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Reconciliation of wobbling motion with rotational alignment in odd mass nuclei
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The transverse wobbling motion in odd-A nuclei is investigated by means of a semiclassical treatment applied
to a triaxial rotor Hamiltonian with a rigidly aligned high- j quasiparticle. An additional spin-spin interaction
which accounts for the rotational alignment mechanism is used to generalize the quasiparticle-rotor coupling.
Its effect on the rotation dynamics is investigated in a classical mainframe. The quantum realization of the
excitations associated to the transverse wobbling regime in the presence of additional alignment is achieved in
a harmonic approximation. The quality of the approximation is investigated in a general theoretical context and
particularly when applied to transverse wobbling excitations observed in five A ≈ 160 nuclei and suggested for
183Au, 135Pr, and 105Pd.
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I. INTRODUCTION

A rigid body favors rotation around the intrinsic axis with
maximal moment of inertia (MOI). Triaxial deformation can
lead to comparable MOI values on distinct principal axes,
leading thus to an irregular rotation with precession and nu-
tation components. Therefore, wobbling motion in nuclei is
uniquely related to their triaxial deformation. It was first sug-
gested as a possible collective rotational behavior for triaxially
deformed even-even nuclei which might occur at high angular
momentum [1]. At sufficiently high spins, the contribution
coming from the rotation components from the other two axes
can be quantized with harmonic oscillation bosons. This as-
pect offers a phenomenological description for the dynamics
of the exactly determined lowest states [2]. The wobbling
motion can still be considered at lower angular momentum
by a consistent treatment of anharmonicities.

In the harmonic limit, the wobbling frequency associated
to an even-even nucleus has an increasing linear dependence
on angular momentum. Most known even-even nuclei rarely
exhibit collective excitations uniquely identified with triaxial
shape. The few candidate cases point to a more dynamical
character of triaxiality, favoring shape fluctuation excitations
over rotational ones. However, in odd mass systems, a sta-
ble triaxial deformation of the core can be sustained by the
alignment of a high spin particle motion [3]. This mechanism
was used to interpret the triaxial strongly deformed bands of
163Lu based on an aligned i13/2 proton, as being connected
by wobbling excitations [4]. Similar bands were later reported
for other neighboring nuclei 161Lu [5], 165Lu [6], 167Lu [7],
and 167Ta [8]. The wobbling nature of the observed bands
was concluded based on their similarity in what concerns the
inertia and the single-particle alignment correlated with strong
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E2 �I = 1 transitions connecting them. Nevertheless, the
measured wobbling energy was found to be decreasing with
spin, a fact which is in contradiction with the simple wobbling
case proposed by Bohr and Mottelson [1]. An adaptation of
the same problem to a particle-rotor system simulating an
odd-A nucleus [9,10] offered a wobbling frequency which
can decrease with angular momentum if the single-particle
alignment is around an axis perpendicular to the body-fixed
axis with the highest MOI. This configuration, first suggested
in Ref. [11], is nowadays referred to as transverse wobbling
[9] and is consistent with an aligned quasiparticle of particle
or hole nature. A quasiparticle from the middle of the orbital
tends to align its spin along the intrinsic axis with largest MOI,
leading thus to the usual wobbling energy which increases
with total angular momentum. This is distinguished as the
longitudinal wobbling [9]. Recent experimental evidence of
wobbling was reported also in 135Pr [12,13], 105Pd [14], and
183Au [15], where the observed bands are built on a transverse
alignment as well as in the 133La [16] and 187Au [17] nu-
clei exhibiting a longitudinal configuration. A transverse type
of wobbling was also demonstrated in the even-even 130Ba
nucleus [18], where the involved bands were interpreted as
being built on an alignment of two quasiparticles. The main
part of wobbling excitation studies [9,12–25] is based on the
particle-rotor model (PRM) [1]. For improved reproduction of
the data and the interpretation of the dynamics, one commonly
employs alternative PRM model extensions based on ran-
dom phase approximation [26–34], semiclassical description
[9,10,35–40], boson expansion formalisms [40–43], collective
Hamiltonian [44–47], or angular momentum projected mean-
field approaches [13,48,49].

The latest odd-A nuclei reported to have transverse wob-
bling bands exhibit a discontinuity marking the end of the
transverse regime and the beginning of a new rotational phase.
The critical point of this transition depends on the MOI
values. The hydrodynamical MOI estimations with triaxial
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deformation suggested by various microscopic calculation
do not reproduce the experimental position of the critical
angular momentum, leading to a premature end of the trans-
verse wobbling regime. This is especially problematic for the
overextended wobbling bands observed in A ≈ 160 nuclei. In
this paper, I propose to address this issue in a semiclassical
approach, by adjusting the coupling between the triaxial core
and a rigidly aligned odd quasiparticle. This is meant to ac-
count for the missing effects of the rotational alignment. The
complex rotational dynamics of a quasiparticle-rotor system
cannot transpire from a quantum treatment, but is accessible
through the semiclassical description which provides infor-
mation in terms of easily interpretable notions with classical
counterparts [50,51]. The semiclassical formalism is briefly
explained in the next section. The experimentally available
observables are then extracted from a quantized instance of
the harmonically approximated classical model. The quality
of the adopted harmonic approximation is discussed in Sec. III
for the transverse wobbling regime with additional rotational
alignment. Model applications are performed in Sec. IV for
the description of the available wobbling data in odd-A nuclei.
Finally, concluding remarks are presented in the last section.

II. THEORETICAL FRAMEWORK

For the description of nuclear wobbling motion one
employs the following extension of the particle-rotor Hamil-
tonian:

H = HR + Hj + HR j, (1)

where

HR =
∑

k=1,2,3

Ak (Îk − ĵk )2 (2)

is the triaxial rotor Hamiltonian associated to the core angular
momentum �R = �I − �j and defined by the inertial parameters
related to the MOI as Ak = 1/(2Jk ). I consider here the hy-
drodynamic MOI:

Jk = 4

3
J0 sin2

(
γ − 2

3
kπ

)
, (3)

in the Copenhagen convention [1], which has a different sign
for γ than that in the Lund convention [52] usually considered
in cranking approaches. As long as MOIs are correlated with
semiaxes of the ellipsoidal nuclear shape, the choice of con-
vention is irrelevant for the rotor part of (1). Thus, the MOI
definition (3) corresponds to the semiaxis length expression

Rk = R0

[
1 +

√
5

4π
β cos

(
γ − 2π

3
k

)]
, (4)

which is used to establish the short (s), long (l), and medium
(m) designation of the principal axes.

Hj is the quasiparticle contribution to the total Hamiltonian
by means of the odd nucleon spin �j, while its interaction with
the core angular momentum is modeled through a spin-spin
term [53–55]:

HR j = −C �̂R · �̂j = −C( �̂I · �̂j − �̂j2). (5)

It can be easily seen that this term lowers the energy for
configurations with increased alignment between core and
quasiparticle spin vectors. Moreover, writing HR j in terms of
lowering and raising operators Î± = Î1 ± iÎ2 and ĵ± = ĵ1 ±
i ĵ2,

HR j = −C
[

1
2 ( ĵ−Î+ + ĵ+Î−) + Î3 ĵ3 − �̂j2

]
, (6)

one recognizes the particle-rotor model contribution coming
from the Coriolis effect [1]. Therefore, the HR j term is meant
to adjust the usual particle-rotor Coriolis coupling. Also, the
spin-spin interaction becomes more important for states with
high total angular momentum, which is consistent with the ex-
perimentally observed rotational alignment mechanism. The
standard commutation relations are considered for the angular
momentum operators, i.e., [Î+, Î−] = 2Î3.

In what follows I consider that the quasiparticle spin is
rigidly aligned to the first principal axis of the intrinsic frame
of reference. The choice of the alignment axis is arbitrary
because there are yet no restrictions imposed on the distri-
bution of MOIs on the principal axes. The rigid or frozen
alignment approximation means ĵ1 ≈ j ≡ const, and the part
of the particle-rotor coupling Hamiltonian which is relevant
for the system’s dynamics can then be reduced to

Halign = A1 Î2
1 + A2 Î2

2 + A3 Î2
3 − (2A1 + C) jÎ1. (7)

In order to extract particular dynamical features from this
quantum Hamiltonian, in terms of some relatable classical
variables, one makes use of a semiclassical approach based
on a time-dependent variational principle involving a suitably
chosen variational state. The equivalence between classical
and quantum pictures is assured if the variational state spans
the entire Hilbert space of the associated quantum Hamil-
tonian. Coherent states are known to form an overcomplete
basis and therefore are largely employed in semiclassical ap-
proaches. Consequently, here I will use a coherent state for the
SU (2) algebra of the angular momentum operators expressed
in the stereographic representation [56,57]

|ψ (x, ϕ)〉 =
I∑

K=−I

1

(2I )I

√
(2I )!

(I − K )!(I + K )!

×(I + x)
I−K

2 (I − x)
I+K

2 eiϕ(I+K )|IMK〉, (8)

where |IMK〉 is the eigenfunction of the total angular momen-
tum operator, and its projections on the third intrinsic (K) and
laboratory (M) principal axis, designated as the quantization
axis. The classical variables which parametrize the variational
states are the azimuth angle 0 � ϕ < 2π of the total angular
momentum vector direction and a projection variable x =
I cos θ with respect to the third intrinsic axis.

The variational principle applied to the quantum Hamilto-
nian (7) and the variational state (8) provides then a classical
energy function,

H(x, ϕ) = I

2
(A1 + A2) + A3I2

+ (2I − 1)(I2 − x2)

2I
(A1 cos2 ϕ + A2 sin2 ϕ − A3)

− (2A1 + C) j
√

I2 − x2 cos ϕ, (9)
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TABLE I. Stationary points of the classical energy function (9) with corresponding existence conditions for the MOI and the classical
angular momentum components on the intrinsic principal axes.

i (xi, ϕi ) Conditions I1 I2 I3

1 (0, 0) (SI jA1 + TI j ) < A2 < A3 I 0 0
(SI jA1 + TI j ) < A3 < A2

2 (0,±α2) A2 < A3 < (SI jA1 + TI j ) I cos α2 ±I sin α2 0
A2 < (SI jA1 + TI j ) < A3

3 (±I sin α3, 0) A3 < A2 < (SI jA1 + TI j ) I cos α3 0 ±I sin α3

A3 < (SI jA1 + TI j ) < A2

and a set of canonical equations of motion for x and ϕ, respec-
tively, identified as generalized momentum and coordinate.
A Morse analysis of the classical energy function revealed
five stationary points with two pairs of rotationally equivalent
minima. These minima are listed in Table I, where I use the
following notation:

cos α2,3 = (2A1 + C) j

(2I − 1)(A1 − A2,3)
. (10)

A sample of a classical energy function for various angular
momentum values is shown in Fig. 1 in the presence and
absence of additional alignment. Figure 1 can be understood
as the inverse distribution of the total angular momentum
vector direction, that is, the minimum value of the classical
energy function corresponds to the most favored orientation.
From the perspective of the simple triaxial rotor model, each
solution is a superposition of rotation matrices with different
projections. The highest weight components are distributed
consistently with the most favorable angular momentum vec-
tor orientation. In the present formalism, the alignment of
the quasiparticle is rigid, therefore the additional alignment
strength acts only on the rotor angular momentum, by en-
hancing the probability distribution of its projection along the
quasiparticle alignment. This is reflected also in the behavior
of the total angular momentum because I1 = R1 + j. Indeed,
in the first rotational phase of Fig. 1, the single minimum
corresponding to the orientation along the first principal axis
is more stabilized against the variation of the canonical vari-
able responsible for the phase transition (ϕ) when additional
alignment is considered. Moreover, the transition to double
minima is forestalled in the enhanced alignment case. All
these features are consistent with the rotational alignment of
the rotor angular momentum vector towards the axis with the
rigid quasiparticle alignment.

The condition

| cosα2,3 | = 1 (11)

defines a separatrix which delimits the domains of existence
for each stationary point, expressed in terms of specific rela-
tionships between MOI and the quantities

SI j = 2I − 1 − 2 j

2I − 1
, TI j = C j

2I − 1
. (12)

The specific dynamical features associated to the identified
stationary points are revealed by the classical averages of the

FIG. 1. The dependence on canonical coordinates of the classical
energy function for γ = −20◦, j = 13/2, and a few half-integer
values of I in the absence of additional alignment C = 0 (first row)
and considering C = 1/J0 (second row). The difference between two
contour lines is scaled to have 20 contour lines in the range of energy
for each case in part.
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FIG. 2. The critical angular momentum Ic as a function of tri-
axiality γ and for different values of alignment strength C given in
1/J0 units. The interval of γ corresponds to the transition between
the first and the second dynamical phases when j = 13/2 and hydro-
dynamic MOI are used. The area below the curves corresponds to the
transverse rotational regime.

angular momentum components

I1 = 〈I1〉 =
√

I2 − x2 cos ϕ,

I2 = 〈I2〉 =
√

I2 − x2 sin ϕ, (13)

I3 = 〈I3〉 = x,

calculated in the corresponding coordinates. As can be seen
from the results of Table I, the α angle index corresponds
to the other axis with nonzero angular momentum projection.
Thus, the first stationary point defines a dynamical phase with
an average angular momentum vector along the first principal
axis, whereas the other two phases with double minima corre-
spond to an average direction of the total angular momentum
vector in the 1-2 and 1-3 principal planes, respectively, of
the intrinsic reference frame. The first dynamical phase is of
a greater interest, because it hosts the transverse wobbling
regime, that is, when the quasiparticle alignment and the ro-
tation of the whole system are along the body-fixed principal
axis with the smallest MOI. This regime is bounded by the
other two dynamical phase modes corresponding to tilted axis
rotation [10]. The boundary is given by the separatrix (11)
and is spin dependent. Therefore, a dynamical phase transition
is possible between the transverse regime and the tilted axis
modes at a certain critical value of the total angular momen-
tum:

Ic = (2A1 + C) j

2(A1 − A2,3)
+ 1

2
. (14)

It depends on the MOI and on the alignment strength C in
the way depicted in Fig. 2. The two options which extend
the transverse phase are by decreasing the triaxiality or by in-
creasing the alignment strength C. In what follows, I consider
the transverse regime adjacent to the second dynamical phase
with an angular momentum vector tilted towards the positive
or negative second principal axis of the intrinsic frame of
reference.

FIG. 3. x = 0 profiles of the j = 13/2 classical energy function
for successive half-integer values of angular momentum and triaxi-
ality γ fixed at −20◦, without alignment (a) and with an alignment
strength C = 1/J0 (b). The dashed line in panel (a) represents the
profile of the harmonic approximation.

III. HARMONIC APPROXIMATION

Figure 3 shows the evolution with angular momentum of
the x = 0 profiles of the classical energy function in the pres-
ence and absence of alignment. As can be seen, the classical
energy function can be well approximated by a harmonic
potential for angular momentum states well below the critical
point. The harmonic approximation around (x, ϕ) = (0, 0)
deteriorates as one approaches the critical angular momentum,
and finally breaks when the classical energy function acquires
two minima. Nevertheless, one must note that the divergence
between the profiles shown in Fig. 3 for harmonically ap-
proximated and full classical energy functions, right below
the critical point and at higher ϕ, is partially compensated by
the sharper profiles along the x variable in those points. The
validity of the harmonic approximation can be more precisely
ascertained in terms of harmonic oscillator characteristics.
The harmonic approximation basically implies a second order
expansion of the energy function around its minima (xi, ϕi )
with i = 1, 2, 3:

Hi(x, ϕ) = H(xi, ϕi ) + 1

2

(
∂2H
∂x2

)
xi,ϕi

x̃2
i

+1

2

(
∂2H
∂ϕ2

)
xi,ϕi

ϕ̃2
i , (15)

where x̃i = x − xi and ϕ̃i = ϕ − ϕi. The obtained classical
oscillator form is then quantized using the correspondence
principle on the generalized coordinate and momentum. For
the transverse wobbling mode, the resulting discrete energy
spectrum is

E (I, n) = A1I2 + I

2
(A2 + A3) − (2A1 + C) jI

+ω(I )

(
n + 1

2

)
, (16)

where the associated transverse wobbling frequency is defined
as

ω(I ) =
√

[(2I − 1)(A3 − A1) + (2A1 + C) j]

×
√

[(2I − 1)(A2 − A1) + (2A1 + C) j]. (17)
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FIG. 4. The evolution of one phonon and two phonon ratio I/Imin with angular momentum for C = 0, 1, 2 J −1
0 when (a) j = 13/2 and

γ = −20◦, (b) j = 13/2 and γ = −25◦, and (c) j = 11/2 and γ = −25◦.

The wobbling excitations are indexed by the oscillator quanta
n. The wobbling frequency deduced by Frauendorf and Dö-
nau [9] is recovered in the large I limit, for C = 0 and
with the alignment axes 1 and 3 interchanged. This result
is equivalent to the use in the original quantum Hamilto-
nian of the boson representation for the angular momentum
operators

Î b
+ =

√
I

2

[(
1

k
− k

)
a† +

(
1

k
+ k

)
a

]
,

Î b
− =

√
I

2

[(
1

k
+ k

)
a† +

(
1

k
− k

)
a

]
(18)

corresponding to the rotated frame where the first axis is the
quantization axis (Î± = Î2 ± iÎ3). The boson operators a and
a† are the ones defining the harmonic oscillations around the
first principal axis, while k = √

mω is the string constant for
the transverse wobbling oscillations defined in terms of the
frequency (17) and the mass

m =
[

I

(
∂2H
∂x2

)
0,0

]−1

= [(2I − 1)(A3 − A1) + (2A1 + C) j]−1. (19)

The boson realization of the angular momentum operators
(18) is obtained as a first order approximation of the Holstein-
Primakoff boson expansion [58] and leads to [Î+, Î−] = 2Î1 =
2I . The last result is similar to the original wobbling deduction
[1], where a different convention for the angular momentum
operator commutations is used. The two approaches are ob-
tained from one another by a change in the sign of one of the
angular momentum components, which leaves the Hamilto-
nian invariant.

This harmonic solution is supposed to work when
I2 	 〈Î2

2 + Î2
3 〉. Using the harmonic boson representation

from above, one can rewrite this condition as I 	 Imin,

where

Imin =
(

k2 + 1

k2

)(
n + 1

2

)

= (2n + 1)

2ω(I )
[(2I − 1)(A3 + A2 − 2A1) + 2(2A1 + C) j].

(20)

The much grater sign represents by default an arbitrary in-
equality relationship the meaning of which depends on the
application. For the purpose of the harmonic approximation,
an angular momentum I several times larger than Imin could
be considered an acceptable correspondence to the I 	 Imin

condition. The evolution of this relationship with angular
momentum within the transverse wobbling phase is depicted
in Fig. 4 for different values of triaxiality γ , single-particle
spin j, and alignment strength C. The general behavior is of
an approximate inverse parabola for the I/Imin. The condition
starts at I = j with I a few times larger than Imin, then im-
proves significantly up to the middle of the existence interval
of the transverse mode, and finally the ratio I/Imin decreases
to zero when I = Ic. The condition is obviously weaker for
the two phonon harmonic approximation, but still acceptable
in certain conditions. For example, the quality of the I 	 Imin

is overall improved for both one phonon and two phonon ap-
proximations by increasing the triaxiality |γ |, single-particle
spin, or alignment strength. Moreover the slope of the decreas-
ing I/Imin ratio approaching Ic is very steep, making thus the
harmonic approximation valid even for angular momentum
values very close to the separatrix Ic. This feature can be used
in situations when the quantum half-integer angular momen-
tum of a critical state is further from the classical value Ic of
the critical angular momentum.

It is worth noting that the present rigorous semiclassical es-
timation of the wobbling frequency is larger than that reported
in Ref. [9], where 1/(2I ) terms were ignored. The difference
becomes larger as angular momentum approaches its critical
value Ic. The same is true for the quality of the harmonic
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approximation, which is lower in the present case. From this
analysis, it is clear that with a sufficiently large alignment
strength C the transverse regime can be extended to sustain
the harmonic approximation around its stationary point up to
a very high angular momentum.

Based on the harmonic approximation formalism
of [1], the E2 transition probabilities between states
of the transverse wobbling regime acquire the simple
expressions

B(E2; n, I → n, I ± 2) = 5e2

16π

∣∣Q(1)
2

∣∣2
, (21)

B(E2; n, I → n − 1, I − 1)

= 5e2

16π

n

2I

∣∣∣∣∣Q(1)
0

√
3

2

(
1

k
+ k

)
− Q(1)

2

(
1

k
− k

)∣∣∣∣∣
2

, (22)

B(E2; n, I → n + 1, I − 1)

= 5e2

16π

(n + 1)

2I

∣∣∣∣∣Q(1)
0

√
3

2

(
1

k
− k

)
− Q(1)

2

(
1

k
+ k

)∣∣∣∣∣
2

. (23)

Q(1)
0,2 are the intrinsic quadrupole moments in respect to

the rotated frame where axis 1 is the quantization axis, and
are related to the empirical estimation of the total quadrupole
moment Q and the triaxial deformation γ in the following
way:

Q(1)
0 = −Q cos

(
γ + π

3

)
, Q(1)

2 = − Q√
2

sin
(
γ + π

3

)
,

Q(1)
2

Q(1)
0

= tan
(
γ + π

3

)
√

2
. (24)

Note that here I consider the spherical components of the
quadrupole tensor Q2μ, such that Q0 = Q20, Q2 = Q22/

√
2

and Q =
√

Q2
20 + Q2

22.
Another important observable concerning the electromag-

netic properties of the wobbling excitations is the B(M1)
transition probability. Following the same procedure as in
the case of the quadrupole transitions and considering the
alignment of the quasiparticle angular momentum j along the
first axis [9], one obtains the following expressions for the
B(M1) rates connecting different wobbling bands:

B(M1; n, I → n − 1, I − 1)

= 3

4π

n

4I

∣∣∣∣ j(g j − gR)

(
1

k
+ k

)∣∣∣∣
2

, (25)

B(M1; n, I → n + 1, I + 1)

= 3

4π

(n + 1)

4I

∣∣∣∣ j(g j − gR)

(
1

k
− k

)∣∣∣∣
2

. (26)

gR and g j are the gyromagnetic factors of the collective core
and odd particle, respectively, which are usually subjected to
quenching. The collective gyromagnetic factor is calculated
as Zc/Ac using the proton and mass numbers of the collec-
tive core, while the single-particle gyromagnetic factors are

computed as follows:

g j = gl + (gs − gl )/2 j, (27)

with the following free values of the orbital and spin gyro-
magnetic factors, respectively, given in μN units: gn

l = 0 and
gn

s = −3.8256 for neutrons, and gp
l = 1 and gp

s = 5.5855 for
protons.

IV. NUMERICAL RESULTS

The wobbling frequency depends on angular momentum
and therefore contributes to the general behavior of the rota-
tional sequence within bands. Studies focused on reproducing
the whole spectrum tend to overlook the features pertaining
especially to the wobbling excitations, because rotational ex-
citation energy is on average several times larger and only a
subset of the observed states is actually connected through
wobbling excitation quanta. Here one will focus only on the
wobbling excitations. Due to the signature splitting, the one
phonon wobbling excitation energy is defined as

EW (n = 1) = E (I, 1) − 1

2
[E (I − 1, 0) + E (I + 1, 0)]

= 1

2

{
3ω(I ) − 1

2
[ω(I − 1) + ω(I + 1)]

}
− ε,

(28)

where ε = A1 if one considers that the total energy is com-
pletely described by Eq. (16). Nevertheless, the particle-rotor

wave functions are invariant to the �̂I2 terms added to the total
Hamiltonian, such that ε can be considered as an independent
free parameter. For the two phonon wobbling excitation en-
ergy, the expression is straightforwardly simple:

EW (n = 2) = E (I, 2) − E (I, 0) = 2ω(I ). (29)

Model fits on wobbling energies can be used to deter-
mine the scaling MOI J0, the alignment strength C, and the
additional rotational parameter ε, using as input the triaxial
deformation γ determined within microscopic approaches.
The condition to have a real wobbling frequency for all ob-
served states sets a lower limit for the alignment strength
C determined for the highest spin of the observed wobbling
excitation. Wobbling bands which reach experimentally the
critical angular momentum where the transverse regime ter-
minates restrict the domain of values for C even more with an
upper limit spanning the classical values of angular momen-
tum between spin states corresponding to different wobbling
phases.

A. A ≈ 160 wobblers

The microscopic calculations predict triaxial minima for
A ≈ 160 nuclei 161,163,165,167Lu and 167Ta with observed wob-
bling bands at γ = −20◦ (in the present convention for
MOIs). The wobbling bands in these nuclei are the result of
the odd proton alignment from the i13/2 orbital. The particle
nature of the odd proton is consistent with its alignment along
the short principal axis as suggested by the corresponding
MOI ratios shown in Table II. Taking j = 13/2 and with γ
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TABLE II. The triaxiality γ determined from microscopic calculations; the quasiparticle configuration is listed together with the parameters
J0,C, and ε obtained by fitting the experimental wobbling excitation energies measured for 183Au, 161,163,165,167Lu, 167Ta, 135Pr, and 105Pd. The
corresponding inertial parameters Ak and the resulted classical value of the critical angular momentum are also given for reference.

J0 ε C C A1(s) A2(m) A3(l )

Nucleus Alignment γ (keV−1) (keV) (keV) (J −1
0 ) (J −1

0 ) (J −1
0 ) (J −1

0 ) Ic

183Au π i13/2 −21.4◦ 0.032 2219.260 294.533 9.42 0.96 0.38 2.82 49.01
πh9/2 −20◦ 0.033 720.631 119.332 4.00 0.91 0.39 3.21 24.50

161Lu π i13/2 −20◦ 0.226 −95.650 23.145 5.24 0.91 0.39 3.21 44.50
163Lu 0.273 −62.088 22.719 6.20 50.51
165Lu 0.286 −62.164 22.580 6.45 52.06
167Lu 0.153 45.673 37.557 5.73 47.57
167Ta 0.180 28.179 28.391 5.10 43.62
135Pr πh11/2 −26◦ 0.076 −82.408 29.680 2.24 1.20 0.38 1.95 16.02
105Pd νh11/2 −25◦ 0.039 12.643 61.920 2.43 1.14 0.38 2.10 17.50

fixed to the value suggested by microscopic calculations, the
wobbling energies would depend only on ε, scaling MOI J0

and the alignment strength C. These parameters are fixed by
fitting the available values for the corresponding wobbling
energies. The resulting parameters are listed in Table II. The
agreement with experimental data is very good (see Fig. 5),

especially for intermediate data points as well as for high
spin states where the quality of the harmonic approximation
is supposed to decrease. Only for 163Lu and 165Lu two phonon
wobbling bands are observed and the theory explains them
even better than the corresponding one phonon bands. The
observed and predicted two phonon energies are lower for

FIG. 5. The comparison of the experimental [4–8,23,59] one phonon and two phonon wobbling excitation energies for 161,163,165,167Lu and
167Ta, with corresponding theoretical results.
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FIG. 6. Available experimental �I = 1 out of band E2 transition
probabilities normalized to in band �I = 2 transition probabilities
for 163,165,167Lu and 167Ta [4,6–8,23,59], compared to theoretical
predictions. Theoretical results for 167Ta can be considered as valid
reference also for the case of 161Lu, given the similar values of
relevant parameters.

161,163,165Lu and higher for 167Lu and 167Ta. This behavior
is correlated with the low and high slope, respectively, of
the wobbling energy’s angular momentum dependence. Apart
from 165Lu, the available experimental data points are very
close to the critical point marking the end of the transverse
regime. The semiclassical values of the critical angular mo-
mentum are listed in Table II. The fitted parameters J0 and C
for A ≈ 160 nuclei have similar values with small variations,
and only ε have largely distinct values. The newly introduced
alignment strength C is found to be around twice the largest
inertial parameter A3(l ) corresponding to the minimal MOI.

The harmonic assumption of wobbling motion suggests
also some simple characteristics concerning electromagnetic
transitions. Large ratios of interband and in band E2 transi-
tion probabilities are considered as an additional signature for
wobbling excitations. As can be seen from Fig. 6, this feature
is reproduced in the present model with a good agreement
to the available experimental data. However, the data exhibit
an increasing dependence on spin in contradistinction to the
theoretical estimations. Taking into account the extreme sensi-
bility of the transition probabilities to the triaxial deformation,
this decreasing trend can be ascribed to the slight increase
of the triaxiality γ with spin [60]. In the harmonic approxi-
mation, Eq. (22) suggests that the aforementioned ratio must
be two times larger in the case of transitions from the two
phonon band. This relationship is confirmed by the single data
point available for the wobbling bands of 163Lu. With few
exceptions, including the 167Lu case, the experimental data

FIG. 7. Experimental and theoretical B(M1, I → I − 1) values
connecting one phonon and yrast bands of 163Lu. For theoretical
calculation a quenching factor of 0.47 was used for gj .

are underestimated. It must be mentioned that the theoretical
ratios reported in Fig. 6 depend solely on the triaxiality γ

and the alignment strength C, the former being fixed a priori,
while the latter are determined from fits of wobbling energies.

For 163Lu there are measured also some interband �I =
1 M1 transition probabilities. Using a usually employed
quenching 0.6 on the free spin gyromagnetic factor results in
an overestimation of data by an order of magnitude [9]. This
discrepancy is explained by the fact that the scissors mode
coupled to the wobbling excitations is not included in the
model [33]. A quenching of the total quasiparticle gyromag-
netic factor g j can in principle account for this missing effect
[14,38], as is shown in Fig. 7.

Another piece of relevant experimentally available in-
formation refers to the B(M1)out/B(E2)in ratios. From the
theoretical point of view this ratio depends on the quantity
Q/geff, where geff is the total gyromagnetic factor with in-
cluded quenching, while Q is supposed to account for the
excluded effects of shape fluctuations and amendments to
the effective charge. In order to provide a theoretical estima-
tion for B(M1)out/B(E2)in ratios, one fixes the factor Q/geff

by equating the experimental and theoretical values for the
mixing ratio δ [61] corresponding to the most precise data
point. As can be seen from Table III, the relationship between
the theory and experiment for B(M1)out/B(E2)in mirrors the
results reported for the E2 transition ratios shown in Fig. 6,
that is an overall agreement within a factor range 1–2.

B. Wobbling excitations in 135Pr and 105Pd

The same alignment mechanism is suggested also for the
wobbling bands observed in the 135Pr and 105Pd nuclei, where
the quasiparticle is from the h11/2 orbital. In the first case it
is a proton, while in the 105Pd nucleus a neutron is involved.
Both nuclei exhibit an anomaly in the angular momentum
dependence of the experimental wobbling energy, interpreted
as the critical point marking the transition from the transverse

044312-8



RECONCILIATION OF WOBBLING MOTION WITH … PHYSICAL REVIEW C 103, 044312 (2021)

TABLE III. Experimental and theoretical M1 transition proba-
bilities for transitions from the n = 1 wobbling band to the n = 0
band, normalized to the E2 transition within the wobbling band
from the same state. The experimental values are taken from
Refs. [12,14,15,63]. The scaling factor Q/geff for each nucleus is
fixed to reproduce the experimental M1/E2 mixing ratio δ for the
states denoted with ∗.

Nucleus B(M1,I→I−1)out
B(E2,I→I−2)in

( μN
eb )2

(band) I Th. Exp.

183Au 23
2

−
0.0022 0.007(2)

(πh9/2) 27
2

−∗ 0.0020 0.005(2)
31
2

−
0.0019 0.004(2)

183Au 27
2

+∗ 0.0033 0.007(4)
(π i13/2) 31

2

+
0.0029 0.005(3)

35
2

+
0.0026 0.005(3)

39
2

+
0.0024 0.004(2)

163Lu 35
2

+
0.01296 0.00560(11)

(π i13/2) 39
2

+
0.01189 0.00570(11)

43
2

+
0.01104 0.00667(13)

47
2

+∗ 0.01037 0.00656(13)
51
2

+
0.00982 0.00975(29)

135Pr 21
2

−∗ 0.032 0.164(14)
(πh11/2) 25

2

−
0.030 0.035(9)

29
2

−
0.033 � 0.016(4)

105Pd 17
2

−
0.027 0.162(97)

(νh11/2) 21
2

−∗ 0.023 0.089(26)
25
2

−
0.021 0.029(16)

wobbling to another dynamical phase. Therefore, the trans-
verse mode is considered only up to 31/2 inclusively in
both nuclei. The triaxiality parameters determined for 135Pr
and 105Pd with the quasiparticle triaxial rotor (QTR) model
[9,12,14] and covariant density functional theory [62] listed in
Table II are then used to perform model fits on the wobbling
energies of the two nuclei pertaining only to the transverse
wobbling mode. The fitting details are found in Table II, while
Figs. 8(a) and 9(a) show the comparison between experimen-
tal and resulting theoretical values of the wobbling energies
considered as being part only of the transverse wobbling
regime. The fits produce a reasonably good agreement for
both nuclei, out of which 135Pr has also a two phonon wob-
bling band recently reported [13]. Once again the alignment
strength for both h11/2 wobblers is C � A3(l ), but much closer
to A3(l ) in comparison to the results for A ≈ 160 nuclei.

The measured normalized E2 transition probabilities con-
necting the one phonon and yrast states with �I = 1 are
similarly overestimated by the present calculations for both
nuclei. The transitions connecting the two and one phonon
bands from 135Pr reported by experiment [13] are in contra-
diction with the present model, being even lower than the
transitions from the one phonon band instead of doubling
them. The wobbling nature of the second band is however
still supported by the predominance of electric over magnetic
transition strengths connecting it with the well established one
phonon band. The anharmonic effects suggested in Ref. [13]

FIG. 8. Comparison between experimental and theoretical wob-
bling energies (a) and �I = 1 out of band E2 transition probabilities
normalized to in band �I = 2 transitions (b) for 135Pr [12,13].

cannot explain this feature, because the main characteristics of
a single well potential excitation are generally valid. Shape co-
existence [64] and additional shape fluctuation quanta which
infer supplementary selection rules are possible explaining
scenarios. I also mention here that the QTR calculations per-
formed for 163Lu in Ref. [9] predict an interchange between
the one phonon and two phonon transitions at high spin.
A phenomenological interpretation of this occurrence might
serve as a guiding reference for a correct description of the
second wobbling band in 135Pr. Despite relatively poor agree-
ment with experimental transition rates, the spin dependence
slope of the transition probabilities from all three wobbling
bands shown in Figs. 8(b) and 9(b) is well reproduced. More-
over, as can be seen from Table III, the model also reproduces
the decreasing trend of observed M1/E2 transition rate ratios
with spin but with underestimated values. The exception is the
enhancement at the I = 29/2 state of 135Pr which is incidently
very close to the critical angular momentum Ic.

C. Multiple wobbling bands in 183Au

The latest addition to odd mass nuclei with observed trans-
verse wobbling bands is 183Au, which possesses two separate
pairs of bands connected through wobbling excitations built
on distinct quasiproton alignments. The two different quasi-
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FIG. 9. Comparison between experimental and theoretical wob-
bling energies (a) and �I = 1 out of band E2 transition probabilities
normalized to in band �I = 2 transitions (b) for 105Pd [14].

particle spins are coupled to a core with approximately similar
triaxial deformation (see Table II) [15]. Although both wob-
bling motions are supposed to be of the transverse type, the
corresponding measured wobbling energy is in one instance
increasing and in the other case decreasing with total spin.
As the wobbling frequency’s function on total angular mo-
mentum (17) is that of an ellipse, the two observed wobbling
excitations are associated to different quadrants of the ana-
lytical ellipse. This is confirmed by model fits performed on
experimental data with resulting parameters listed in Table II
and the comparison with experimental wobbling energies de-
picted in Fig. 10(a). As can be seen, the elliptical behavior
of wobbling energies for the i13/2 alignment is very well
reproduced, while the same theoretically predicted trend for
the h9/2 alignment is not realized experimentally, exhibiting
a more linearlike spin dependence. The relationship between
the fitted alignment strength C and the inertial parameter A3(l )

is found to be similar to the other numerical applications.
For the h9/2 bands, the wobbling excitations were identified
up to I = 37/2 [15] and only data limited to this spin are
considered in the fitting procedure with the provision to have
a real wobbling frequency also for higher experimental states
not yet connected through wobblinglike transition properties.

In what concerns the electromagnetic transitions, the the-
oretical calculations once again overestimate the data points

FIG. 10. Comparison between experimental and theoretical wob-
bling energies (a) and �I = 1 out of band E2 transition probabilities
normalized to in band �I = 2 transitions (b) for 183Au [15].

[Fig. 10(b) and Table III], but reproduce proportionally quite
well the correct trend of spin dependence.

D. General remarks

The numerical applications to all nuclei reveal a general
trend of the fitted alignment strength C, which is generally
a few times larger than the inertial parameter A3 associated
to the long axis of the triaxial core. This result is consistent
with the general assumption that the first order Coriolis con-
tribution is greater than or equal to the Ak inertial parameter
of the rotation axis k [1]. On the other hand, a quenching
of the usual particle-rotor Coriolis contribution is employed
for realistic calculations of energy spectra. The present en-
hancement of the Coriolis effect by means of C compensates
the employed rigid alignment approximation. In the standard
PRM, the two angular momentum vectors of the core and the
quasiparticle are attracted to each other due to the rotational
alignment, whereas in the present restricted formalism only
the core angular momentum can change its direction toward
the more favorable configuration along the fixed alignment
axis. In the last case the angle between the two vectors is
larger and is therefore compensated by an increased alignment
strength. Values of C listed in Table II show also an increasing
dependence on the quasiparticle spin j and a variation with
mass number. Combining these correlations, one can visualize

044312-10



RECONCILIATION OF WOBBLING MOTION WITH … PHYSICAL REVIEW C 103, 044312 (2021)

FIG. 11. The linear correlation between C/A3 normalized to the
mass number A as a function of the quasiparticle spin.

in Fig. 11 the ratio of C/A3 normalized to the mass number A
as a function of the quasiparticle spin j. There is an approxi-
mate linear correspondence between the two quantities which
can be of use for possible wobbling bands in different mass
regions and other single quasiparticle alignments.

A few comments are necessary regarding the wobbling
phase transition associated with the reported minimum
in wobbling energy for 135Pr. Similar behavior is found
in the extensions of the wobbling bands reported for
105Pd and 183Au(πh9/2). Although microscopic calculations
[9,12,14,15] suggest that after the minimum the structure
of the involved bands changes with additional quasiparticle
pairs, the decisive contribution to the amount of alignment
along the short axis and consequently to stable triaxial shape
comes from the same valence quasiparticle. Therefore, the
observed minimum can be interpreted as a critical point for
the transition from a transverse wobbling to a tilted axis wob-
bling which rapidly goes to a longitudinal type of wobbling
[10], admittedly with additional quasiparticle pair alignments
along the long axis. This situation resembles the transition
from chiral vibration to static chiral configuration observed
in odd-odd nuclei [45,56,65,66]. The barrier which delimits
the two minima of the classical energy function and the corre-
sponding effective quantum potential after the critical point is
prone to quantum tunneling effects. In the chiral mode, it was
shown that the barrier increases rapidly, hindering completely
the tunneling, which results in degenerated states [56]. These
states have different chirality and therefore must be observed
in the laboratory reference frame. In the case of the wobbling
motion, the two stationary points are connected through a
simple rotation, and, when the tunneling is missing, the ob-
served yrast state would be doubly degenerated and would
correspond to a ground state for either of the two potential
minima. The next observable state would then be a vibra-
tional excitation within one of those potential minima. This
is essentially the mechanism of the transition from transverse
to tilted axis wobbling asymptotically tending to a longitu-
dinal mode [10], which was also described with a collective
Hamiltonian approach [44]. However, when it was applied to
135Pr [46], an additional medium axis alignment effect was

introduced which decreases the separating barrier, allowing
thus tunneling between potential minima in an overextended
interval of angular momentum states. Although this approach
is successful in accounting for the anharmonic effects around
the critical point, it leads to unrealistic large amplitude os-
cillations between negative and positive K projections of the
total angular momentum, and is not consistent with the sharp
minima observed in 135Pr and the πh9/2 band of 183Au.

V. CONCLUSIONS

The introduction of an additional spin-spin interaction be-
tween the triaxial core and the odd quasiparticle extends the
existence interval of the transverse wobbling regime with
frozen quasiparticle alignments. Its influence on the system’s
dynamics is studied in a semiclassical setting, while the
corresponding measurable observables are calculated within
a harmonic approximation. The quality of the latter is in-
vestigated in detail. The effect of the additional rotational
alignment is exploited for a successful reproduction of the
experimental data with a microscopically determined hydro-
dynamical MOI. This is realized by adjusting the alignment
strength, which is found to be several times larger than the
inertial parameter corresponding to the long body-fixed axis.
All the numerical applications explain very well the spin
dependence of the observed wobbling energy, be it for an
extended interval of spin states or close to the critical point.
On the other hand, the experimental transition probabilities
conform reasonably to theory only for the well established
A ≈ 160 wobblers. In general, the measured �n = 1 E2 tran-
sition probabilities are overestimated.

Similarly to the method used for the description of the
chiral bands in Refs. [56,57], the harmonic approximation
can be improved by making the second order expansion as
a function of only one canonical variable, for which the clas-
sical energy function exhibits a single minimum throughout
the wobbling phase transition. In the case presented here it
would be the variable x. In this way one would preserve the
information regarding the distinct wobbling modes involved
in the considered transition. Such a program is the subject of
a subsequent study. The resulting quantum Hamiltonian will
be similar to the collective Hamiltonian [44] constructed from
microscopic information. A next step in the development of a
successful theoretical description of the wobbling excitations
is to admit planar quasiparticle alignments accounting for
deviations from the pure particle nature of the nucleons. This
ingredient will lead to an asymmetric energy function with a
shifted single minimum evolving into two shifted minima of
different depths favoring one of the principal plane rotations
[67].
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