p\alpha}^{\rm Coul}(\mathbf{r}_{p\alpha}) | e^{-i\mathbf{k}\zeta/3} \Phi \chi_{\mathbf{k}}(\mathbf{r}_{p\alpha}) \rangle$$
$$= F((\mathbf{k}' - \mathbf{k})/3) \langle e^{i\mathbf{k}'\cdot\mathbf{r}_{p\alpha}} | U_{p\alpha} + V_{p\alpha}^{\rm Coul} | \chi_{\mathbf{k}}(\mathbf{r}_{p\alpha}) \rangle \mathbf{r}_{p\alpha}, \quad (8)$$

where the subscript $\mathbf{r}_{p\alpha}$ shows the integral over $\mathbf{r}_{p\alpha}$. The $F(\mathbf{Q})$ as a function of $\mathbf{Q} \equiv (k' - k) = \mathbf{q}/3$ is the form factor defined by

$$F(\boldsymbol{Q}) \equiv F((k'-k)/3) = \langle e^{i(k'-k)\cdot\zeta/3} |\Phi|^2 \rangle_{\zeta\xi}, \qquad (9)$$

where the subscript $\zeta \xi$ shows the integral over ζ and ξ .

The $\chi_{\mathbf{k}}(\mathbf{r}_{p\alpha})$ is the distorting wave function between \vec{p} and ⁴He with the reduced mass μ_6 , and not the distorting wave function of the \vec{p} + ⁴He elastic scattering with the reduced mass μ_4 between \vec{p} and ⁴He.

Using Eq. (8), we can get the differential cross section of \vec{p} + ⁶He scattering as

$$\left(\frac{d\sigma}{d\Omega}\right)_{p+^{6}\mathrm{He}} = |F(\mathbf{Q})|^{2} \left(\frac{d\sigma}{d\Omega}\right)^{\mathrm{point}}.$$
 (10)

In the limit of F(Q) = 1, the distance between ⁶He and the c.m. of two valence neutrons tends to zero. In this sense, $\left(\frac{d\sigma}{d\Omega}\right)^{\text{point}}$ is called the point cross section. The equation is a four-body version of Ref. [11]. The $\left(\frac{d\sigma}{d\Omega}\right)^{\text{point}}$ is calculated in Ref. [11] for one-neutron

The $\left(\frac{d\sigma}{d\Omega}\right)^{\text{point}}$ is calculated in Ref. [11] for one-neutron halo-nucleus scattering, since the $\left(\frac{d\sigma}{d\Omega}\right)^{\text{point}}$ cannot be measured with experiments.

In order to determine $|F(\mathbf{Q})|$ from experimental data on $p + {}^{4,6}$ He scattering, we find a relationship between the $(d\sigma/d\Omega)^{\text{point}}$ and the differential cross section $(d\sigma/d\Omega)_{p+4}$ He for $p + {}^{4}$ He elastic scattering with μ_{4} .

In the c.m. system, the velocity v_A is defined with $\hbar k_A = v_A \mu_A$ for A = 4 or 6, and hence

$$E_{\rm c.m.}^{A} = \frac{(\hbar k_A)^2}{2\mu_A} = \mu_A \frac{v_A^2}{2} = \frac{A}{A+1} M_N \frac{v_A^2}{2}$$
(11)

for nucleon mass M_N . In the laboratory system, the energy E_{lab}^A per nucleon is described with the velocity v_{lab}^A as

$$E_{\rm lab}^{A} = M_{N} \frac{\left(v_{\rm lab}^{A}\right)^{2}}{2}.$$
 (12)

The transform from $E_{c.m.}^A$ to the incident energy AE_{lab}^A leads to

$$E_{\rm c.m.}^{A} = \frac{1}{A+1} A E_{\rm lab}^{A} = \frac{A}{A+1} M_{N} \frac{\left(v_{\rm lab}^{A}\right)^{2}}{2}.$$
 (13)

Comparing Eq. (11) with Eq. (13), we show that

$$v_A = v_{\rm lab}^A. \tag{14}$$

This means that the velocity v defined with $\hbar k_A = v_A \mu_A$ in the c.m. system is the same as the the velocity v_{lab}^A in the laboratory system.

From now on, we consider the case of $v \equiv v_4 = v_6$. This case corresponds to taking the case of

$$E_{\rm lab}^4 = E_{\rm lab}^6 = M_N \frac{v_{\rm lab}^2}{2} = M_N \frac{v^2}{2},$$
 (15)

because of Eqs. (12) and (14).

Now we improve Eq. (10) in order to determine |F(Q)|from experimental data on $\vec{p} + {}^{4,6}$ He scattering at the same E_{lab} . Using the eikonal approximation for the $\vec{p} + {}^{4}$ He scattering in the center-of-mass system, we get the scattering amplitude $f_{p\alpha}$ as

$$f_{p\alpha} = \frac{i\mu_4 v}{2\pi\hbar} \int d\boldsymbol{b} \ e^{-i\boldsymbol{q}\cdot\boldsymbol{b}} (1 - e^{i\chi(\boldsymbol{b})}) \tag{16}$$

with the phase shift function

$$\chi(\boldsymbol{b}) = -\frac{1}{\hbar v} \int_{-\infty}^{\infty} dz \left[U_{p\alpha}(\boldsymbol{b}, z) + V_{p\alpha}^{\text{Coul}}(\boldsymbol{b}, z) F(\boldsymbol{r}_{p\alpha}) \right], \quad (17)$$

where $\mathbf{r}_{p\alpha} \equiv (\mathbf{b}, z)$ and the screened Coulomb potential $V_{p\alpha}^{\text{Coul}}(z, \mathbf{b})F(\mathbf{r}_{p\alpha})$ has been used instead of $V_{p\alpha}^{\text{Coul}}(\mathbf{b}, z)$. Glauber shows how to treat the screening function $F(\mathbf{r}_{p\alpha})$ below Eq. (117) in Ref. [13]. The spin-orbit part of $U_{p\alpha}(z, \mathbf{b})$ is approximated as

$$U_{p\alpha}^{\text{LS}}(r_{p\alpha})\boldsymbol{\ell}_{p\alpha}\boldsymbol{\sigma}_{p} \approx U_{p\alpha}^{\text{LS}}(r_{p\alpha})(\hbar\boldsymbol{k}_{4} \times \boldsymbol{r}_{p\alpha})\boldsymbol{\sigma}_{p}$$
$$= U_{p\alpha}^{\text{LS}}(r_{p\alpha})(\hbar\boldsymbol{k}_{4} \times \boldsymbol{r}_{p\alpha})\boldsymbol{\sigma}_{p}^{(\text{y})}$$
$$= U_{p\alpha}^{\text{LS}}(r_{p\alpha})(\mu_{4}\boldsymbol{v} \times \boldsymbol{r}_{p\alpha})\boldsymbol{\sigma}_{p}^{(\text{y})}, \qquad (18)$$

where $\mathbf{v} \times \mathbf{r}_{p\alpha} = \mathbf{v} \times \mathbf{b} = vb\mathbf{e}_y$ since \mathbf{v} is in the *z* direction and the unit vector \mathbf{e}_y is in the *y* direction, i.e., the vertical direction of the scattering plane. It is possible to define $\boldsymbol{\sigma}_p^{(y)}$ as $\boldsymbol{\sigma}_p^{(y)} =$ diag(1, -1); namely, $\boldsymbol{\ell}_{p\alpha} \cdot \boldsymbol{\sigma}_p = \mu_4 vb$ for proton having upspin and, $\boldsymbol{\ell}_{p\alpha} \cdot \boldsymbol{\sigma}_p = -\mu_4 vb$ for proton having down-spin. The χ^+ for up-spin is decoupled from the χ^- for down-spin. This property is essential for the derivation of Eq. (24), as shown later.

Equation (18) shows that $\chi(\boldsymbol{b})$ depends on the reduced mass, i.e., $\chi(\boldsymbol{b}) = \chi(\boldsymbol{b}, \mu_4)$. Note that the reduced-mass dependence of $\chi(\boldsymbol{b}, \mu_4)$ comes from the LS potential only. Under the the eikonal approximation, the $\left(\frac{d\sigma}{d\Omega}\right)^{\text{point}}$ reads

$$\left(\frac{d\sigma}{d\Omega}\right)^{\text{point}} = \left|\frac{i\mu_6 v}{2\pi\hbar} \int d\boldsymbol{b} \ e^{-i\boldsymbol{q}\cdot\boldsymbol{b}} (1 - e^{i\chi(\boldsymbol{b},\mu_6)})\right|^2 \\ \approx \left|\frac{i\mu_6 v}{2\pi\hbar} \int d\boldsymbol{b} \ e^{-i\boldsymbol{q}\cdot\boldsymbol{b}} (1 - e^{i\chi(\boldsymbol{b},\mu_4)})\right|^2.$$
(19)

The replacement from $\chi(\boldsymbol{b}, \mu_6)$ to $\chi(\boldsymbol{b}, \mu_4)$ is good approximation, because of $\mu_6/\mu_4 \approx 1$. The replacement hardly changes the difference cross section and A_y .

This leads to

$$\left(\frac{d\sigma}{d\Omega}\right)^{\text{point}} = \left(\frac{\mu_6}{\mu_4}\right)^2 \left| f_{p\alpha} \right|^2 = \left(\frac{\mu_6}{\mu_4}\right)^2 \left(\frac{d\sigma}{d\Omega}\right)_{p+^6\text{He}}.$$
 (20)

In the c.m. system, we then obtain

$$\left(\frac{d\sigma}{d\Omega}\right)_{p+^{6}\mathrm{He}} = |F(\mathbf{Q})|^{2} \left(\frac{d\sigma}{d\Omega}\right)_{p+^{4}\mathrm{He}} \left(\frac{\mu_{6}}{\mu_{4}}\right)^{2}$$
(21)

from Eqs. (10) and (20), where the two differential cross sections are for $\vec{p} + {}^{4,6}$ He scattering at a common v, i.e., a common E_{lab} . This new relation (21) allows us to determine |F(Q)| from two differential cross sections measured for $\vec{p} + {}^{4,6}$ He scattering at a common E_{lab} .

The derivation from Eqs. (5) to (21) is the same for incident proton having up-spin (+) and incident proton down-spin (-), although $U_{p\alpha}$ for incident proton having up-spin (+) is different from that for incident proton having down-spin (-). Eventually, we can get

$$\left[\frac{d\sigma}{d\Omega}\right]_{p+^{6}\mathrm{He}}^{+} = |F(\mathbf{Q})|^{2} \left(\frac{d\sigma}{d\Omega}\right)_{p+^{4}\mathrm{He}}^{+} \left(\frac{\mu_{6}}{\mu_{4}}\right)^{2} \qquad (22)$$

and

$$\left(\frac{d\sigma}{d\Omega}\right)_{p+{}^{6}\mathrm{He}}^{-} = |F(\mathbf{Q})|^{2} \left(\frac{d\sigma}{d\Omega}\right)_{p+{}^{4}\mathrm{He}}^{-} \left(\frac{\mu_{6}}{\mu_{4}}\right)^{2}, \qquad (23)$$

where F(Q) is common between incident proton having upspin (+) and incident proton down-spin (-) since F(Q) is not related to the spin of incident proton.

Using Eqs. (22) and (23), one can get a relation for the analyzing power A_v^6 for ⁶He as

$$A_{y}^{6} \equiv \frac{\left(\frac{d\sigma}{d\Omega}\right)_{p+^{6}\mathrm{He}}^{+} - \left(\frac{d\sigma}{d\Omega}\right)_{p+^{6}\mathrm{He}}^{-}}{\left(\frac{d\sigma}{d\Omega}\right)_{p+^{6}\mathrm{He}}^{+} + \left(\frac{d\sigma}{d\Omega}\right)_{p+^{6}\mathrm{He}}^{-}}$$
$$= \frac{\left(\frac{d\sigma}{d\Omega}\right)_{p+^{4}\mathrm{He}}^{+} - \left(\frac{d\sigma}{d\Omega}\right)_{p+^{4}\mathrm{He}}^{-}}{\left(\frac{d\sigma}{d\Omega}\right)_{p+^{4}\mathrm{He}}^{+} + \left(\frac{d\sigma}{d\Omega}\right)_{p+^{4}\mathrm{He}}^{-}} \equiv A_{y}^{4}. \tag{24}$$

This equation shows that $A_y(q)^6 = A_y(q)^4$ in the improved VTC theory. In fact, Eq. (24) is well satisfied in A_y for 71 MeV; see Fig. 4.

The relation (21) between $\left(\frac{d\sigma}{d\Omega}\right)_{p+^{6}\text{He}}^{E_{\text{lab}}}$ and $\left(\frac{d\sigma}{d\Omega}\right)_{p+^{4}\text{He}}^{E_{\text{lab}}}$ is good, when the eikonal and adiabatic approximations are good and $U_{pn_{1}} = U_{pn_{2}} = 0$. It is shown in Ref. [14] that the eikonal and adiabatic approximations are good for a few hundred MeV. The approximation $U_{pn_{1}} = U_{pn_{2}} = 0$ is good in $0.9 \leq q \leq 2.4 \text{ fm}^{-1}$ for 200 MeV as shown in Sec. III B, but good only near $q = 0.9 \text{ fm}^{-1}$ for 71 MeV as mentioned in Sec. III C.

A. Determination of |F| from measured differential cross sections for $\vec{p} + {}^{4,6}$ He scattering

Using Eq. (21), we can determine |F(Q)| from experimental data on the cross sections of $p + {}^{4,6}$ He scattering at the same E_{lab} , when the most essential condition $U_{pn_1} = U_{pn_2} = 0$ is good and the angular momentum between n_1 and n_2 is zero.

As for $E_{lab} = 200 \text{ MeV/nucleon}$, the data are available in Ref. [7] for ⁴He and in Ref. [6] for ⁶He. As for $E_{lab} = 71$ MeV/nucleon, the data are available in Refs. [5,15] for ⁶He, but not for ⁴He. We then take the data [16] on $\vec{p} + {}^{4}\text{He}$ scattering at $E_{lab} = 72 \text{ MeV/nucleon}$. The resulting |F(Q)| is smooth, as shown in Fig. 2. The approximation $U_{pn_1} = U_{pn_2} =$ 0 is good in $0.9 \leq q \leq 2.4 \text{ fm}^{-1}$ for 200 MeV as shown in Sec. III B, but good only in the vicinity of $q = 0.9 \text{ fm}^{-1}$ for 71 MeV as mentioned in Sec. III C. In Fig. 2, the resulting |F(Q)| is thus reliable in $0.3 \leq Q \leq 0.8 \text{ fm}^{-1}$.

The Fourier transform $|F(\zeta)|$ of |F(Q)| is a function of ζ . We then assume that the potential between ⁴He and the center of mass of n_1 and n_2 is a one-range Gauss function $V(\zeta)$, and can obtain |F(Q)| by solving the Schrödinger equation with the potential. The solid line denotes a result of $V(\zeta) = -25 \exp[-(\zeta/1.41)^2]$, and reproduces the experimental |F(Q)| for 200 MeV. The resulting radius between ⁴He and the center of mass of n_1 and n_2 is 3.54 fm. The corresponding binding energy is 0.172 MeV.

FIG. 2. *Q* dependence of |F|. The solid (open) circles are the result determined from the experimental data at 71 (200) MeV. The solid line is a result of $V(\zeta) = -25 \exp[-(\zeta/1.41)^2]$. Experimental data are taken from Refs. [5,15,16] for 71 MeV and Refs. [6,7] for 200 MeV.

B. Model independent prediction on A_y for $\vec{p} + {}^{4,6}$ He scattering at 200 MeV

When *p* is polarized, the factor $|F(\hbar(k'-k))/3|\mu_6/\mu_4$ is common between the cross section for the incident proton having up-spin and that for the proton having down-spin. This means that the vector analyzing $A_y(q)$ for $\vec{p} + {}^{6}\text{He}$ scattering is the same as $A_y(q)$ for $\vec{p} + {}^{4}\text{He}$, when the condition $U_{pn_1} = U_{pn_2} = 0$ is good. As mentioned later in Sec. III B, the condition is well satisfied in $0.9 \leq q \leq 2.4$ fm⁻¹.

We make a model-independent prediction on $A_y(q)$ for ⁶He by using Eq. (24). The measured $A_y(q)$ of Ref. [7] for ⁴He is transformed into $A_y(\theta_{c.m.})$.

Figure 3 shows the predicted $A_y(\theta_{c.m.})$ for ⁶He. The predicted $A_y(\theta_{c.m.})$ is reliable in 20° $\leq \theta_{c.m.} \leq 55^{\circ}$ (0.9 $\leq q \leq$ 2.4 fm⁻¹). The reliable prediction in 20° $\leq \theta_{c.m.} \leq 55^{\circ}$ is denoted by closed circles. It should be noted that our prediction shown by open circles are not good.

FIG. 3. $\theta_{c.m.}$ dependence of predicted A_y for $\vec{p} + {}^{6}$ He scattering at 200 MeV. See the text for closed and open circles.

FIG. 4. *q* dependence of measured A_y (closed circles) for \vec{p} + ⁴He scattering at $E_{lab} = 72$ MeV and measured A_y (open circles) for \vec{p} + ⁶He scattering at $E_{lab} = 71$ MeV. Data are taken from Ref. [5] for ⁶He and Ref. [16] for ⁴He.

C. A_v for 71 MeV

Figure 4 shows q dependence of A_y measured for $\vec{p} + {}^{4}$ He scattering at $E_{lab} = 72$ MeV/nucleon and that for $\vec{p} + {}^{6}$ He scattering at $E_{lab} = 71$ MeV/nucleon. The A_y for 6 He is close to that for 4 He, except for a data at q = 1.71 fm⁻¹. The property can be analyzed quantitatively by the Jensen-Shannon (JS) divergence [17]. We show the analysis in the Appendix, since the analysis is new but has recently been used by LIGO Scientific and Virgo Collaborations [18].

III. CLUSTER-FOLDING MODEL

In order to investigate the approximation (2), we use the CF model for $\vec{p} + {}^{6}$ He scattering at 200 MeV, where the potential between \vec{p} and 4 He is fitted to data on $\vec{p} + {}^{4}$ He scattering at 200 MeV. The CF model reproduces the differential cross section for $\vec{p} + {}^{6}$ He scattering with no free parameter. We then predict A_{y} .

We consider the cluster folding (CF) model for the \vec{p} + ⁶He at $E_{\text{lab}} = 200$ MeV. In addition, we recalculate the scattering for $E_{\text{lab}} = 71$ MeV in order to obtain *F*.

In the cluster model, the nuclear potential $U_{CF}(R)$ between \vec{p} and ⁶He is defined as

$$U_{\rm CF}(R) = \int U_{pn_1} \rho_n^{\rm CF}(r_1) d\mathbf{r}_1 + \int U_{pn_2} \rho_n^{\rm CF}(r_2) d\mathbf{r}_2 + \int U_{p\alpha} \rho_\alpha^{\rm CF}(r_\alpha) d\mathbf{r}_\alpha$$
(25)

with

$$U_{pn_1} = U_{pn}^0(r_{pn_1}) + U_{pn}^{\rm LS}(r_{pn_1})\boldsymbol{\ell}_{pn_1}(\boldsymbol{\sigma}_p + \boldsymbol{\sigma}_{n_1}), \qquad (26)$$

$$U_{pn_2} = U_{pn}^0(r_{pn_2}) + U_{pn}^{\text{LS}}(r_{pn_2})\boldsymbol{\ell}_{pn_2}(\boldsymbol{\sigma}_p + \boldsymbol{\sigma}_{n_2}), \quad (27)$$

$$U_{p\alpha} = U_{p\alpha}^{0}(r_{p\alpha}) + U_{p\alpha}^{\rm LS}(r_{p\alpha})\boldsymbol{\ell}_{p\alpha}\boldsymbol{\sigma}_{p}, \qquad (28)$$

where the coordinates r_1 , r_2 , and r_{α} are the position vectors of n_1 , n_2 , and the α core from the center of mass of ⁶He, respectively, and ρ_n^{CF} and $\rho_{\alpha}^{\text{CF}}$ are the neutron and α densities, respectively. These densities of ⁶He are calculated with αnn OCM in Refs. [19,20].

Following Ref. [5], we can rewrite the
$$U_{CF}(R)$$
 into

$$U_{\rm CF} = U_0^{\rm CF}(R) + U_{\rm LS}^{\rm CF}(R) \boldsymbol{L}\boldsymbol{\sigma}_p \tag{29}$$

with the central part

$$U_0^{\text{CF}}(R) = 2 \int U_{pn}^0(|\boldsymbol{r}_1 - \boldsymbol{R}|) \,\rho_n^{\text{CF}}(r_1) \,d\boldsymbol{r}_1 + \int U_{p\alpha}^0(|\boldsymbol{r}_\alpha - \boldsymbol{R}|) \,\rho_\alpha^{\text{CF}}(r_\alpha) \,d\boldsymbol{r}_\alpha \qquad (30)$$

and the spin-orbit part

U

$$U_{\rm LS}^{\rm CF}(R) = \frac{1}{3} \int U_{\rho n}^{\rm LS}(|\boldsymbol{r}_1 - \boldsymbol{R}|) \left\{ 1 - \frac{\boldsymbol{r}_1 \cdot \boldsymbol{R}}{R^2} \right\} \rho_n^{\rm CF}(r_1) d\boldsymbol{r}_1 + \frac{2}{3} \int U_{\rho \alpha}^{\rm LS}(|\boldsymbol{r}_{\alpha} - \boldsymbol{R}|) \left\{ 1 - \frac{\boldsymbol{r}_{\alpha} \cdot \boldsymbol{R}}{R^2} \right\} \rho_{\alpha}^{\rm CF}(r_{\alpha}) d\boldsymbol{r}_{\alpha}.$$
(31)

The $U_{p\alpha}$ is the optical potential (OP), and U_{pn_1} and U_{pn_1} are the CEG [21–23]. The *g* matrix, derived from the Hamada-Johnston potential [24], is successful in reproducing the data on \vec{p} elastic scattering from many nuclei in a wide range of incident energies, $E_{\text{lab}} = 20-200 \text{ MeV}$ [21–23]. For $\vec{p} + {}^{6}\text{He}$ elastic scattering at 71 MeV, the CF model well reproduces the data on differential cross sections and A_y [5].

A. Potential fitting of \vec{p} + ⁴He scattering and results of CF model \vec{p} + ⁶He scattering

We now fit the OP potential $U_{p\alpha}$ to data [7] for $\vec{p} + {}^{4}\text{He}$ scattering at $E_{\text{lab}} = 200 \text{ MeV}$ with a Woods-Saxon form:

$$V_{p\alpha} = -V_0 f_r(r_{p\alpha}) - i W_0 f_i(r_{p\alpha}) + 4i a_{id} W_{id} \frac{d}{dr_{p\alpha}} f_{id}(r_{p\alpha}) + V_s \frac{2}{r_{p\alpha}} \frac{d}{dR} f_s(r_{p\alpha}) \ell_{p\alpha} \sigma_p$$
(32)

with

$$f_x(r_{p\alpha}) = \left[1 + \exp\left(\frac{r_{p\alpha} - r_x A^{1/3}}{a_x}\right)\right]^{-1}$$
(33)

for x = r, i, id, s, where σ_p stands for the Pauli spin operator of an incident proton. The Coulomb potential between the proton and ⁴He (⁶He) is obtained from the uniformly charged sphere with the radius 1.4 $A^{1/3}$, where A = 4 for ⁴He and A = 6 for ⁶He.

The best-fit potential parameters are obtained by minimizing the χ^2 values of $d\sigma/d\Omega$ and A_y . The resulting parameter set is tabulated in Table I, together with the case of $E_{\text{lab}} = 72$ MeV of Ref. [5].

First of all, we briefly shows results of the OP and the CF model in Fig. 5. The left panel shows that our fitting is good for $\vec{p} + {}^{4}\text{He}$ scattering at $E_{\text{lab}} = 200$ MeV. The right panel indicates that the CF model reproduces $\vec{p} + {}^{6}\text{He}$ scattering at $E_{\text{lab}} = 200$ MeV/nucleon and that the condition $U_{pn_1} = U_{pn_2} = 0$ is good for $d\sigma/d\Omega$ and A_y in $\theta_{\text{c.m.}} \lesssim 52^{\circ}$. Now we

	(MeV)	V ₀ (MeV)	<i>r</i> _{<i>r</i>} (fm)	<i>a</i> _r (fm)	W ₀ (MeV)	<i>r_i</i> (fm)	<i>ai</i> (fm)	W _{id} (MeV)	r _{id} (fm)	<i>a_{id}</i> (fm)	V _s (MeV)	<i>r</i> _s (fm)	as (fm)
$p + {}^{4}\text{He}$ $p + {}^{4}\text{He}$	200 72	-26.528 54.87	0.7839 0.8566	0.1446 0.09600	17.098 -	1.205	0.5268	_ 31.97	_ 1.125	_ 0.2811	6.689 3.925	0.8215 0.8563	0.2641 0.4914

TABLE I. Parameters of the optical potentials for \vec{p} + ⁴He scattering at $E_{lab} = 200 \text{ MeV/nucleon}$. For 72 MeV/nucleon, the parameter set is taken from Ref. [5].

predict A_y for $\vec{p} + {}^{6}$ He scattering at $E_{lab} = 200 \text{ MeV/nucleon}$, using the CF model.

Further analyses based on the improved VTC theory are made below by using q instead of $\theta_{c.m.}$.

B. Model-dependent prediction on A_y for $\vec{p} + {}^{4,6}$ He scattering at $E_{lab} = 200$ MeV/nucleon

Figure 6 shows q dependence of $d\sigma/d\Omega$ for $\vec{p} + {}^{4,6}$ He scattering at $E_{\text{lab}} = 200 \text{ MeV/nucleon}$ in the upper panel and the form factor |F(Q)| in the lower panel. In the upper panel, the CF model (solid line) reproduces the data [6] for $\vec{p} + {}^{6}$ He scattering at $E_{\text{lab}} = 200 \text{ MeV/nucleon}$ with no free parameter. In the lower panel, the solid line denotes the |F(Q)| calculated with the CF-folding model, while U_{pn_1} and U_{pn_2} are switched off in the dashed line. The difference between the two lines shows that effects of U_{pn_1} and U_{pn_2} are small in the region $0.3 \leq Q \leq 0.8 \text{ fm}^{-1}$ ($0.9 \leq q \leq 2.4 \text{ fm}^{-1}$).

Figure 7 shows q dependence of A_y for $\vec{p} + {}^{6}\text{H}$ scattering. The solid line denotes the A_y calculated with the CF-folding model, while U_{pn_1} and U_{pn_2} are switched off in the dashed line. The difference between the solid and dashed lines show that the condition $U_{pn_1} = U_{pn_2} = 0$ is good in $q \leq 2.4$ fm⁻¹. Eventually, the condition is good in $0.9 \leq q \leq 2.4$ fm⁻¹, when we see both $d\sigma/d\Omega$ and A_{γ} .

Now we predict A_y for $\vec{p} + {}^{6}$ He scattering at $E_{lab} = 200$ MeV/nucleon, using the CF model. In $0.9 \leq q \leq 2.4$ fm⁻¹, open circles are the A_y for 6 He derived from the measured A_y of Ref. [7] for 4 He. The CF model reproduces the derived A_y in $0.9 \leq q \leq 2.0$ fm⁻¹.

C. CF results on $d\sigma/d\Omega$ and A_y for 71 MeV/nucleon

Figure 8 shows the results of the CF-model for $d\sigma/d\Omega$ and A_y of \vec{p} + ⁶He scattering at $E_{lab} = 71$ MeV/nucleon in the upper and middle panels. The CF model reproduces the data [4,5] with no free parameter. The upper and middle panels also show the results of the best optical potential for $d\sigma/d\Omega$ and A_y of \vec{p} + ⁴He scattering at $E_{lab} = 72$ MeV/nucleon.

FIG. 5. $\theta_{c.m.}$ dependence of $d\sigma/d\Omega$ and A_y for $\vec{p} + {}^{4.6}$ He scattering at $E_{lab} = 200$ MeV/nucleon. In the left panel, the solid line is a result of our fitting based on the optical potential model (OPM). In the right panel, the solid and dashed lines denote results of CF model (CFM) with and without U_{pn_1} and U_{pn_2} , respectively. Experimental data are taken from Ref. [7] for ⁴He and Ref [6] for ⁶He.

FIG. 6. *q* dependence of $d\sigma/d\Omega$ for $\vec{p} + {}^{4,6}$ He scattering at $E_{\text{lab}} = 200 \text{ MeV/nucleon}$ in the upper panel and the form factor |F(Q)| in the lower panel. Experimental data are taken from Ref. [7] for $\vec{p} + {}^{4}$ He scattering and Ref. [6] for $\vec{p} + {}^{6}$ He scattering.

The lower panel shows the |F(Q)| calculated with the CF model. The difference between the solid and dashed lines indicates that the condition $U_{pn_1} = U_{pn_2} = 0$ is good only in the vicinity of Q = 0.3 fm⁻¹.

IV. SUMMARY

In order to make the model-independent prediction for $\vec{p} + {}^{6}$ He scattering at 200 MeV, we improve the VTC theory, using the eikonal approximation in addition to the $U_{pn_1} = U_{pn_2} = 0$ approximation and the adiabatic approximation. In the improved VTC theory, the A_y for 6 He is the same as that for 4 He. The $U_{pn_1} = U_{pn_2} = 0$ approximation is most essential among the three approximations. Using the CF model, we have confirmed that the $U_{pn_1} = U_{pn_2} = 0$ approximation is good in $0.9 \leq q \leq 2.4$ fm⁻¹ for 200 MeV/nucleon, but good only near q = 0.9 fm⁻¹ for 71 MeV/nucleon. In $0.9 \leq q \leq 2.4$ fm⁻¹, we predict $A_y(q)$ for $\vec{p} + {}^{6}$ He scattering at 200 MeV this is a model-independent prediction in $0.9 \leq q \leq 2.4$ fm⁻¹ ($20^{\circ} \leq \theta_{c.m.} \leq 55^{\circ}$); see Fig. 3.

FIG. 7. *q* dependence of A_y for $\vec{p} + {}^{6}$ He scattering at $E_{lab} = 200$ MeV/nucleon. The solid line denotes a result of the CF-folding model, while U_{pn_1} and U_{pn_2} are switched off in the dashed line. The thin solid line is a result of the fitting for $\vec{p} + {}^{4}$ He scattering at $E_{lab} = 200$ MeV/nucleon. Open circles show the experimental data [7] for $\vec{p} + {}^{4}$ He scattering. In $0.9 \leq q \leq 2.4$ fm⁻¹, open circles can be regarded as measured A_y for the $\vec{p} + {}^{6}$ He scattering at $E_{lab} = 200$ MeV/nucleon. Experimental data are taken from Ref. [7] for 4 He.

We have applied the cluster-folding (CF) model for \vec{p} + ⁶He scattering at 200 MeV, where the optical potential between \vec{p} and ⁴He is fitted to data for \vec{p} + ⁴He scattering at 200 MeV/nucleon; see Fig. 5. The CF model reproduces the differential cross section of \vec{p} + ⁶He scattering with no free parameter. We then predict A_y , as shown in Fig. 7. The solid line is our prediction based on the CF model, while the open circles are our model-independent prediction in $0.9 \leq q \leq 2.4$ fm⁻¹.

The ratio |F(Q)| of measured differential cross sections for ⁶He to that for ⁴He is related to the wave function of ⁶He. We have then determined the radius between ⁴He and the center of mass of valence two neutrons. The radius is 3.54 fm. This is close to the radius 3.79 fm calculated with the ⁶He density.

The Jensen-Shannon (JS) divergence [17] is new data analyses used by LIGO Scientific and Virgo Collaborations [18]. The present work is a first application of JS divergence in nuclear physics. Since the analysis is too new, we show it in Appendix.

We improved the JS divergence and applied two data on A_y for ^{4,6}He. As for $E_{lab} = 71$ MeV/nucleon, the improved JS divergence shows that A_y for ⁶He is close to that for ⁴He, although the approximation (2) is not good. This is an interesting future work. We hope that new measurements will be made for ⁶He + \vec{p} scattering at 71 MeV/nucleon.

ACKNOWLEDGMENTS

We would like to thank Prof. Hiyama for providing the numerical data of the ⁶He density, Dr. Toyokawa for pro-

FIG. 8. *q* dependence of $d\sigma/d\Omega$ and A_y for $\vec{p} + {}^{4.6}$ He scattering at $E_{\text{lab}} \approx 71 \text{ MeV/nucleon}$ in the upper and middle panels and the form factor |F(Q)| in the lower panel. The solid and dashed lines denote results of CF model with and without U_{pn_1} and U_{pn_2} for ${}^{.6}$ He, respectively. The thin solid line denotes the result of fitting for 4 He. Data are taken from Refs. [5,15] for 6 He and from Ref. [16] for 4 He.

viding his code and Prof. Kouno for making comments, and Dr. Matsui for making a code.

APPENDIX: JENSEN-SHANNON DIVERGENCE FOR A_y FOR 71 MeV/NUCLEON

The Jensen-Shannon (JS) divergence consider two probabilities and make the comparison between their shapes quantitatively. We apply the JS divergence to A_y measured for $\vec{p} + {}^{4}\text{He}$ scattering at $E_{\text{lab}} = 72$ MeV/nucleon and that for $\vec{p} + {}^{6}\text{He}$ scattering at $E_{\text{lab}} = 71$ MeV/nucleon. This is a first application in nuclear physics. For this quantification, we start with two probability distributions, $p(q_i)$ and $p(q_i)$, having $0 \le p(q_i) \le 1$ and $0 \le q(q_i) \le 1$. The JS divergence

 M. Toyokawa, K. Minomo, and M. Yahiro, Phys. Rev. C 88, 054602 (2013). is defined as [17]

$$D_{\rm JS}(p||q) = \sum_{i=1}^{N} D_{\rm JS}(q_i)$$
 (A1)

with

$$D_{\rm JS}(q_i) = \frac{1}{2} \left[p(q_i) \ln\left(\frac{p(q_i)}{M(q_i)}\right) + q(q_i) \ln\left(\frac{q(q_i)}{M(q_i)}\right) \right],\tag{A2}$$

for
$$M(q_i) = (p(q_i) + q(q_i))/2$$
. The $D_{JS}(p||q)$ satisfies
 $D_{JS}(p||q) = D_{JS}(q||p),$
 $0 \leq D_{JS}(p||q) \leq \ln rgb]0, 0, 12 = 0.693.$ (A3)

The $D_{\rm JS}$ is finite; note that the word "divergence" is maintained for historical reasons. When the probability distributions are perfectly matched with each other, the $D_{\rm JS}$ becomes exactly zero. The $D_{\rm JS}$ becomes $\ln 2 = 0.693$, when there are no overlap between the probability distributions.

In the present data analysis, the number *N* of data is 5. The $\{p_i\}$ are a normalized distribution of measured $(A_y + 1)/2$ for ⁴He, while the $\{q_i\}$ are a normalized distribution of measured $(A_y + 1)/2$ for ⁶He. The reason why we take $(A_y + 1)/2$ is that $0 \leq (A_y + 1)/2 \leq 1$.

Our result $D_{\rm JS} \approx 0.0028$ is much smaller than $\ln 2 = 0.693$. This indicates that the shapes of the two probabilities are closed to each other. The average of $\{p_i\}$ ($\{q_i\}$) describes the magnitude M_4 (M_6) for ⁴He (⁶He). The results are $M_4 = 2.434$ and $M_6 = 2.539$. The two magnitudes are closed to each other, since the difference ($M_6 - M_4$)/ M_6 is 4%.

When the two magnitudes are close to each other, we can improve the JS divergence as

$$D_{\rm JS}(p||q)M_{\rm av} = \sum_{i=1}^{N} D_{\rm JS}(q_i)M_{\rm av}$$
 (A4)

with

$$D_{\rm JS}(q_i)M_{\rm av} \approx \frac{1}{2} \bigg[A_y^1(q_i) \ln \bigg(\frac{2A_y^1(q_i)}{A_y^1(p_i) + A_y^1(q_i)} \bigg) \\ + A_y^1(p_i) \ln \bigg(\frac{2A_y^1(p_i)}{A_y^1(p_i) + A_y^1(q_i)} \bigg) \bigg], \quad (A5)$$

for the average $M_{av} = (M_4 + M_6)/2$ and $A_y^1(q_i) \equiv (A_y(q_i) + 1)/2$. The $D_{JS}(p||q)M_a$ describes the magnitude and the shape for two curves. Our result is $D_{JS}(p||q)M_a = 0.007$ that is much smaller than the maximum $\ln 2 * M_a = 1.7236$. The improved JS divergence thus shows that measured A_y for ^{4,6}He are close to each other.

Now we neglect the data at q = 1.71 fm⁻¹. The result is $D_{\rm JS}(p||q)M_a = 0.002$. This value is much smaller than $D_{\rm JS}(p||q)M_a = 0.007$. The data at q = 1.71 fm⁻¹ thus make the similarity between data for ^{4,6}He worse. We hope that new measurements will be made for $\vec{p} + {}^{6}$ He scattering at 71 MeV/nucleon, particularly around q = 1.71 fm⁻¹.

^[2] S. Watanabe et al., Phys. Rev. C 89, 044610 (2014).

^[3] M. Hatano *et al.*, Eur. Phys. J. A **25**, 255 (2005).

- [4] T. Uesaka, S. Sakaguchi, Y. Iseri, K. Amos, N. Aoi, Y. Hashimoto, E. Hiyama, M. Ichikawa, Y. Ichikawa, S. Ishikawa, K. Itoh, M. Itoh, H. Iwasaki, S. Karataglidis, T. Kawabata, T. Kawahara, H. Kuboki, Y. Maeda, R. Matsuo, T. Nakao, H. Okamura, H. Sakai, Y. Sasamoto, M. Sasano, Y. Satou, K. Sekiguchi, M. Shinohara, K. Suda, D. Suzuki, Y. Takahashi, M. Tanifuji, A. Tamii, T. Wakui, K. Yako, Y. Yamamoto, and M. Yamaguchi, Phys. Rev. C 82, 021602(R) (2010).
- [5] S. Sakaguchi et al., Phys. Rev. C 84, 024604 (2011).
- [6] S. Chebotaryov et al., PTEP 2018, 053D01 (2018).
- [7] G. A. Moss, et al., Phys. Rev. C 21, 1932 (1980).
- [8] M. Burrows, C. Elster, S. P. Weppner, K. D. Launey, P. Maris, A. Nogga, and G. Popa, Phys. Rev. C 99, 044603 (2019).
- [9] R. Crespo and A. M. Moro, Phys. Rev. C 76, 054607 (2007).
- [10] M. Gennari, M. Vorabbi, A. Calci, and P. Navratil, Phys. Rev. C 97, 034619 (2018).
- [11] R. C. Johnson, J. S. Al-Khalili, and J. A. Tostevin, Phys. Rev. Lett. 79, 2771 (1997).
- [12] R. C. Johnson, J. Phys. G: Nucl. Part. Phys. 24, 1583 (1998).

- [13] R. J. Glauber, *Lectures in Theoretical Physics* (Interscience, New York, 1959), Vol. 1, p.315.
- [14] M. Yahiro, K. Minomo, K. Ogata, and M. Kawai, Prog. Theor. Phys. **120**, 767 (2008).
- [15] A. A. Korsheninnikov et al., Nucl. Phys. A 617, 45 (1997).
- [16] S. Burzynski, J. Campbell, M. Hammans, R. Henneck, W. B. Lorenzon, M. A. Pickar, and I. Sick, Phys. Rev. C 39, 56 (1989).
- [17] J. Lin, IEEE Transactions on Information Theory **37**, 145 (1991).
- [18] B. P. Abbott *et al.* (LIGO Scientific and Virgo Collaborations), Phys. Rev. X 9, 031040 (2019).
- [19] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Phys. Rev. C 53, 2075 (1996).
- [20] E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).
- [21] N. Yamaguchi, S. Nagata, and T. Matsuda, Prog. Theor. Phys. 70, 459 (1983).
- [22] S. Nagata, M. Kamimura, and N. Yamaguchi, Prog. Theor. Phys. 73, 512 (1985).
- [23] N. Yamaguchi, S. Nagata, and J. Michiyama, Prog. Theor. Phys. 76, 1289 (1986).
- [24] T. Hamada and I. Johnston, Nucl. Phys. 34, 382 (1962).