
PHYSICAL REVIEW C 103, 044602 (2021)

Relation between transition density and proton inelastic scattering by 12C target
at Ep = 65 and 200 MeV
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We calculate proton elastic and inelastic scatterings with a microscopic coupled channel (MCC) calculation.
The localized diagonal and coupling potentials including the spin-orbit part are obtained by folding a complex
G-matrix effective nucleon-nucleon interaction with a transition density. This is the first time that the present
folding prescription for the spin-orbit part is applied to the proton inelastic scattering, while for the monopole
transition only. We apply the MCC calculation to the proton elastic and inelastic (0+

2 ) scatterings by 12C target
at Ep = 65 and 200 MeV. The role of diagonal and coupling potentials for the central and spin-orbit parts is
checked. In addition, the relation between the transition density and the proton inelastic scattering is investigated
with the modified wave function and the modified transition density. Namely, we perform the investigation with
the artificial drastic change rather than fine structural change. The inelastic cross section is sensitive to the
strength and shape of the transition density, but the inelastic analyzing power is sensitive only to the shape of
that. Finally, we make clear the property of the inelastic analyzing power derived from the transition density
without an ambiguity.
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I. INTRODUCTION

In the universe, nuclear reactions are occurring every day.
Such nuclear reactions give us various heavy elements. One
of the key reactions is well known to be carbon synthesis
reaction. The 8Be resonance state is constructed by colliding
two α particles. When another α particle is synthesized to
the 8Be resonance state, they will be excited state of the 12C
nucleus. By emitting a γ ray, the carbon nucleus settles into a
stable ground state. In the reaction, not only the 8Be resonance
state but also the ground and excited states of 12C, especially
for the 0+

2 (Hoyle) state, has an important role to give the
abundance ratio of elements. Therefore, a lot of researchers
investigate the 12C nucleus from the microscopic viewpoints
of nuclear structure and reaction [1–16].

One of key issues for the investigation of the 12C nucleus
is to identify the size of the Hoyle state with the experimen-
tal data. To identify the size of the excited state, the α +
12C reaction data is investigated and discussed [11,12,17].
Especially, there was focus on the relation between the an-
gular distribution of the inelastic cross section and the size
of excited (0+

2 ) state. However, in conclusion, the α inelastic
cross section mainly gives us the information of the transition
density between the ground state and excited state rather than
the size of the excited state [11,12]. The relation between the α

inelastic cross section and the transition density including the
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contribution from the size of the excited state is still discussed
[15,16,18].

In this paper, we investigate the relation between the tran-
sition density and the inelastic cross section, but for p + 12C
reaction. It is valuable to understand the property of the tran-
sition density obtained from not only the incident α particle
but also incident other ones. In addition, the merit of proton
scatterings is to give us spin observables. The spin observ-
ables are also a powerful tool to investigate the property
of the transition density. In Ref. [19], the relation between
the inelastic cross section and the size of the excited state
is investigated with the black sphere model for the proton
scattering. However, the spin observable is not investigated
in the black sphere model. Although not the Hoyle state, the
relation between spin observables and the excited states has
been investigated [20–23]. However, the investigations have
been performed with the phenomenological way in the past.
We have no ambiguity to link the inelastic scatterings and the
transition density in the present folding prescription.

To describe the proton scatterings, we apply the com-
plex G-matrix interaction to the microscopic coupled-channel
(MCC) calculation. We here mention that the localized diago-
nal and coupling potentials based on the folding procedure are
applied to the MCC calculation. Historically, the microscopic
reaction calculation for the proton scatterings is powerfully
developed in the formalism of a nonlocal approach with the
single particle wave function [24–27]. Such explicit descrip-
tion called as full-folding approach well reproduces a lots of
proton elastic scatterings. However, it is difficult to construct
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a flawless formalism, especially for the inelastic scatterings.
Namely, their approach is a powerful tool to describe the
inelastic scatterings but it is difficult to perform a step-by-
step analysis through the transition density and the localized
potential. However, the development of the localized approach
for the proton scatterings is advanced, and the validity of that
is investigated [28–31]. In addition, the purpose in this paper
is to reveal the relation between the transition density and the
proton scatterings. The microscopic construction of the tran-
sition density is one of key issues to investigate the property
of the nuclear structure through the nuclear reaction [32–36].
Therefore, it is valuable to describe the proton elastic and
inelastic scatterings with the transition density in the localized
microscopic framework.

In this paper, we first introduce the folding prescription for
the central and spin-orbit parts of the diagonal and coupling
potentials in Sec. II. In Sec. III, we will show the results of the
present MCC calculation for the p + 12C scatterings at 65 and
200 MeV. The effect of the central and spin-orbit parts of the
diagonal and coupling potentials is clarified on the inelastic
cross section and analyzing power. The important role of the
transition density is also revealed in inelastic cross section
and analyzing power. Last, we will summarize this paper in
Sec. IV.

II. FORMALISM

To solve the coupled-channel equation, the diagonal and
coupling potentials are needed. In the present microscopic
approach, the localized diagonal and coupling potentials are
obtained by the single folding procedure with the complex
G-matrix interaction and the transition density. The spin-orbit
part of the coupling potential is also obtained in the present
single folding procedure. We apply the MPa G-matrix in-
teraction [37,38] derived from the realistic nucleon-nucleon
interaction, ESC08 [39] to the MCC calculation. The MPa
interaction takes into account the three-body force effects
with the multipomeron exchange potential [39]. The three-
body force induces additional repulsion to the potential and
is known to have an important role to improve the analyzing
power at forward angles at incident energy from 100 to 200
MeV [30]. The MPa interaction has been widely applied not
only in the scattering systems [35,40–43], but also hypernu-
cler systems [44,45] and neutron matter [37,38,46].

In this paper, the localized diagonal and coupling potentials
are constructed by folding procedure based on Refs. [29,30].
The central direct U (CE)

D and exchange U (CE)
EX potentials are

simply described as

U (CE)
D (R; Ep) =

∫
ρtr (r)v(CE)

D (s, kF ; Ep)dr, (1)

U (CE)
EX (R; Ep) =

∫
ρtr (x)

3

k(eff)
F s

j1
(
k(eff)

F s
)

× v
(CE)
EX (s, kF ; Ep) j0(ks)dr, (2)

where R is radial distance between incident proton and target
nucleus. Ep is the incident energy. ρtr is transition density. s
is radial distance between an incident proton and a nucleon in
the target nucleus. s = r − R. x = 1

2 (r + R). kF is the Fermi

momentum derived from the densities of the initial and final
states. j0 and j1 are the spherical Bessel function of rank 0 and
1, respectively. k(eff)

F is a effective Fermi momentum defined in
Ref. [47]. v(CE)

D and v
(CE)
EX are the complex G-matrix interaction

for the central direct and exchange terms, respectively. The
Coulomb potential is also obtained by the folding prescription
with the nucleon-nucleon Coulomb interaction and proton
density.

The localized diagonal and coupling potentials for the spin-
orbit part are also obtained in the same manner as described in
Ref. [30], while this is the first time to apply to the construc-
tion of the coupling potential, as

U (LS)
D (R; Ep) = 1

4R2

∫
R · (R − r)ρtr (r)v(LS)

D (s, kF ; Ep)dr,

(3)

U (LS)
EX (R; Ep) = π

∫
dss3

[
2 j0(ks)

R
ρ1(R, s)

+ j1(ks)

2k
δ0(R, s)

]
, (4)

where

δ0(R, s) = 1

2

∫ +1

−1
dq

v
(LS)
EX (s, kF ; Ep)

X

×
[

3

keff
F s

j1
(
keff

F s
) d

dx
ρtr (x)

∣∣∣∣
x=X

+ sρtr (X )
d

dx
keff

F (x)

∣∣∣∣
x=X

d

dy

(
3

y
j1(y)

)∣∣∣∣
y=keff

F s

]
,

(5)

ρ1(R, s) = 1

2

∫ +1

−1
dqqv

(LS)
EX (s, kF ; Ep)

3

keff
F s

j1
(
keff

F s
)
ρtr (X ),

(6)

where X =
√

R2 + s2/4 + Rsq. v
(LS)
D and v

(LS)
EX are also the

complex G-matrix interaction for the direct and exchange
terms for the spin-orbit interaction, respectively.

In the present calculation, the scattering matrix dependent
on the total angular moment is obtained from the folded po-
tentials by solving the coupled-channel equation based on the
Stormer method. The cross section and the analyzing power
are calculated with the scattering amplitude derived from the
scattering matrix as shown in Refs. [20,48].

III. RESULTS

We here apply the present MCC model to the p + 12C
elastic and inelastic scatterings. The relativistic kinematics is
used to compute the cross sections and analyzing powers. We
now have the central and spin-orbit potentials as

U = U (CE)
D + U (CE)

EX + (
U (LS)

D + U (LS)
EX

)
� · σ. (7)

These potentials are complex because the complex G-matrix
interaction is applied to the folding model calculation. There-
fore, we can rewrite Eq. (7) to

U = VCE + iWCE + (VLS + iWLS)� · σ, (8)
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where VCE, WCE, VLS, and WLS are the central real, central
imaginary, spin-orbit real, and spin-orbit imaginary poten-
tials, respectively. Since the complex G-matrix is constructed
in the infinite nuclear matter, the strength of the imaginary
part is often adjusted in the use for the finite nucleus be-
cause these level densities are quite different. Thus, we take
the incident-energy-dependent renormalization factor, NW =
0.5 + Ep/1000 [43], for the imaginary part of the folding
model potential as

U = VCE + iNW WCE + (VLS + iNW WLS)� · σ. (9)

Namely, we have no additional parameter to calculate the
proton scatterings in this paper.

We take the transition density of the 12C nucleus from the
Algebraic Cluster Model (ACM) calculations and modified
ones [3,4,11]. We will explain about the modifications of the
wave function and transition density just before showing the
results.

A. Validity of present MCC calculation and role of potentials

First, we show the validity of the present MCC calculation
in the comparison with the experimental data. Because this is
the first time that the spin-orbit part of the coupling potential
obtained by the present folding procedure is applied to the
proton inelastic scattering. In addition, it has been confirmed
in past phenomenological potentials, but we check the role of
the central and spin-orbit parts of the localized diagonal and
coupling potentials.

Figures 1 and 2 show the elastic and inelastic cross sec-
tions and analyzing powers of p + 12C system at 65 and 200
MeV. The calculated results well reproduce the experimental
data for the elastic and inelastic cross sections in spite of no
adjustable parameter. We can see the discrepancy between the
calculated results and the experimental data only for backward
angles of the analyzing powers at 65 MeV. Many folding
analyses based on the localized and nonlocalized approaches
fail to reproduce the analyzing power of the p + 12C system
for backward angles [27,30,43,53,54]. Therefore, we avoid
to discuss for backward angles of the analyzing power at 65
MeV. We here mention that the channel coupling effect from
other excited states (0+, 2+, and 3−) on the elastic and inelas-
tic (0+

2 ) cross sections is minor, while the test was performed
in an approximation with another transition density [2]. In this
paper, we perform the MCC calculation only with the ground
and Hoyle states simply to understand the relation between
the transition density and the proton inelastic scattering.

Next, we check the role of the central and spin-orbit parts
of the localized diagonal and coupling potentials obtained by
the present folding procedure. Figures 3, 4, 5, and 6 show the
calculated inelastic cross sections and analyzing powers with
and without the central and spin-orbit parts of the diagonal
and coupling potentials at 65 and 200 MeV, respectively. The
solid curves are same results shown in Fig. 1 or Fig. 2. The
dotted curves show the results without the diagonal potential
of the elastic channel (gs) for the central or spin-orbit (LS)
parts. The dashed curves are obtained without the coupling
potential between ground state and excited state (0+

2 ) for the
central or LS parts. The dot-dashed curves show the results

FIG. 1. (a) Elastic and inelastic cross sections, (b) elastic an-
alyzing powers, and (c) inelastic (0+

2 ) analyzing powers of p +
12C system at 65 MeV. The solid curves are the results by the
present MCC calculation. The experimental data are taken from
Refs. [49,50].

without the diagonal potential of the excited channel (0+
2 ) (ex)

for the central or LS parts.
In Fig. 3, the role of central parts is clearly seen in both

the inelastic cross section and analyzing power by switch-
ing on/off the potentials. The central part of all potentials
is essential to fix the inelastic cross section and analyzing
power at 65 MeV. However, the role of the spin-orbit part of
the coupling potential is clearly seen in Fig. 4, especially for
the inelastic analyzing power. The spin-orbit part of both the
diagonal potentials has a minor role to fix the inelastic cross
section and analyzing power at 65 MeV. The role of the central
and spin-orbit parts of the diagonal and coupling potentials
obtained by the present folding procedure is consistent with
past works [20–23], while the target nucleus and the incident
energy are different. At 200 MeV, the central and spin-orbit
parts of the coupling potential give a drastic change to the
inelastic cross section and the analyzing power as shown in
Figs. 5 and 6. The effect of the diagonal potentials is not
so large. We see the important role of both the central and
spin-orbit parts of the coupling potential. It implies that the
inelastic scattering and analyzing power give a property of the
transition density because the coupling potentials are derived
from the transition density. In addition, it is simply understood
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FIG. 2. Same as Fig. 1 but at 200 MeV. The experimental data
are taken from Refs. [49,51,52].

to investigate the contribution of the transition density for
proton inelastic scatterings at 200 MeV rather than 65 MeV.

We here note that the same investigation is also performed
for the elastic cross section and analyzing power. However, the
diagonal potentials for the elastic channel is just contributed
to the elastic cross section and analyzing power.

B. Shape of the transition densities from the proton
inelastic scattering

In this section, we investigate the sensitivity of the transi-
tion density to the inelastic cross section and analyzing power.
In the same manner of Ref. [11], we apply the modified wave
function and the modified transition density to the present
MCC calculation, respectively. Namely, we perform the in-
vestigation with the artificial drastic change rather than fine
structural change.

1. Sensitivity for the size of the excited state and the strength
of the transition density

First, we introduce the transition density based on the
modified wave function presented in Ref. [11]. There are four
types of modified ACM wave functions (i)–(iv), the root-
mean-square (rms) radii 〈r2〉1/2 of which are (i) 2.97 fm, (ii)
3.55 fm, (iii) 4.38 fm, and (iv) 5.65 fm, while that of the
original ACM wave function is 3.81 fm [3]. Again, it should
be noted that the orthogonality of the 0+

2 state and the 0+
1

FIG. 3. (a) Inelastic cross sections and (b) inelastic analyzing
powers of p + 12C system at 65 MeV. The solid curves are same
results shown in Figs. 1 and 2. The dotted curves show the results
without the diagonal potential of the elastic channel (gs) for the
central part. The dashed curves are obtained without the coupling
potential between ground state and excited state (0+

2 ) for the central
part. The dot-dashed curves show the results without the diagonal
potential of the excited channel (0+

2 ) (ex) for the central part.

FIG. 4. Same as described in the caption of Fig. 3 but for the
spin-orbit (LS) part.
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FIG. 5. Same as described in the caption of Fig. 3 but at 200 MeV.

ground-state wave functions is satisfied also in the modified
ACM calculation. In the present folding model, just the tran-
sition density is needed. However, the transition density is
constructed with the modified wave function. Therefore, we
use the expression as the modified ACM wave functions in
this paper. The transition density between the ground and 0+

2

FIG. 6. Same as described in the caption of Fig. 4 but at 200 MeV.

FIG. 7. Transition densities obtained by modified ACM wave
functions. The meaning of the curves is introduced in the text.

states is calculated from the ground state wave function and
each of these wave functions for the 0+

2 state. The ground state
wave function is not modified. Figure 7 shows the transition
densities obtained by the modified ACM wave function which
is also shown in Ref. [11]. Because the coupling potentials
have an important role to fix the inelastic (0+

2 ) scatterings as
shown in Figs 3–6, we here show the transition density.

Figures 8 and 9 show the calculated inelastic cross sec-
tion and analyzing power with the transition densities by the
modified ACM wave function. For the inelastic cross section,

FIG. 8. (a) Inelastic cross sections and (b) inelastic analyzing
powers of p + 12C system at 65 MeV with the transition densities
obtained by the modified ACM wave function.

044602-5



T. FURUMOTO AND M. TAKASHINA PHYSICAL REVIEW C 103, 044602 (2021)

FIG. 9. Same as described in the caption of Fig. 8 but at 200 MeV.

the strength of the cross section is drastically changed at 65
and 200 MeV. However, the phase of the diffraction pattern for
the angle direction is not changed. This result is completely
comparable to the α inelastic scattering obtained by one of
authors and his collaborator [11]. In addition, this result is
simply understood by the relation between the inelastic form
factor and the transition density through Fourier transform.
We confirmed that the size of the excited state has no effect on
the phase of the diffraction pattern for the angle direction. The
size of the excited state changes the strength of the transition
density and the absolute value of the inelastic cross section.
Next, we focus on the analyzing power. Not only the size of
the excited state but also the strength of the transition density
has no effect on the inelastic analyzing power. This result
implies that the inelastic analyzing power tell us the shape of
the transition density independent of the transition strength.
We will discuss such situation in the next section.

2. Sensitivity for the shape of the transition density

Next, we investigate the sensitivity for the shape of the
transition density by the artificial modification of the transi-
tion density. According to Ref. [11], the modified transition
density is obtained as

ρ ′
tr (r) = Nρtr ( f r). (10)

Here, ρtr is the original ACM transition density. f and N are
scaling and normalization factors, respectively. N is fixed to
keep the r2 moment of the transition density to the value eval-
uated from the original transition density. Figure 10 shows the
modified transition densities which is also shown in Ref. [11].
By the modification, the shape of the transition density is
drastically changed. Again, we mention that the wave function

FIG. 10. Modified transition densities. The detail is introduced
in the text.

of the excited (0+
2 ) state is fixed to be original ACM wave

function.
Figures 11 and 12 show the calculated inelastic cross

section and analyzing power with the transition densities as
shown in Fig. 10. The calculated inelastic cross sections
are drastically changed. Especially, the phase of the diffrac-
tion pattern for the angle direction is shifted. This result
is also comparable to the α inelastic scattering obtained by
one of authors and his collaborator [11]. Again, it is simply
understood by the relation between the inelastic form factor

FIG. 11. Same as described in the caption of Fig. 8 but with the
transition densities as shown in Fig. 10.
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FIG. 12. Same as described in the caption of Fig. 11 but at
200 MeV.

and the transition density. Contrary to the results as shown in
Figs. 8 and 9, the calculated analyzing powers show the drastic
change at both incident energies. The shift of angular direction
for the analyzing power is comparable with that for the cross
section. Both the inelastic cross section and analyzing power
tell us the properties (the strength and shape) of transition
density.

IV. SUMMARY

We have constructed a microscopic coupled channel
(MCC) calculation for proton elastic and inelastic scatterings.
The localized diagonal and coupling potentials including the
spin-orbit part is obtained by folding the complex G-matrix

interaction with the transition density. This is the first time
that the present folding prescription for the spin-orbit part
has been applied to the proton inelastic scattering, while for
the monopole transition only. The proton elastic and inelastic
(0+

2 ) cross sections and analyzing powers are calculated by the
12C target at 65 and 200 MeV. The calculated cross section
and analyzing power well reproduce the experimental data.
Namely, the present folding prescription gives the suitable
central and spin-orbit parts of the localized diagonal and cou-
pling potentials without an ambiguity. The role of the diagonal
and coupling potentials for the central and spin-orbit parts is
checked by switching on/off the potentials. The central and
spin-orbit parts of the coupling potential has an important role
to fix the inelastic cross section and analyzing power at 65 and
200 MeV.

We apply the modified wave function and the modified
transition density to the MCC calculation to investigate the
relation between the transition density and the proton inelastic
scattering. This is the merit of the localized approach because
the information as the transition density obtained in the mid-
dle of the theoretical calculation can be changed artificially.
The contribution of the strength and shape of the transition
density is clearly seen in the inelastic cross section. However,
this result is simply understood by the relation between the
inelastic form factor and the transition density through Fourier
transform. However, the strength of the transition density has
no effect on the inelastic analyzing power. The inelastic an-
alyzing power is sensitive only to the shape of the transition
density. Finally, we make clear the property of the inelastic
analyzing power derived from the transition density without
an ambiguity. For the proton scatterings, both the inelastic
cross section and analyzing power have important role to
investigate the properties of the transition density. Although
only monopole transition was treated in this study, the present
framework will be extended to include other transitions in the
future.
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