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SU(3)-guided realistic nucleon-nucleon interactions for large-scale calculations
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We examine nucleon-nucleon realistic interactions, based on their SU(3) decomposition to SU(3)-symmetric
components. We find that many of these interaction components are negligible, which, in turn, allows us to
identify a subset of physically relevant components that are sufficient to describe the structure of low-lying states
in 12C and related observables, such as excitation energies, electric quadrupole transitions, and rms radii. We find
that paring down the interaction by half or more yields results that practically coincide with the corresponding
ab initio calculations with the full interaction. In addition, we show that while various realistic interactions
differ in their SU(3) decomposition, their renormalized effective counterparts exhibit a striking similarity and
composition that can be linked to dominant nuclear features such as deformation, pairing, clustering, and spin-
orbit effect.
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I. INTRODUCTION

Ab initio calculations aim to describe nuclear features
while employing high-precision interactions that describe
two- and three-nucleon systems (often referred to as “realistic
interactions”), such as those derived from meson exchange
theory [1,2] (e.g., CD-Bonn [3]), chiral effective field theory
[4–6] (e.g., NNLOopt [7] and N3LO [8]), or J-matrix inverse
scattering (JISP16 [9,10]). As such calculations do not depend
on any information about the nucleus in consideration, these
methods can be used in nuclear regions where experimental
data are currently sparse or not available, e.g., along the path-
ways of nucleosynthesis and toward a further exploration of
exotic physics of rare isotopes.

While realistic interactions build upon rich physics at the
nucleon-nucleon (NN) level, it is impossible to identify terms
in the interaction that are responsible for emergent dominant
features in nuclei, such as deformation, pairing, and cluster-
ing. These features, which are revealed in even the earliest
of data on nuclear structure, have informed many success-
ful nuclear models such as Elliott’s SU(3) model [11–13]
and the Bohr collective model [14] with a focus on defor-
mation, as well as algebraic [15,16] and exact [17] pairing
models. Recently, we have shown that calculations that con-
sider Hamiltonians that build upon the ones used in these
earlier studies and, in addition, allow for configuration mixing
[18–20], yield results that are consistent with the ones in the
ab initio symmetry-adapted no-core shell model (SA-NCSM)
[21,22]. In particular, the no-core symplectic model (NCSpM)
has offered successful descriptions for excitation energies,
monopole and quadrupole transitions, quadrupole moments,
and rms radii for a range of nuclei (from A = 8 to A = 24
systems, including cluster effects in the 12C Hoyle state)
[18,19,23], by employing quadrupole-quadrupole (Q · Q) and
spin-orbit interaction terms. In Ref. [20], exact solutions to

the shell model plus isoscalar and isovector pairing have been
provided for low-lying 0+ states and, e.g., the energy of the
lowest isobaric analog state in 12C has been shown to agree
with the corresponding ab initio findings. Therefore, it is inter-
esting to trace this similarity in outcomes to specific features
of the realistic interactions.

In this paper, we provide new insight into correla-
tions within realistic interactions through the use of the
deformation-related SU(3) symmetry. Specifically, we show
that only a part of the nucleon-nucleon interaction appears
to be essential for the description of nuclear dynamics,
especially at low energies. When expressed in the SU(3)
symmetry-adapted basis, the interaction—given as SU(3)
tensors—shows a clear preference toward a specific subset of
tensors, allowing us to determine its dominant components.
Most importantly, these features appear regardless of the un-
derlying theory used to construct the interaction. Furthermore,
an almost universal behavior is revealed by “soft-core” po-
tentials such as JISP16, or by the renormalized (“softened”)
counterparts of “harder” interactions that use, e.g., Okubo-
Lee-Suzuki (OLS) [24,25] and similarity renormalization
group (SRG) [26] renormalization techniques. And further, to
complete the picture, we show that these features are directly
linked to the important physics, i.e., deformation, clustering,
pairing, and spin-orbit effects, that drove the development of
earlier, and considerably simpler, schematic models.

The importance of various interaction components is stud-
ied in SA-NCSM calculations. In particular, we study nuclear
structure observables of 12C, such as the low-lying excita-
tion spectrum, B(E2) reduced transition probabilities and root
mean square (rms) radii. We compare the results that use the
entire interaction with those that use interactions that have
been selected down to their dominant components. The agree-
ment observed for all these observables is remarkable, even
when a small fraction of the interaction is used.
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II. THEORETICAL METHOD

A. SA-NCSM framework

It was shown in the recent study by Dytrych et al. [22]
that only a few dominant configurations in symmetry-adapted
(SA) basis are sufficient to describe most of the physics in
nuclei. Similar patterns were also seen in, e.g., Refs. [27].
These configurations correspond to equilibrium shapes with
their vibrations and rotations that can be described within the
SA collective basis. This lays the foundation of the ab initio
SA-NCSM, which is a no-core shell model with an SU(3)-
coupled or Sp(3, R)-coupled symmetry-adapted basis (for a
recent review, see Refs. [21,22] and the references therein).
Similarly to NCSM [28,29], it uses a harmonic oscillator (HO)
basis, where the HO major shells are separated by a parameter
h̄�. The model space is capped by an Nmax cutoff which
is the maximum total number of oscillator quanta above the
lowest HO configuration for a given nucleus. The SA-NCSM
utilizes a non relativistic nuclear Hamiltonian with transla-
tionally invariant interactions plus Coulomb interaction. Since
we work in laboratory coordinates, we remove the spurious
center-of-mass excitation states from the low-lying spectrum
with a Lawson term [30,31]. The model calculates eigenvalues
and eigenvectors of the nuclear interaction Hamiltonian and
subsequently uses the eigenvectors for calculations of the nu-
clear observables. The results approach the exact value as the
Nmax increases, and at the Nmax → ∞ limit they become in-
dependent of the HO parameter h̄�. Within a given complete
Nmax model space, the SA-NCSM results exactly match those
of the NCSM for the same interaction. The use of symmetries
in the SA-NCSM allows one to select the model space by
considering only the physically relevant subspace, which is
only a fraction of the corresponding complete Nmax space.

In the SA-NCSM, the SA basis is constructed using an
efficient group-theoretical algorithm for each HO major shell
[32]. While we do not use explicit construction of conven-
tional NCSM bases, for completeness we show the unitary
transformation from a two-particle JT -coupled basis state to
an SU(3)-coupled state:
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= 1√
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is the creation operator that

creates a particle of spin 1
2 in a HO major shell η corre-

sponding to an (η 0) state in the SU(3) basis. We use SU(3)
quantum numbers, ω ≡ (λ μ) = (ηr 0) × (ηs 0), ω̃ ≡ (μλ),
and κ distinguishes multiple occurrences of the same total

orbital momentum L for a given ω. The two states are cou-
pled through reduced SU(3) Clebsch-Gordan coefficients 〈; ‖〉
[33,34]. S is the total intrinsic spin of the two-particle system
and we use the Wigner 9-j symbol.

To provide a more detailed description of the SU(3) quan-
tum numbers ω, as discussed in Ref. [21], the single-particle
HO basis states |ηlml〉, can be expressed by |ηzηxηy〉, with
ηz + ηx + ηy = η. For a given HO shell η, the complete
shell-model space is then specified by all distinguishable dis-
tributions of ηz, ηx, and ηy. For example, for η = 2 there
are 6 distinct distributions, (ηz, ηx, ηy) = (2, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 2, 0), (0, 1, 1), and (0, 0, 2). Each of these con-
figurations can be occupied by maximum of two spin- 1

2
particles of the same type. Adding (ηz, ηx, ηy) for all particles
yields (ηtot

z , ηtot
x , ηtot

y ), with SU(3) quantum numbers given by
λ = ηtot

z − ηtot
x and μ = ηtot

x − ηtot
y . For example, in the case

of two particles in η = 2, if both are in (2, 0, 0) configu-
ration, then ηtot

z = 4, ηtot
x = 0 and ηtot

y = 0, hence (λ μ) =
(4 0),: if one of the particles is in (2, 0, 0) and the other
is in (1, 1, 0), then ηtot

z = 3, ηtot
x = 1, and ηtot

y = 0, resulting
in (λ μ) = (2 1). Thus, by indicating the difference between
the HO quanta in each direction, these labels relay important
information about nuclear deformation.

B. SU(3) interaction tensors

NN interactions can be divided into components that
respect certain symmetries, such as rotational invariance.
Two-body isoscalar (charge-independent) interactions are typ-
ically given in a representation of a JT -coupled HO basis,
|rs�M�〉, that is, V �

rstu = 〈rs�M� = 0|V |tu�M� = 0〉. This
takes advantage of the fact that the interaction transforms as a
scalar under rotations in coordinate and isospin space, that is,
it is an SO(3)× SU(2)T tensor of rank zero (J0 = 0, T0 = 0).

Analogously, the interaction can be represented
in an SU(3) × SU(2)S × SU(2)T -coupled HO basis
|ηrηsωκ (LS)�M�〉 shown in Eq. (1). The corresponding
interaction matrix elements are similarly given as V �

(χωκLS) f i
≡

〈(χωκ (LS)�M ) f |V |(χωκ (LS)�M )i〉, with χ ≡ {ηrηs}
and with symmetry properties V �

(χωκLS)i f
= V �

(χωκLS) f i
. The

initial and final values of (χωκLS)i f can be different,
i.e., the SU(3)×SU(2)S rank of V is nonzero. In addition,
since J0 = 0, we have L0 = S0, thus the label L0 will be
henceforth omitted. Using the fact that the interaction
can be represented as a sum of SU(3)×SU(2)S tensors,
V = ∑

ρ0ω0κ0S0
V ρ0ω0κ0S0 , the matrix elements can be further

reduced with respect to SU(3) and the spin-isospin space
(for T0 = 0), V ρ0ω0κ0S0

(χωS)i f ;T ≡ 〈(χωS) f ; T ||V ω0κ0S0 ||(χωS)i; T 〉
ρ0

(see the Appendix). Here, the superscripts show the rank
of the SU(3)×SU(2)S tensor, and ρ0 is the multiplicity that
distinguishes between multiple occurrences of ω0 for the
same ωi and ω f .

The following conjugation relations hold for the SU(3) ×
SU(2)S tensors:

V ρ0ω0κ0S0
(χωS)i f ;T = (−)Si−S f +S0 (−)ω f −ωi

√
dim ω f

dim ωi
V ρ0ω̃0κ0S0

(χωS) f i;T
,

V ρ0ω0κ0S0
(χωS)ii;T

= (−)S0V ρ0ω̃0κ0S0
(χωS)ii;T

, (2)
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where

dim ω = 1
2 (λ + 1)(μ + 1)(λ + μ + 2). (3)

To simplify the equations in the paper, we introduce a
symmetrized tensor,

v
ρ0ω0κ0S0
(χωS)i f ;T = (−)ωi−Si−T

√
dim ωiV

ρ0ω0κ0S0
(χωS)i f ;T , (4)

with a conjugation relation,

v
ρ0ω0κ0S0
(χωS)i f ;T = (−)S0v

ρ0ω̃0κ0S0
(χωS) f i;T

. (5)

We note that, in the case when χi = χ f , ωi = ω f , and Si = S f ,
we will use the notation v

ρ0ω0κ0S0
(χωS);T .

C. Strength of SU(3) interaction tensors

The significance of the various SU(3) tensors can be es-
timated by their Hilbert-Schmidt norm, which is analogous

to the norm of a matrix A defined as ||A|| =
√∑

i j Ai jA ji. In

particular, the strength of a Hamiltonian H can be estimated
by the norm σH constructed as [36–41]

σ 2
H = 〈(H − 〈H〉)†(H − 〈H〉)〉 = 〈H2〉 − 〈H〉2, (6)

where 〈· · · 〉 ≡ 1
N Tr(· · · ) specifies the trace of the Hamilto-

nian matrix divided by the number N of diagonal matrix
elements. In the present study, H is a two-body Hamiltonian,
and N enumerates all possible two-particle configurations.

For given Tf = Ti = T and a |χ∗ωκ (LS)�M�〉 basis with
χ∗ ≡ {ηrηs}, ηr � ηs, the norm σω0κ0S0;T of each SU(3)-
symmetric tensor is determined using Eq. (6):
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where the number of two-particle basis states, N , and the
average monopole part V ω0κ0S0

c = 〈V ω0κ0(L0=S0S0 )�0=0M�0 =0〉 are
given, respectively, as
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∑
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For a given isospin T , the strength of the entire Hamil-
tonian HT is determined by the strengths of its components,
σ 2

HT
= ∑

ω0κ0S0
σ 2

ω0κ0S0;T . We can then define a relative strength
for each SU(3)-symmetric component (ω0κ0S0) as

s2
ω0κ0S0;T = σ 2

ω0κ0S0;T

σ 2
HT

= σ 2
ω0κ0S0;T∑

ω0κ0S0
σ 2

ω0κ0S0;T

. (10)

Using Eq. (A3), we can decompose any two-body interac-
tion into SU(3)-symmetric components. The contribution of

each of the components within the interaction is given by its
relative strength (10) (see Fig. 1 for the realistic JISP16 and
N3LO interactions). As can be seen from these results, only a
small number of SU(3) tensors dominate the interaction, with
the vast majority of the components having less than 1% of
the total strength. The most dominant term, i.e., (λ0 μ0) =
(0 0) is the one that preserves the SU(3) symmetry, which
provides a further support of the successful Elliott model
[11,12]. Various dominant terms will be discussed in detail in
Sec. III B. Similar behavior is observed for other interactions.
It should be noted that, in the JT -coupled basis, no such domi-
nance of interaction matrix elements is apparent. This exercise
demonstrates a long-standing principle that holds across all of
physics; namely, one should work within a framework that is
as closely aligned with the dynamics as possible [43].

III. RESULTS AND DISCUSSIONS

A. Observables in 12C

The decomposition of the interaction in the SU(3) basis
allows us to choose sets of major components to construct
new selected interactions. These interactions can be used for
calculations of various nuclear properties that can then be
compared to the results from the initial interaction. In this
way, we can examine how sensitive specific nuclear properties
are to the interaction components.

Several selected interactions were constructed for this
study. The selection is done by ordering the interaction ten-
sors from the highest relative strength to the lowest and then
including the largest ones to add up to 60–90% of the initial
total strength. Depending on the Nmax of the interaction the
number of selected SU(3) tensors differs. For example, the
JISP16 interaction in Nmax = 10, h̄� = 15 MeV has overall
169 unique (λ0μ0)S0 tensors, out of which the 51 largest ones
account for about 80% of the total strength. After selection
the total strengths are not rescaled to the initial interaction.
Throughout this work we will refer to selected interactions
in terms of the fraction of interaction tensors kept; that is,
the number of SU(3)-symmetric components in the selected
interaction relative to the number of all such components in
the initial interaction for a given Nmax and h̄�.

Analysis of the results shows that low-lying excitation
energies of 12C are not sensitive to the number of selected
SU(3) tensors, given that the most dominant ones are included
in the interaction (Fig. 2). With only half of the interaction
tensors the excitation energies essentially do not differ from
the corresponding results that use the full interaction, and even
with less than 30% of the interaction components the devia-
tion for most of the values is insignificant. The comparatively
large deviation in 4+ energy for Nmax = 6 that happens when
about 20% of the SU(3) components are used is likely due to
the small model space. This issue disappears in higher Nmax

values, and even Nmax = 6 results for the 2+ state compare
remarkably well to the initial interaction for all selections.

The selected interactions yield very close results to the
initial one for other observables as well. For example, the 12C
rms radius of the ground state and the B(E2 : 2+ → 0+) have
very low dependence on the selection (Fig. 3), with variations
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FIG. 1. Relative strengths s (in %) for the SU(3)-coupled JISP16 (top) and N3LO (bottom) NN interactions and their effective counterparts
with h̄� = 15 and 20 MeV, respectively, in the Nmax = 6 model space. The “eff. JISP16” is obtained by the OLS technique for A = 12, while
“eff. N3LO” is by SRG with λSRG = 2.0 fm−1. T is the isospin of the two-nucleon system. A set of (λ0μ0 )S0 quantum numbers and its
conjugate correspond to each of the interaction terms. Only terms with >1% relative strength for each T are shown; there are more than 120
terms with less than 1% strength for this model space.

FIG. 2. Excitation energy of the first 2+ and 4+ states in 12C from
SA-NCSM calculations (connected lines) as a function of the fraction
of the terms kept in the interaction, and compared to experiment
[35] (labeled as “Expt.”). Results for Nmax = 6, 8, 10, and 12 are
shown for various selections of the JISP16 interaction with h̄� = 15
MeV. Specifically, the value 1 on the abscissa indicates that the full
interaction (100%) was used, while an abscissa value of 0.4 implies
that only the most significant 40% of the tensors were retained, etc.

nearly inconsequential compared to the deviations from the
experiment (the underprediction of these observables for the
JISP16 interaction has been addressed, e.g., in Ref. [31]).
Specifically, the values are essentially the same when half of
the interaction components are used. With less than 30% of
interaction components, the difference from the initial inter-
action results is less than 2% for rms radius and less than
7% for B(E2). Thus, small deviations start to appear only
at significantly trimmed interactions, indicating that the long-
range physics is mostly preserved when only the dominant
interaction terms are used.

In addition, vital information about the nuclear structure
can be found through analysis of the (λμ)S configurations
that comprise the SA-NCSM wave function. This uncovers
the physically relevant features that arise from the complex
nuclear dynamics as shown in Ref. [21]. In other words, the
wave functions contain a manageable number of major SU(3)
components that account for most of the underlying physics.
Indeed, we find that calculations with various selected inter-
actions largely preserve the major components of the wave
function (Fig. 4). For the ground state of 12C calculated in
the Nmax = 12 model space the probability amplitude for each
set of the quantum numbers (λμ)S almost does not change
when a little less then half (46%) of the JISP16 interaction
tensors are used for the calculations. Even with about quarter
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FIG. 3. Same as Fig. 2, but for the rms radius (in fm) of the 12C ground state (experimental value from Ref. [42]) and the B(E2 : 2+
1 → 0+

1 )
value (in e2fm4) (experimental value from [35]) as a function of the fraction of the terms kept in the interaction. SA-NCSM calculations use
various selections for the JISP16 interaction for h̄� = 15 MeV and different Nmax model spaces.

(26%) of the tensors, the SU(3) structure remains the same
with only a slight difference in the amplitudes. It should be
noted that the (λμ)S here are not to be confused with the ones
in Fig. 1, as they correspond to the many-body states of 12C.
In particular, (0 4)0 is the lowest particle configuration in the
HO basis, that is, four particles in (ηz, ηx, ηy) = (1, 0, 0) and
four particles in (0, 1, 0). As shown in Fig. 4, this accounts for
almost half of the probability amplitude of the ground state
wave function. The first three (λμ)S in the figure correspond
to the zero-particle–zero-hole (0p-0h) configurations, among
which the (0 4)0 is the most deformed and has the lowest spin.
The dominance of configurations with largest deformation and
lowest spin has been shown in Ref. [21].

As mentioned above, the dependence on the HO param-
eter h̄� disappears at the Nmax → ∞ limit; however, even
for comparatively small Nmax model spaces, there is often a
range of h̄� values which achieves convergence for selected
observables, while typically larger Nmax model spaces are
required outside this range. For long-range observables, such
a range often falls close to an empirical estimate given by
h̄� = 41/A1/3 [14], which is 18 MeV for 12C. We investigate

FIG. 4. Probability amplitudes for the (λμ)S configurations that
make up the 12C ground state (0+

1 ), calculated in Nmax = 12 model
space using JISP16 interaction for h̄� = 15 MeV (labeled by “All”)
and two selected interactions (labeled by the fraction of the interac-
tion components kept, 46% and 26%). Only states with probability
amplitudes >0.003 are shown.

the dependence of the ground state rms radius of 12C on h̄�

using different selections (Fig. 5). We examine small model
spaces, where the h̄� dependence is large and its effect on
the interaction selections is expected to be enhanced; yet, we
ensure that these model spaces provide results close to the
Nmax = 12 outcomes (see Nmax = 6 and 8 results in Figs. 2
and 3). Comparing to the full interaction, the results indicate
that, indeed, small deviations are observed for values around
h̄� = 18 MeV, and the deviations become larger at higher
(less optimal) h̄� values (Fig. 5). Similarly, the excitation
energies for h̄� = 15 MeV calculations are much less sensi-
tive to the interaction selection (Fig. 6),whereas the deviation
in the results between the initial and selected interactions
increases for higher h̄�. However, this difference gets smaller
with increasing model space. To summarize, the selection
of the interactions affects the calculations with optimal h̄�

values the least.
It is interesting to examine how the selection of NN in-

teractions affects the nucleon-nucleon physics. As a simple
illustration, we study the Hamiltonian for the proton-neutron
system and its corresponding eigenvalues. (We note that states
beyond the lowest 1+ state are scattering states, but they

FIG. 5. 12C ground state rms radius from SA-NCSM calculations
with Nmax = 6 model space vs h̄�, using the full (“All”) and selected
(labeled by the percentage of the tensors kept) JISP16 interaction.
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FIG. 6. Excitation energies of the first 2+ and 4+ states for 12C
from SA-NCSM calculations with Nmax = 6 and Nmax = 8 model
spaces using full JISP16 interaction (“All”) and its selected counter-
part (with 37% of the tensors kept), with h̄� = 15, 20, and 25 MeV,
and compared to experiment.

appear in a shell model energy spectra as distinct states;
however, the idea here is to examine if there is any loss of
information in the selected NN interaction, which in turn
guides ab initio calculations.) In addition to T = 0 states,
we consider T = 1 states, which can also inform the proton-
proton and neutron-neutron systems. To do this, we look for
deviations in the corresponding eigenvalues as compared to
those computed with the full interaction.

In particular, we observe that only about quarter of the
SU(3)-symmetric interaction components (the most dominant
ones) can reproduce, with high accuracy, the energies that
use the full interaction for most of the low-lying states of the
proton-neutron system (Fig. 7). To estimate the difference in
energies, we calculate the root mean square error (RMSE),

RMSE =
√

1
Nd

∑Nd
i (Ei

all − Ei
sel )

2
, where Eall and Esel are the

eigenenergies calculated with the initial and selected inter-
actions, respectively, the summation is over all positive- or

FIG. 7. Energies of the proton-neutron system for the positive-
parity lowest-lying states (<30 MeV), calculated in the SA-NCSM in
Nmax = 12 model space using the JISP16 interaction, with all terms
kept (100%) as compared to a selection that keeps only 26% of the
terms, for h̄� = 15 MeV.

negative-parity states, and Nd is the total number of states.
For negative-parity 0 � J � 5 states with energy up through
30 MeV, we find RMSE to be about 0.9–1.2 MeV depending
on h̄�, whereas for positive-parity states it is between 0.5 and
0.9 MeV. Similar RMSE values are seen even for the higher
lying spectrum up to 50 MeV. As it can be seen from Fig. 7,
the main deviations come from the second and third 1+ and
3+ states, indicating that certain states are more sensitive to
the selection than others.

B. Dominant features in realistic interactions

There are various techniques of renormalization such as
OLS and SRG that are employed to “soften” the realistic in-
teractions, which in turn can be used in comparatively smaller
model space. In short, these techniques transform the two-
body Hamiltonian into an effective Hamiltonian for given A
that decouples from high-energy physics, while preserving the
symmetries of the initial Hamiltonian. The OLS technique is
described in detail in Ref. [25], whereas specific details for the
SRG are available in Ref. [26].

Comparing the SU(3) decompositions of initial interac-
tions to their renormalized (effective) counterparts shows that
the same major SU(3) tensors remain dominant after renor-
malization (Fig. 1). In the case of JISP16 the tensors with
the largest relative strengths practically do not change. The
renormalization has a larger impact on the N3LO interaction
where the spread over various tensors is larger. Here, only a
few SU(3)-symmetric components change significantly while
the others change slightly. It should be noted that the two
effective counterparts of the interactions resemble each other
(Fig. 1). A similar behavior is observed for, e.g., the AV18
[44] and CD-Bonn interactions [21].

Examining the largest contributing tensors of realistic in-
teractions, we can link them to the monopole operator (the
HO potential), Q · Q, spin-orbit, pairing, and tensor forces.
The key idea is that the position and momentum operators,

r and 
p respectively, have an SU(3) rank (1 0), and conju-
gate (0 1) (to preserve Hermiticity), with SU(2)S rank zero
(S0 = 0, that is, the operator does not change spin). The HO
potential operator (∼r2 = 
r · 
r) has orbital momentum L0 = 0
and spin S0 = 0, and its SU(3) rank is obtained by coupling
(1 0) × (1 0), (1 0) × (0 1) and conjugates. For L0 = 0, the
SU(3) Clebsch-Gordan coefficients for these couplings are
nonzero only for total (λ0 μ0) = (2 0), (0 2) that, in turn, de-
fine the SU(3) ranks of the HO potential.

The quadrupole operator Q, given by the tensor product of

r, has L0 = 2 and S0 = 0. Here, the SU(3) Clebsch-Gordan
coefficients restrict the total (λ0 μ0) to (2 0) and (1 1) (and
conjugates), which define the SU(3) rank of Q [19]. Conse-
quently, the Q · Q operator, which describes the interaction
of each nucleon with the quadrupole moment of the nucleus,
will have L0 = 0 and spin S0 = 0, along with SU(3) rank
of (4 0), (2 0), (2 2), and (0 0) (and conjugates). Similarly,
the spin-orbit operator has (λ0 μ0) = (1 1), L0 = 1 from the
orbital momentum operator and S0 = 1 from the spin operator.

The idea of the pairing interaction in nuclei is that the
configurations with paired nucleons are energetically favored.
The SU(3) ranks of the pairing interaction are derived in
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Ref. [45], which shows that a large number of pairing inter-
action tensors have λ0 = μ0 SU(3) rank. Last, the nuclear
tensor force originates mainly from the one-pion exchange
and it depends on the orientation of the spins with regard to the
relative coordinate vector joining the two nucleons (see, e.g.,
Ref. [46]). Similarly to the quadrupole operator, the tensor
force has L0 = 2 and SU(3) rank of (2 0) and (1 1) (and
conjugates), but with S0 = 2, coming from the tensor coupling
of the spin operators.

Indeed, the scalar (0 0)S0 = 0 dominates for a variety of
realistic interactions, and especially in their effective coun-
terparts (see Fig. 1). As mentioned above, this suggests a
dominant Elliott SU(3) symmetry. This may have important
implications for various models that employ the SU(3) sym-
metry, such as the ones is Refs. [47–53]. The next important
components are typically (2 0), (4 0), and (2 2)S0 = 0 and
their conjugates. These SU(3) modes are the ones that appear
in the Q · Q interaction, while (λ0 λ0) configurations dominate
the pairing interactions within a shell [45]. The dominant (2 0)
and (1 1)S0 = 2 modes, and conjugates, can be linked to the
tensor force. Finally, the (1 1)S0 = 1 can be linked to the spin-
orbit force. These features, we find, repeat for various realistic
interactions and, more notably, the similarity is found to be
further enhanced for their renormalized counterparts. Given
the link between the phenomenon-tailored interactions and
major terms in realistic interactions, it is then not surprising
that both ab initio approaches and earlier schematic models
can successfully describe dominant features in nuclei.

IV. CONCLUSIONS

Realistic NN interactions expressed in SU(3) basis show
a clear dominance of only a small fraction of terms. We
performed ab initio calculations of several observables in 12C

using interactions that were selected down to the most sig-
nificant terms and compared them to the calculations with the
initial interactions. We found that for the small h̄� values even
the interactions with less than half of the terms produce almost
the same results as the initial interaction for the low-lying
spectrum, B(E2) values, and rms radii of 12C. The selection
appears to affect more the calculations that use interactions
with higher h̄� values in small model spaces; however, the
deviations between the initial and selected interaction results
decrease as the model space becomes larger. In addition, the
eigenvalues of the proton-neutron system for all of the positive
and negative parity states below 30 MeV change only slightly
with as few as the quarter of the initial interaction terms.

By analyzing the most dominant terms of various realistic
interactions, we found that they can be linked to well known
nuclear forces. In particular, inspection of these terms allowed
us to link them to the widely used HO potential, Q · Q, pairing,
spin-orbit, and tensor forces. Moreover, we saw that after
renormalization the NN interactions, regardless of their type,
have mainly the same dominant terms with similar strengths,
indicating that the renormalization techniques strengthen the
same dominant terms in all interactions.
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APPENDIX

In standard second quantized form, a one- and two-body interaction Hamiltonian is given in terms of fermion creation a†
jm(1/2)σ

and annihilation ã j−m(1/2)−σ = (−1) j−m+1/2−σ a jm(1/2)σ tensors, which create or annihilate a particle of type σ = ±1/2 (proton
or neutron) in the HO basis.

In Eq. (A1), V �
rstu is the two-body antisymmetric matrix element in the JT -coupled scheme [V �

rstu = −(−)r+s−�V �
srtu =

−(−)t+u−�V �
rsut = (−)r+s−t−uV �

srut = V �
turs]. For an isospin nonconserving two-body interaction of isospin rank T , the coupling

of fermion operators is {{a†
r × a†

s }JT × {at × au}JT }(0T ), with V (T )JT
rstu matrix elements

V = −1

4

∑
rstu�

√
(1 + δrs)(1 + δtu)��V �

rstu{{a†
r × a†

s }� × {ãt × ãu}�}(�0M�0 )

=
∑

(χ∗ωS) f i
ρ0ω0κ0S0

(−1)ω0−ω f +ωi√(
1 + δηrηs

)(
1 + δηt ηu

) 1

�S0

√
dim ω f

dim ω0
V ρ0ω0κ0S0

(χωS) f ,iT

×
∑
ρ ′

0

ρ ′
0ρ0 (ω0ωiω f ){{a†

ηr
× a†

ηs

}ω f S f T × {
ãηt × ãηu

}ωiSiT }ρ ′
0ω0κ0(L0=S0S0 )�0=0M�0 =0

, (A1)

where dim ω is defined in Eq. (3) and the phase matrix ρ ′
0ρ0 (ω0ωiωi ) accommodates the interchange between the coupling of

ω0 and ωi to ω f , so for SU(3) Clebsch-Gordan coefficients we have [55]

〈ω0κ0L0M0; ωiκiLiMi| ω f κ f L f M f 〉ρ0 =
∑
ρ ′

0

ρ0ρ
′
0
(ω0ωiω f )〈ωiκiLiMi; ω0κ0L0M0| ω f κ f L f M f 〉ρ ′

0
. (A2)
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For the special case when ρ = 1, that is, where the SU(3) coupling {ωi × ω0} → ω f is unique, the phase matrix reduces to a
simple phase factor (−1)(λ0+μ0 )+(λi+μi )−(λ f +μ f ). Finally, the interaction reduced matrix elements in a SU(3) × SU(2)S × SU(2)T -
coupled HO basis are given as

V ρ0ω0κ0S0
(χωS) f i;T

= (−)S f +S0�T S0

dim ω0

dim ω f

∑
J (κL)i f

(−)Li+J�2
J�L f

{
L f S f J
Si Li S0

}
〈ωiκiLi; ω0κ0L0‖ω f κ f L f 〉ρ0V

�
(χωκLS) f i

= (−)S f +S0�T S0

dim ω0

dim ω f

∑
J (κL)i f

(−)Li+J�2
J�L f

{
L f S f J
Si Li S0

}
〈ωiκiLi; ω0κ0L0‖ω f κ f L f 〉ρ0

×�LiL f SiS f

∑
lr ls lt lu
jr js jt ju

√
(1 + δrs)(1 + δtu)(

1 + δηrηs

)(
1 + δηt ηu

)� jr js jt ju〈(ηr 0)lr ; (ηs 0)ls‖(ωκL) f 〉

×〈(ηt 0)lt ; (ηu 0)lu‖(ωκL)i〉

⎧⎪⎨
⎪⎩

lr
1
2 jr

ls
1
2 js

L f S f J

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

lt
1
2 jt

lu
1
2 ju

Li Si J

⎫⎪⎬
⎪⎭V �

rstu, (A3)

where V �
(χωκLS) f i

is a two-body interaction in a SU(3)-JT -coupled scheme; as mentioned above 〈; ‖〉 are reduced SU(3) Clebsch-
Gordan coefficients [33,34], and we use SU(2) Wigner 6-j and 9-j symbols.
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