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α-cluster structures above double shell closures are among the cornerstones for nuclear α-cluster physics.
Semimicroscopic cluster models (SMCMs) are important theoretical models to study their properties. A crucial
ingredient of SMCMs is the effective potential between the alpha cluster and the doubly magic nucleus. We
derive new double-folding potentials between α clusters and doubly magic nuclei from soft local chiral nucleon-
nucleon potentials given by chiral effective field theory (χEFT) at the next-to-next-to-leading order. The α-
cluster structures in 8Be, 20Ne, 44,52Ti, and 212Po are explored to validate these new double-folding potentials. The
α decay of 104Te is also studied in the light of recent experimental results. Our study shows that double-folding
potentials from χEFT are the new reliable effective potentials for the SMCM approach to α-cluster structures
above double shell closures, with both conceptual and phenomenological merits.
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I. INTRODUCTION

α-cluster structures in nuclei with two valence protons and
two valence neutrons outside double shell closures are among
the cornerstones for nuclear α-cluster physics. The simplest
example is 8Be, which has been studied by different methods.
For instance, it is studied by a new hybrid microscopic model
based on nonlocalized clustering and the calculable R-matrix
theory in Ref. [1], which provides an exact treatment to the
asymptotic boundary conditions in the α + α system. The next
example is 20Ne. Horiuchi and Ikeda pointed out in 1968 that
its K = 0+ ground-state band and K = 0− band just above
the α threshold could be viewed as the “parity doublets”
produced by the α + 16O structure [2]. Later, this picture
was generalized to 44,52Ti, where the α + 40,48Ca structures
are studied [3–12]. α-cluster structures in 212Po also attract
much attention. It is widely accepted that the α + 208Pb con-
figuration is crucial for explaining the decay properties of
212Po [13–16]. Recently, new experimental results have been
reported on α decay of 104Te [17,18], making α-cluster struc-
tures above 100Sn a new frontier [19–25].

Semimicroscopic cluster models (SMCMs) are important
theoretical models to study α-cluster structures above double
shell closures [26], where these α-cluster states are mod-
eled by two-body systems of α clusters and doubly magic
nuclei, e.g., 8Be = α + α, 20Ne = α + 16O, 44,52Ti = α +
40,48Ca, 104Te = α + 100Sn, and 212Po = α + 208Pb. The two
constituents are bound together via effective potentials, which
are often deep and support not only physical states but also
spurious states. These spurious states are closely related to
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(almost) Pauli-forbidden states in microscopic cluster mod-
els. In SMCMs, the spurious states are identified by the
Wildermuth conditions via counting the numbers of nodes
in the radial wave functions [27] (see Sec. III). The Wil-
dermuth conditions reflect some composite features of α

clusters and doubly magic nuclei. They are adopted in the
literature to study α-cluster structures across the nuclide
chart. In principle, some more sophisticated microscopic
models could also be used to study α-cluster structures
above double shell closures, such as antisymmetrized molec-
ular dynamics (AMD) [28–30], the quantum Monte Carlo
method (QMC) [31], lattice effective field theory [32], the
configuration-interaction method [33], and the symmetry-
adapted no-core shell model [34]. However, due to heavy
computational load, their applications are mainly restricted
to light nuclei. On the contrary, SMCMs can be applied
across the nuclide chart, which is an important advantage.
In SMCMs, pure α-cluster configurations are assumed from
the beginning. Therefore, they cannot be used to study the
emergence of α clusters from nucleon degrees of freedom
by themselves. However, when combined with experimental
data, SMCMs could also provide important information on
α-cluster formation. For example, α-formation probabilities
could be extracted by computing the ratios between experi-
mental and SMCM α-decay widths. The SMCM results are
important complements to microscopic calculations.

Effective potentials between α clusters and doubly
magic nuclei are crucial for SMCMs. Several effective
potentials have been proposed, including double-folding
potentials [6,35–38], phenomenological potentials in spe-
cial forms [22,39–41], and hybrids between double-folding
and phenomenological potentials [21]. Compared with phe-
nomenological potentials, double-folding potentials have
closer connections to microscopic models and thus are
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more favored from the theoretical viewpoint. The Schmid-
Wildermuth force [42], the Hasegawa-Nagata-Yamamoto
force [43,44], and the density-independent and -dependent
Michigan-3-Yukawa (M3Y) interactions [45–47] are often
adopted in the literature as the nucleon-nucleon interac-
tions to calculate the double-folding potentials. Despite some
phenomenological success, many of these effective nucleon-
nucleon interactions were derived more than forty years ago,
at which time our understanding of nucleon interactions was
limited. In the past two decades, tremendous progress has
been made in understanding nucleon interactions within the
framework of chiral effective field theory (χEFT), which is a
low-energy effective field theory of quantum chromodynam-
ics (QCD) and respects the QCD symmetries (e.g., broken
chiral symmetry) [48–50]. χEFT and the resultant chiral
potentials, especially the realistic chiral potentials at the next-
to-next-to-next-to-leading order (N3LO) and beyond, have
become the standard inputs for the modern ab initio nuclear
physics. On the other hand, it is fair to say that SMCMs have
not benefited much from the recent developments of χEFT.
It is tempting to break this isolation. Such an attempt will
broaden the applicable scope of χEFT. The χEFT-motivated
new effective potentials may also improve the phenomenolog-
ical agreement between theoretical and experimental results
and enhance our confidence in theoretical predictions.

In this work, we derive new double-folding potentials for
SMCMs, which are inspired by χEFT and act as a bridge be-
tween SMCMs and χEFT. Recently, some encouraging results
on double-folding potentials from χEFT (abbreviated as DFχ s
in the following) have been reported and benchmarked explic-
itly in 16O + 16O, 12C + 12C, and 12C + 16O elastic scatterings
and fusion reactions [51,52]. It is widely accepted that α

clustering is a surface phenomenon in the low-density regions
of finite nuclei [53,54]. As a result, the overlap between the α

cluster and the core nucleus is not overlarge in α-cluster states.
It is thus reasonable to expect that DFχ s are also applicable to
α-cluster structures above double shell closures. In this work,
we adopt the natural units h̄ = c = 1.

II. THEORETICAL FRAMEWORK

In practice, χEFT gives different realizations of chiral po-
tentials. Many of them are nonlocal in the coordinate space
and thus are unfriendly to double-folding calculations. Ex-
ceptionally, Refs. [55,56] construct the local chiral potentials
consistently up to the next-to-next-to-leading order (N2LO)
by exploiting the Fierz rearrangement freedom and local
regularization schemes. At the N2LO, the local chiral nucleon-
nucleon potentials are given by

Vchiral(r) = VL(r){1 − exp[−(r/R0)4]} + VS(r), (1)

VL(r) = VC(r) + WC(r)τ1 · τ2 + [VS(r) + WS(r)τ1 · τ2]σ1 · σ2 + [VT(r) + WT(r)τ1 · τ2]S12, (2)

VS(r) = (CS + CTσ1 · σ2) δR0 (r) − (C1 + C2τ1 · τ2)�δR0 (r) − (C3 + C4τ1 · τ2) σ1 · σ2�δR0 (r) + C5

2

∂rδR0 (r)

r
L · S

+ (C6 + C7τ1 · τ2)

{
(σ1 · r̂)(σ2 · r̂)

[
∂rδR0 (r)

r
− ∂2

r δR0 (r)

]
− σ1 · σ2

∂rδR0 (r)

r

}
, (3)

with σ i and τ i being the Pauli matrices in spin and
isospin space, Si j = 3(σ i · r̂)(σ j · r̂) − σ i ·σ j being the tensor
operator, and L·S being the spin-orbit operator. δR0 (r) =

1
π�(3/4)R3

0
exp[−(r/R0)4] is the regularized δ function, with

R0 being the regularization scale in the coordinate space.
The expressions for VC,S,T(r) and WC,S,T(r) are given in
Ref. [56]. CS,T,1,...,7 are the low-energy constants (LECs) in
the contact sector of χEFT. They generally determine the
short-range behavior of chiral nucleon-nucleon potentials. For
the proton-proton pairs, the Coulomb potentials should also be
included.

The double-folding potential between the α cluster and the
core nucleus is given by [57]

UDF(R) = UD(R) + UEx(R), (4)

UD(R) =
∑

i, j=p,n

∫
d3rα

∫
d3rC ρ i

α (rα )V i j
D (s)ρ j

C (rC ), (5)

UEx(R) =
∑

i, j=p,n

∫
d3rα

∫
d3rC ρ i

α (rα, rα + s)V i j
Ex(s)ρ j

C

× (rC, rC − s) exp (ikrel · s/Ared), (6)

with s = R + rC − rα being the relative coordinate be-
tween two nucleons in the α cluster and the core nucleus,
ρ

p,n
α(C)(rα(C) ) being the proton and neutron density distribu-

tions of the α cluster (core nucleus), mred = mαmC/(mα +
mC ) and Ared = mred/mN being the reduced mass and the
reduced mass number, and mN being the average nucleon
mass. krel(R) = √

2AredmN [ECM − UDF(R)] is the relative mo-
mentum, with ECM being the energy in the center-of-mass
(CM) frame. ρ

p,n
α(C)(rα(C), rα(C) ± s) are the density-matrix

elements estimated by the realistic localization approxi-
mations [57]. V i j

D(Ex)(s) is the nucleon-nucleon interaction
in the direct (exchange) channel. For the α + doubly
magic nucleus systems, only the central parts of local
chiral nucleon-nucleon potentials make contributions. Both
the α particle and the heavier doubly magic nucleus have
saturated spin-isospin configurations, which suppress the
contributions from spin-orbit and tensor forces. Thus, we
have [51]

V pp,nn
D,Ex (s) = 1

4 [V 01(s) ± 3V 11(s)], (7)

V pn,np
D,Ex (s) = 1

8 [±V 00(s)+ V 01(s)+ 3V 10(s)± 3V 11(s)], (8)
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with V ST (s) ≡ 〈SMST MT |Vchiral(s)|SMST MT 〉. The local chi-
ral nucleon-nucleon potentials in Eqs. (1)–(3) respect Galilean
and isospin symmetry. As a result, V ST (s) does not depend on
MS or MT .

III. NUMERICAL RESULTS

In numerical calculations, we take the regularization scale
R0 = 1.6 fm. The corresponding LECs are given in Ref. [51].
They are determined by fitting the Nijmegen neutron-proton
phase shifts in the 1S0, 3S1, 1P1, 3P1, 3P2, and 3S1 - 3D1

channels at 1, 5, 10, 25, 50, 100, and 150 MeV. The re-
sultant local chiral nucleon-nucleon potentials are known
as soft local chiral nucleon-nucleon potentials because they
have soft cores at the short distance, which is crucial for
double-folding calculations. LECs at smaller regularization
scales may not be suitable for our current purposes because
they generally give much stronger repulsive cores and may
break the mean-field picture behind the double-folding cal-
culations. We would like to stress that the soft local chiral
nucleon-nucleon potentials do not mean to be the realistic
nucleon-nucleon potentials fitting the world nucleon scatter-
ing data up to 290 MeV at the level of χ2/datum ≈ 1. One
has to go to the next-to-next-to-next-to-leading order (N3LO)
and beyond to meet that requirement. On the contrary, the
soft local chiral nucleon-nucleon potentials are formulated up
to the N2LO only and are aimed at fitting selected nucleon
scattering data at low energies. The proton density distribu-
tions for α particles, 16O, 40,48Ca, and 208Pb are taken to
be the realistic sums of Gaussians determined by the elas-
tic electron-scattering experiments [58], while the neutron
density distributions are assumed to be proportional to the
proton density distributions for simplicity. For 100Sn, no elas-
tic electron-scattering data are available, and we take the
São Paulo distributions ρ p,n(r) = ρ

p,n
0 /[1 + exp( r−Rp,n

ap,n
)], with

Rp = 1.81Z1/3 − 1.12 fm, Rn = 1.49N1/3 − 0.79 fm, ap =
0.47 − 0.000 83Z fm, and an = 0.47 + 0.000 46N fm [59].
ρ

p,n
0 are determined by

∫
d3rρ p,n(r) = Z, N . The charge ra-

dius of 100Sn is found to be 4.58 fm, in good agreement with
4.525–4.707 fm found by ab initio self-consistent Green’s
function theory [60]. ECM in Eq. (6) is taken to be ECM =
ZαZC/(A1/3

α + A1/3
C ) MeV, which provides a convenient es-

timation of the height of the Coulomb barrier between
the α cluster and the core nucleus ≈ZαZC e2/(Rα + RC ) =
ZαZC e2/[r0(A1/3

α + A1/3
C )] ∼ ZαZC/(A1/3

α + A1/3
C ) MeV, with

r0 = 1.31 fm [61]. This is widely used in nuclear reaction
studies. In the last step of the derivation, we use the approxi-
mation e2/r0 ≈ 1 MeV.

DFχ s are shown for several α + doubly magic nucleus
systems in Fig. 1. The physical properties of α-cluster
states are obtained by solving the Schrödinger equa-
tion [− ∇2

2mred
+ U (R)]
NLM (R) = ENL
NLM (R), with

U (R) = λNLUDF,N(R) + UDF,C(R). Here, UDF,N(R) and
UDF,C(R) are the nuclear and Coulomb parts of the
double-folding potential UDF(R). λNL is the renormalization
factor introduced for phenomenological reasons. It is
determined by reproducing the experimental energy level
exactly. DFχ s are deep potentials in the sense that they

���
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��48Ca
��100Sn
��208Pb
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FIG. 1. The double-folding potentials UDF(R) for various α +
doubly magic nucleus systems from soft local chiral nucleon-
nucleon potentials at the N2LO. See text for details.

support not only physical states but also spurious states.
These spurious states are closely related to the (almost)
Pauli-forbidden states in microscopic cluster models. The
Pauli-forbidden states are null eigenstates of norm operators
in resonating group method (RGM) with identical oscillator
parameters. In SMCMs, the spurious states are identified
by the Wildermuth conditions [27] as α-cluster states
with G ≡ 2N + L < 4 for 8Be, G < 8 for 20Ne, G < 12
for 44Ti, G < 12 and (G, L) = (12, 12) for 52Ti, G < 16
and (G, L) = (16, 14), (16, 16) for 104Te, and G < 22 and
(G, L) = (22, 20), (22, 22) for 212Po. Here, N is the number
of nodes in the α-cluster radial wave function (excluding
the origin), and L is the orbital angular momentum. We
take into account the extra constraints from the occupied
proton orbits 0g9/2, 0h11/2 in 100Sn, 208Pb and the occupied
neutron orbits 0 f7/2, 0g9/2, 0i13/2 in 48Ca, 100Sn, 208Pb.
For light nuclei, the Wildermuth conditions could be
verified explicitly by solving the eigenvalue problems of
the RGM norm operators. For example, the eigenvalues
of the RGM norm operator have been worked out to be
μG = 1 − 22−G + 3δG,0 for the α + α system [62]. It is
straightforward to see that the Pauli-forbidden states with
μG = 0 satisfy the condition G = 0, 2 < 4, which is exactly
the same as the Wildermuth condition mentioned before. The
problem becomes complicated for heavy nuclei. Rigorously
speaking, for the applications of the Wildermuth conditions
to α + heavy-core models, the Pauli-forbidden states are
not defined clearly, as the oscillator parameters of the α

cluster and the heavy core nucleus are largely different. Even
if the oscillator parameters of the same size are used, the
eigenvalues of the norm kernel for the Pauli-allowed states
could be very small due to a large number of nucleons in
the core nucleus. Compared with light nuclear systems such
as α + α, heavy nuclear systems also have a much larger
configuration space, and the spin-orbit interactions become
important. The α-formation probabilities in heavy nuclei
are generally smaller than light nuclei. Therefore, it is less
straightforward to see whether the Wildermuth conditions
could simulate the antisymmetrization in realistic heavy
nuclei to good accuracy. In the case of different oscillator
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TABLE I. Theoretical and experimental results for the 0+
1 , 2+

1 , and 4+
1 states of 8Be. The experimental α-decay widths �expt

α are taken from
Ref. [75]. �χ

α is the α-decay width given by SMCM + DFχ . Rχ

rel ≡ (〈R2〉)1/2 is the root-mean-square (rms) relative distance between two α

clusters. The 0+
1 state is studied by using MTPA, while the 2+

1 and 4+
1 states are studied by using CSM.

Nucleus G Lπ λNL �expt
α �χ

α Rχ

rel
[MeV] [MeV] [fm]

8Be 4 0+
1 1.4340275 (5.57 ± 0.25)×10−6 6.09 × 10−6 5.33

2+
1 1.402429 1.513 ± 0.015 1.72 2.59 + 0.31i

4+
1 1.46325 ≈3.5 3.18 2.90 + 0.80i

parameters, the first eigenstates of the RGM norm operator
with small but nonzero eigenvalues are called the almost
Pauli-forbidden states, which, by definition, should become
the Pauli-forbidden states in the limit of identical oscillator
parameters. It is known for light nuclear systems that the
almost Pauli-forbidden states correspond to high-lying
states with large energy expectation values (i.e., the Pauli
resonances) [62–66]. As a result, they are weakly coupled
to the low-lying shell-model and cluster states due to the
large energy difference. This explains the availability of
the Wildermuth condition in the presence of the almost
Pauli-forbidden states for some light nuclear systems. Similar
results may hold for heavy nuclear systems as well. It might
be helpful and illuminative if the energy expectation values
of the almost Pauli-forbidden states were worked out for
these systems. At present, such calculations are not available
yet. Nevertheless, it is important to continue to examine the
Wildermuth conditions in heavy nuclei. They provide useful
references for future microscopic calculations, as well as
theoretical motivations to develop better semimicroscopic
approximations for antisymmetrization. We encounter both
bound and resonant states in calculations. For the resonant
states with α-decay widths �α � 0.01 MeV, we obtain their
physical properties by using the complex-scaling method
(CSM) [67]. Applying bound-state concepts (e.g., the relative
distance between the α cluster and the doubly magic nucleus,
the electric-quadrupole transition, etc.) to resonant states
leads to imaginary parts in theoretical results, which are
interpreted as theoretical uncertainties by Berggren [68]. In
principle, CSM could also be used to study resonant states
with narrow α-decay widths <0.01 MeV. However, we find
that for these states the α-decay widths given by CSM become
unstable for different complex-scaling angles in numerical
calculations. Thus, we adopt the modified two-potential
approach (MTPA) [69] to study the long-lived resonant states
with �α < 0.01 MeV. In the MTPA, the tunneling potential
is divided into the inner and outer parts by a separation
radius. The long-lived resonant states are then approximated
by bound states supported by the inner part of the tunneling
potential, from whose wave functions the decay widths of
the long-lived resonant states are computed. The R-matrix
theory [70–73] is also commonly used to study long-lived
resonant states. In Ref. [69], the similarities and differences
between MTPA and the R-matrix theory are discussed in
detail. We try to do the calculation with the R-matrix theory
as well. The theoretical results agree well with MTPA. For
example, our R-matrix calculation gives the α-decay width
�χ

α = 6.055 × 10−6 MeV for the 8Be ground state, which is

almost identical to the MTPA result in Table I with negligible
difference ≈0.6% [74]. At last, we would like to mention that
we assume pure α-cluster configurations in calculating the
theoretical α-decay widths unless otherwise mentioned.

The numerical results for 8Be are given in Table I. We cal-
culate the α-decay widths �χ

α and the root-mean-square (rms)
relative distances between two α clusters Rχ

rel ≡ (〈R2〉)1/2

for the 0+
1 , 2+

1 , 4+
1 states. The experimental α-decay widths

�
expt
α are listed for comparison. The α-decay widths given by

SMCM + DFχ are in good agreement with the experimental
data, compatible with the dominance of the α-cluster configu-
rations in the 0+

1 , 2+
1 , and 4+

1 states suggested by microscopic
models [1].

The numerical results for 20Ne are given in Table II.
We also include the experimental results [76], the AMD re-
sults [29], and the phenomenological results from the hybrid
potentials [21] in the same table for comparison. The AMD
calculations show that the 1−

1 , 3−
2 , and 5−

3 states have the
α-formation probabilities PAMD

α ≈ 1. In other words, these
states have almost the pure α-cluster structures. They can be
used as the additional benchmarks besides the 0+

1 , 2+
1 , and

4+
1 states in 8Be to compare different effective potentials in

SMCM without worrying too much about α-formation prob-
abilities. The α-decay widths �χ

α given by SMCM + DFχ

agree well with the experimental data for the 1−
1 , 3−

2 , and
5−

3 states. Also, the experimental result of the enhanced
B(E2↓)expt from the 3−

2 state to the 1−
1 state is nicely repro-

duced by our model as shown in column eleven. In column
eight are the α-formation probabilities Pχ

α ≡ �
expt
α /�χ

α ex-
tracted by SMCM + DFχ , which generally agree well with
the AMD results. Here, we estimate the α-formation prob-
ability as the ratio between the experimental and SMCM
α-decay widths. This estimation could be understood as fol-
lows: The α-formation probability measures the amount of
α clustering. Let us take the α-cluster state with L = 0 as
an example. The discussions could be easily generalized to
α-cluster states with L 
= 0. When L = 0, the α-formation
probability is given by Pα ≡ ∫

d3r|G(r)|2 in microscopic
models, with G(r) = 〈�̃r|
〉 being the α-formation ampli-
tude. 
 is the normalized realistic many-body wave function
for the target nucleus. It could be given by a combination
of cluster and shell-model components. �̃r = N−1/2�r is
the normalized wave function for the pure α-cluster config-
uration, with �r = AAa{�(A)(ξA)�(a)(ξa)δ3(r − rAa)} and N
being the RGM norm operator with the kernel N (r, r′) =
〈�r|�r′ 〉. �(A)(ξA) and �(a)(ξa) are the normalized intrinsic
wave functions of the core nucleus and the α particle. The
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TABLE II. Theoretical and experimental results for the Kπ = 0+ and Kπ = 0− bands of 20Ne. �expt
α and B(E2↓)expt are the α-decay

width and reduced electric-quadrupole transition strength from Ref. [76]. �χ
α , B(E2↓)χ , Pχ

α ≡ �expt
α /�χ

α , and Rχ

rel are the theoretical results
of the α-decay width, the B(E2↓) value, the α-formation probability, and the rms relative distance between the α cluster and 16O given by
SMCM + DFχ . PAMD

α is the theoretical α-formation probability from AMD [29]. Ph
α and B(E2↓)h are the α-formation probability and the

B(E2↓) value given by the hybrid potentials in Ref. [21]. The Kπ = 0+ band and the 1−
1 , 3−

2 states in the Kπ = 0− band are studied by using
MTPA, while the other states are studied by using CSM.

Nucleus G Lπ λNL �expt
α �χ

α PAMD
α Pχ

α Ph
α B(E2↓)expt B(E2↓)χ B(E2↓)h Rχ

rel
[MeV] [MeV] [W.u.] [W.u.] [W.u.] [fm]

20Ne 8 0+
1 1.1518273 0.70 3.79

2+
1 1.1370375 0.68 20.3 ± 1.0 13.0 14.3 3.80

4+
1 1.13190728 0.54 22 ± 2 17.1 18.5 3.73

6+
1 1.1172209 (1.1 ± 0.2)×10−4 3.64×10−4 0.34 0.30 ± 0.05 0.19 ± 0.04 20 ± 3 15.2 15.2 3.62

8+
1 1.1674842 (3.5 ± 1.0)×10−5 1.98×10−4 0.28 0.18 ± 0.05 0.095 ± 0.027 9.0 ± 1.3 7.0 7.9 3.21

9 1−
1 1.1919326 (2.8 ± 0.3)×10−5 2.72×10−5 0.95 1.03 ± 0.11 0.82 ± 0.09 4.78

3−
2 1.2043384 (8.2 ± 0.3)×10−3 7.95×10−3 0.93 1.03 ± 0.04 0.67 ± 0.02 50 ± 8 41.6 77.0 4.84

5−
3 1.2074985 0.145 ± 0.40 0.114 0.88 1.27 ± 0.35 0.73 ± 0.20 40.0 + 9.6i 126.9 4.52 + 0.30i

7−
3 1.202514 0.110 ± 0.010 0.314 0.71 0.35 ± 0.03 0.20 ± 0.02 27.8 + 10.7i 154.9 4.09 + 0.32i

9−
5 1.18843 0.225 ± 0.040 0.354 0.70 0.64 ± 0.11 0.38 ± 0.07 14.7 + 6.5i 36.6 3.69 + 0.23i

α-formation probability satisfies Pα = ∫
d3r| 〈�̃r|
〉 |2 �∫

d3r 〈�̃r|�̃r〉 〈
|
〉 = 1 thanks to the Cauchy inequality. Let
us assume that the experimental α-decay width could be re-
produced by microscopic models, where the α-decay width
is written as �

expt
α = 2P0(Qα, a)γ 2

0 (Qα, a), with P0(Qα, a) =
ka/|H(+)

0 (η, ka)|2 and γ 2
0 (Qα, a) = 2πaG(a)2/mred. Here,

a is the channel radius in the R-matrix calculation, k =√
2mredQα is the wave number of the α cluster in the infinity,

η is the Coulomb-Sommerfeld parameter, and H(+)
0 (η, ka)

is the S-wave outgoing Coulomb-Hankel function. Although
P0(Qα, a) and γ 2

0 (Qα, a) depend on the channel radius a sep-
arately, in principle, their product �

expt
α should not depend on

a according to the R-matrix theory [70–73]. In practice, due
to limited model space and finite numerical precision, some
residual dependence on the channel radius could appear in
numerical calculations. In that case, it is important to choose
the channel radius in an appropriate way. We would like to
stress again that the α-formation amplitude G(r) is normalized
to the α-formation probability Pα � 1. On the other hand,

if it is the pure α-cluster configurations that are assumed
in theoretical calculations, the α-formation amplitudes (aka
the α-cluster wave functions) are normalized to unity instead
of the α-formation probability Pα � 1. Then, the theoretical
α-decay width should satisfy �theor

α ≈ �
expt
α /Pα . As mentioned

before, SMCMs assume pure α-cluster configurations when
calculating the theoretical α-decay width �χ

α . Therefore, we
can use Pχ

α = �
exp
α /�χ

α to estimate the α-formation probability
of the target state. In columns nine and twelve, we list the α-
formation probabilities Ph

α s and the B(E2↓) values B(E2↓)hs
extracted from Ref. [21] based on the hybrid potentials for
comparison. Last but not least, we would like to mention that
the rms relative distances between the α cluster and 16O in
column thirteen are found to decrease along the Kπ = 0+ and
Kπ = 0− bands in general. This is also observed in previous
studies based on other effective potentials. It is sometimes
referred to as the antistretching effect [26].

The numerical results for 44Ti are given in Table III. The
experimental data on the α-cluster states in 44Ti are limited

TABLE III. Theoretical and experimental results for the observed states in the Kπ = 0+ and Kπ = 0− bands of 44Ti. The experimental
B(E2↓)expt are taken from Ref. [77].

Nucleus G Lπ λNL B(E2↓)χ B(E2↓)expt Rχ

rel
[W.u.] [W.u.] [fm]

44Ti 12 0+
1 1.1019607 4.32

2+
1 1.0915923 9.9 13 ± 4 4.33

4+
1 1.0853305 13.4 30 ± 5 4.28

6+
1 1.08476 12.7 17.0 ± 2.4 4.18

8+
1 1.078867 10.5 4.06

10+
1 1.0990893 6.7 3.85

12+
1 1.1338819 3.0 3.63

13 1−
2 1.1232387 4.86

3−
6 1.116978 20.0 4.83

5−
3 1.1053947 22.1 4.78

7−
2 1.0972716 20.7 4.67
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TABLE IV. Theoretical and experimental results for the Kπ = 0+ band of 52Ti. The experimental B(E2↓)expt are taken from Ref. [11].
B(E2↓)WS2 are the theoretical results given by the phenomenological WS2 potential in Ref. [12].

Nucleus Lπ λNL B(E2↓)expt B(E2↓)χ B(E2↓)WS2 Rχ

rel
[W.u.] [W.u.] [W.u.] [fm]

52Ti 0+
1 0.9656424 4.20

2+
1 0.9564093 7.5+0.4

−0.3 7.1 9.4 4.20
4+

1 0.9497294 9.5+1.4
−1.1 9.6 12.3 4.16

6+
1 0.9550252 8.7+0.6

−0.5 8.8 11.6 4.05
8+

1 0.9584199 0.76±0.09 7.1 9.5 3.93
10+

1 0.95336506 5.0 6.6 3.80

compared with 20Ne. Especially, the α-decay data are not
available from the experimental side, which forbids the ex-
traction of α-formation probabilities in SMCM. Nevertheless,
it is found that, similar to 20Ne, B(E2↓) in the Kπ = 0− band
are about two times those in the Kπ = 0+ band, which might
be the hints for prominent α-cluster structures in the Kπ = 0−
band. Moreover, the antistretching effect is also observed in
44Ti.

The numerical results for 52Ti are given in Table IV. The
global quantum number is taken to be G = 12. Unlike 44Ti,
the neutron orbit 0 f7/2 has been occupied by the core nucleus
48Ca. Therefore, the α-cluster state with (G, L) = (12, 12)
is unfavored by the Wildermuth condition, and the Kπ = 0+
band gets terminated at L = 10 automatically, which is consis-
tent with experimental data. B(E2↓)χ from SMCM are given
in column five. They agree well with the experimental data
in column four, except for the 8+

1 state. The 8+
1 state has its

B(E2↓)expt be one order of magnitude smaller than B(E2↓)χ ,
indicating that this state is more likely to be a shell-model
state. In column six are B(E2↓)WS2 from the phenomenologi-
cal WS2 potential [12]. In comparison, our DFχ s are in better
agreement with the experimental data.

The numerical results for 212Po are given in Table V. The
global quantum number is taken to be G = 22. The proton
orbit 0h11/2 and the neutron orbit 0i13/2 have been occupied
by the core nucleus 208Pb. As a result, the α-cluster states with

(G, L) = (22, 20), (22, 22) are unfavored by the Wildermuth
condition, and the ground-state band gets terminated automat-
ically at L = 18, consistent with the experimental observation.
The theoretical α-decay widths from SMCM with Pα = 1 are
given in column eight. The α-formation probability of the
0+

1 state is extracted to be Pχ
α = �

expt
α /�χ

α = 0.094, compat-
ible with PQWFA

α = 0.1045 from quartetting wave function
approach [23]. On the other hand, the α-formation probability
of the 18+ state is found to be as tiny as Pχ

α = 0.0034, sug-
gesting that the shell-model configuration is more important
in this state. References [81,82] propose an approximately
linear relation between the α-formation probability and the
rms relative distance Rχ

rel along the band. Therefore, the α-
formation probabilities along the ground-state band of 212Po
could be estimated by the linear relation PLA

α = −1.160 66 +
0.200 35Rχ

rel. The refined α-decay widths �χ,refined
α ≡ PLA

α �χ
α

are given in column nine, agreeing well with the experimen-
tal results. The theoretical results given by the CDM3Y6
double-folding potentials from Ref. [37] are given in columns
five and ten. In Ref. [37], a constant α-formation probability
PCDM3Y6

α = 0.3 is used to calculate the theoretical α-decay
widths. Such a choice is motivated by a previous microscopic
result on the α-formation probability in the ground state of
212Po [83]. In this work, we give an improved treatment on
the α-formation probabilities by taking into consideration
the evolution of α-cluster formation along the ground-state

TABLE V. Theoretical and experimental results for the ground-state band of 212Po. The experimental B(E2 ↓)expt and α-decay widths
of the 0+

1 and 18+
1 states are taken from Ref. [78]. The experimental α-decay widths of the 6+

1 and 8+
1 states are taken from Refs. [79,80].

PLA
α = −1.160 66 + 0.200 35Rχ

rel is the α-formation probability given by the linear approximation in Refs. [81,82]. �χ,refined
α = PLA

α �χ
α is the

refined theoretical α-decay width. �CDM3Y6
α is the α-decay width given by the double-folding potential from the CDM3Y6 effective nucleon-

nucleon interaction with a constant α-formation probability PCDM3Y6
α = 0.3 and the renormalization factors λCDM3Y6

NL ≈ 0.5 [37].

Nucleus G Lπ λNL λCDM3Y6
NL PLA

α �expt
α �χ

α �χ,refined
α �CDM3Y6

α B(E2↓)expt B(E2↓)χ Rχ

rel
[MeV] [MeV] [MeV] [MeV] [W.u.] [W.u.] [fm]

212Po 22 0+
1 1.0459895 0.576 0.094 (1.53 ± 0.01)×10−15 1.62×10−14 1.53×10−15 2.85×10−15 6.26

2+
1 1.0376702 0.572 0.099 4.18×10−13 4.12×10−14 7.31×10−14 6.3 6.29

4+
1 1.031552 0.569 0.095 8.13×10−13 7.72×10−14 1.43×10−13 8.8 6.27

6+
1 1.02607 0.565 0.085

(
1.8+1.2

−0.5

)×10−14 3.19×10−13 2.72×10−14 5.52×10−14 3.9 ± 1.1 9.1 6.22
8+

1 1.020155 0.562 0.072
(
1.9+0.4

−0.3

)×10−15 3.97×10−14 2.85×10−15 6.81×10−15 2.30 ± 0.09 8.7 6.15
10+

1 1.010274 0.556 0.059 7.28×10−15 4.30×10−16 1.23×10−15 2.2 ± 0.6 7.9 6.09
12+

1 0.993857 0.547 0.048 5.57×10−15 2.69×10−16 9.39×10−16 7.1 6.03
14+

1 0.982049 0.540 0.033 1.34×10−16 4.40×10−18 2.21×10−17 5.8 5.96
18+

1 0.95507 0.524 0.0034
(
1.01+0.02

−0.01

)×10−23 3.01×10−21 1.01×10−23 4.60×10−22 5.81
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FIG. 2. The joint experimental and theoretical analysis on α-
decay properties of 104Te. The red solid line shows the relation
between the α-decay half-life and Qα given by SMCM + DFχ with
the α-formation probability Pα = 1. The light green and light yellow
regions are the 1σ and 2σ bands from Ref. [17]. The light orange
region is the parameter space allowed by Ref. [18]. The light red
region estimates the SMCM + DFχ -allowed parameter space from
the condition Pα � 1. The green, yellow, and orange regions are the
overlaps of these four regions.

band [81,82] under the guidance of the latest microscopic
result from Ref. [23]. To reproduce the experimental energy
levels, the renormalization factors λCDM3Y6

NL ≈ 0.5 are needed
in Ref. [37], which deviate sizeably from 1 and deform the po-
tentials in a significant way. In comparison, in SMCM + DFχ

the renormalization factors λNL deviate only slightly from
1. The theoretical α-decay widths in Table V are tiny com-
pared with those in Tables I and II. They are calculated by
MTPA. MTPA has also been used successfully to calculate
α-decay widths of other heavy and superheavy nuclei (see,
e.g., Ref. [84]), where the α-decay widths can be even smaller
than those listed in Table V.

At last, we study the α decay of 104Te. Auranen et al. re-
port that Qα (104Te) = 5.1(2) MeV, T1/2,α (104Te) < 18 ns [17].
Later on, Xiao et al. observed two new events compatible
with Ref. [17] in an independent experiment and gave the
constraint T1/2,α (104Te) < 4 ns [18]. But, they could not fully
exclude the possible impacts from β decay. We carry out a

joint experimental and theoretical analysis based on these two
experimental results and SMCM + DFχ . The results are given
in Fig. 2. It is found that most parts of the parameter space
allowed by experiments are actually disfavored by SMCM,
except the upper right corner. If Ref. [17] is considered only,
it is the triangular regions colored in green and yellow (over-
lapping partially with the green and orange triangular regions)
that are favored by the joint analysis with the confidence
levels of 68% and 95%, respectively. If both experiments are
considered, then the triangular region colored in orange is
most favored by the joint analysis.

IV. CONCLUSIONS

In summary, we derive new reliable double-folding poten-
tials for the α + doubly magic nucleus systems from χEFT
and use them to study the α-cluster structures in 8Be, 20Ne,
44,52Ti, and 212Po within the framework of SMCM. Compared
with the existing effective potentials, DFχ s have better con-
nections to QCD via χEFT. Besides, they give theoretical
results in good agreement with experimental data. α-decay
properties of 104Te are also studied in the light of two recent
experimental results. Our study shows that DFχ s are new reli-
able effective potentials for the SMCM approach to α-cluster
structures above double shell closures.
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