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Consistent description for cluster dynamics and single-particle correlation
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Cluster dynamics and single-particle correlation are simultaneously treated for the description of the ground
state of '>C. The recent development of the antisymmetrized quasicluster model (AQCM) makes it possible
to generate jj-coupling shell-model wave functions from « cluster models. The cluster dynamics and the
competition with the jj-coupling shell-model structure can be estimated rather easily. In the present study, we
further include the effect of single-particle excitation; the mixing of the two-particle-two-hole excited states is
considered. The single-particle excitation is not always taken into account in the standard cluster model analyses,
and the two-particle-two-hole states are found to strongly contribute to the lowering of the ground state owing
to the pairing-like correlations. By extending AQCM, all of the basis states are prepared on the same footing,
and they are superposed based on the framework of the generator coordinate method (GCM).
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I. INTRODUCTION

In the light mass region, the *He nucleus, due to its spin and
isospin saturated nature, has a large binding energy. On the
other hand, the interaction between *He nuclei is rather weak.
Therefore, they form subsystems called o clusters in some
light nuclei [1,2]. The search for candidates with a cluster
structure has been ongoing for decades, and the most famous
example is the second 0% state of '?C called the Hoyle state,
which has a developed three-a cluster structure [3,4]. The
cluster models have been found to be capable of describing
various properties of the Hoyle state [5,6].

In most of the conventional cluster models, the clusters
treated as subsystems have been limited to nuclei corre-
sponding to the closure of the three-dimensional harmonic
oscillator, such as “He, 1°0, and “°Ca. In these cases, the con-
tribution of the noncentral interactions (spin-orbit and tensor
interactions) vanishes. This is because the closure configura-
tions of the major shells can create only spin zero systems
owing to the antisymmetrization effect. This point was the big
problem of these traditional cluster models; the noncentral in-
teractions work neither inside clusters nor between « clusters.
The spin-orbit interaction is known to be quite important in
nuclear systems, especially in explaining the observed magic
numbers; the subclosure configurations of the jj-coupling
shell model (f7/2, 89/2, h 125 and i13/2) correspond to the ob-
served magic numbers of 28, 50, 82, and 126 [7]. Indeed this
spin-orbit interaction is known to work as a driving force to
break the traditional clusters corresponding to the closures of
the major shells, when the model space is extended and the
path to another symmetry is opened [8].

To include the spin-orbit contribution in the theoretical
model starting with the traditional cluster model, we proposed
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the antisymmetrized quasicluster model (AQCM) [9-21].
This method allows us to smoothly transform « cluster model
wave functions to j j-coupling shell-model ones, and we call
the clusters that feel the effect of the spin-orbit interaction
owing to this model quasiclusters. In AQCM, we have two
parameters: R representing the distance between « clusters
and A characterizing the transition of « cluster(s) to quasi-
cluster(s). The j j-coupling shell-model states can be obtained
starting with the o cluster model by changing « clusters to
quasiclusters (giving finite A values to « clusters) and taking
the small-distance limit of R. It has been known that the con-
ventional « cluster models cover the model space of closure
of major shells (N =2, N = 8§, N = 20, etc.). In addition, by
changing o clusters to quasiclusters, the subclosure config-
urations of the jj-coupling shell model, p3,» (N = 6), ds;»
(N = 14), f7/2 (N = 28), and 89/2 (N = 50), which arise from
the spin-orbit interaction in the mean field, can be described
by our AQCM [15].

We previously introduced AQCM to '?C and discussed the
competition between the cluster states and the jj-coupling
shell-model state [9]. The consistent description of 2¢ and
160, which has been a longstanding problem of microscopic
cluster models, has been achieved. In this paper, we exam-
ine again '2C, where not only the competition between the
cluster states and the lowest shell-model configuration, but
also the effect of single-particle excitation is further included
for the description of the ground state. The mixing of the
two-particle—two-hole excited states owing to the pairing-like
correlations is examined. By extending AQCM, all of the
basis states are prepared on the same footing, and they are
superposed based on the framework of the generator coordi-
nate method (GCM). Although it has been analytically shown
to be feasible to prepare some of the two-particle-two-hole
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configurations of the jj-coupling shell model within the
framework of AQCM [17], here we try to use a much simpler
method. The two-particle-two-hole states around the optimal
AQCM basis state are generated using a numerical technique.
Owing to the generation of many states compared with our
previous approach, a much larger effect for the lowering of
the energy due to the mixing of two-particle-two-hole states
will be discussed.

The nucleus of '>C is the typical example which has char-
acters of both cluster and shell aspects. Recently, various
kinds of microscopic approaches have shown the importance
of the mixing of shell and cluster components. Not only
the energy levels, but various properties including electro-
magnetic transition strengths, «-decay widths, and scattering
phenomena have been discussed [22-35]. Especially, based
on the antisymmetrized molecular dynamics (AMD), the one-
particle—one-hole states are discussed in relation with the
isoscalar monopole and dipole resonance strengths [26]. In
this approach, one-particle—one-hole states are expressed by
the small shift of one particle around the optimal AMD solu-
tion. Here in our study, we focus on the two-particle-two-hole
excitation, which covers the model space of one-particle—
one-hole excitation, and the lowering of the energy owing to
the effect of BCS-like paring can be clarified. Some of the
preceding works are based on modern ab initio approaches,
where the tensor and short-range correlations are included.
Compared with these, our approach is rather phenomenologi-
cal, but here we examine the natural extension of the AQCM
framework and include both cluster dynamics and the single-
particle excitation.

This paper is organized as follows. The framework is de-
scribed in Sec. II. The results are shown in Sec. III. The
conclusions are presented in Sec. IV.

II. FRAMEWORK
A. Basic feature of AQCM

AQCM allows the smooth transformation of the cluster
model wave functions to the jj-coupling shell-model ones.
In AQCM, each single particle is described by a Gaussian
form as in many other cluster models including the Brink
model [1]:

7,0 2v % 21, 7,0
¢>°(r) = <;> exp[—v(r—&)71x"7, ()

where the Gaussian center parameter ¢ is related to the ex-
pectation value of the position of the nucleon, and x ™ is the
spin-isospin part of the wave function. For the size parameter
v, here we use v = 0.23 fm~2, which gives the optimal 0"
energy of '>C within a single AQCM basis state. The Slater
determinant is constructed from these single-particle wave
functions by antisymmetrizing them.

Next we focus on the Gaussian center parameters {¢;}.
As in other cluster models, here four single-particle wave
functions with different spin and isospin sharing a common
¢ value correspond to an « cluster. This cluster wave func-
tion is transformed into the jj-coupling shell model based
on AQCM. When the original value of the Gaussian center

parameter £ is R, which is real and related to the spatial posi-
tion of this nucleon, it is transformed by adding the imaginary
part as

=R+ iAe™" xR, )

where e*P™" is a unit vector for the intrinsic-spin orientation of
this nucleon. The control parameter A is associated with the
breaking of the cluster, and with a finite value of A the two
nucleons with opposite spin orientations have the ¢ values.
For example, two nucleons with opposite spin orientation
have ¢ values that are complex conjugates to each other.
This situation corresponds to the time-reversal motion of two
nucleons. After this transformation, the « clusters are called
quasiclusters.

Here we explain the intuitive meaning of this procedure.
The inclusion of the imaginary part allows us to directly
connect the single-particle wave function to the spherical har-
monics of the jj-coupling shell model. Suppose that the real
part of the Gaussian center parameter ¢ has the x component,
and the spin direction is defined along the z axis (this is spin-
up nucleon). According to Eq. (2), the imaginary part of ¢ is
given to its y component. When we expand —v(r — ¢)? in the
exponent of Eq. (1), a factor exp [2v¢ - r] corresponding to the
cross term of this expansion appears. The factor exp [2v¢ - 7]
contains all the information of the angular momentum of this
single particle. The Taylor expansion allows us to show that
the p wave component of exp[2v¢ -r] is 2v¢ - r, which is
proportional to (x + iAy). At A = 1, this is proportional to Y7,
of the spherical harmonics. The nucleon is spin up, and thus
the coupling with the spin part gives the stretched state of the
angular momentum, |3/2 3/2) of the j j-coupling shell model,
where the mean-field spin-orbit interaction acts attractively.
To create a spin-down nucleon, we introduce the complex
conjugate ¢ value, which gives [3/2 —3/2).

In the case of '’C, we prepare three quasiclusters. The
next two single-particle states are generated by rotating the
¢ vectors and the spin directions by 2w /3 around the y axis
and by 4m /3 for the fifth and sixth single-particle states.
Thus, one can put six nucleons in pair-wise stretched states
with quantization axes pointing in three different directions.
These states are not orthogonal but after antisymmetrization
represent the subclosure configuration of (s;/2 )2 (p3 /2)4. This
procedure is applied for both proton and neutron parts. The
details are given in Ref. [14].

B. Standard AQCM for >C

AQCM has been already applied to '2C and the essential
part is recaptured here. It has been well studied that the ground
state is described by three quasiclusters with equilateral tri-
angular symmetry. The parameter R represents the distance
between « clusters with an equilateral triangular configura-
tion, and thus the distance from the origin for each « cluster is
R/~/3. Following Eq. (2), the Gaussian center parameters of
the first quasicluster are given as

&/ = R(ey + iAey)//3, 3)
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for spin-up proton (¢} ") and neutron (;']'T), and

Y™ = R(e, — iNey)/V/3, 4)

for spin-down proton (¢} ¥y and neutron (;'l’i). Here e, and
e, are unit vectors of the x and y axis, respectively. The

a0
X Y, and Xy ¥, for spin-up proton, spin-up neutron, spin-down
proton, and spin-down neutron in the first quasicluster. For the
second and third quasiclusters, we introduce a rotation opera-
tor around the y axis Iéy(Q). The Gaussian center parameters
of the four nucleons in the second quasicluster are generated
by rotating the those in the first quasicluster around the y axis
by 27 /3 radian:

;pT,nT,N,w

spin-isospin part of the wave function is denoted as x! T

= Ry@m /3¢, 5)

It 1s important to note that the spin-isospin part ( X2 , XgT,

X2 ,and Xzi) also needs to be rotated as

X;T,”T’Pi,”i — R),(Zn/?a)xl”“’“’l’"l, (6)

where the axis of the spin orientation is also tilted around the
y axis by 27 /3 radian (but the isospin parts do not change).
The third quasicluster is introduced by changing the rotation
angle around the y axis to 47 /3 radian,

géﬂy”TvP%"i — Ry(4n/3)cll7T»”TvP¢q"¢’ (7

for the Gaussian center parameters (CQ’T, ;gl?’ £, and I;g'i),
and

XI’T,”T’P%'W — 1@,(47‘[/3))(1”’”?’[)%”{ 8)
for the spin-isospin part (X% , X3 , X3 , and X;li).

For the values of R and A, we introduce R = 0.5, 1.0, 1.5,
2.0,2.5,3.0 fm and A = 0.0, 0.2, 0.4. These 18 many-body
basis states span a 12-body Hilbert space later treated by
projection on total angular momentum within GCM.

C. Two-particle-two-hole states of >C

The innovation of the present study is the inclusion of many
two-particle-two-hole states, by which pairing-like correla-
tion can be taken into account. These two-particle-two-hole
basis states are generated from the optimal AQCM basis state.
It will be shown that the AQCM basis state with R = 2.1 fm
and A = 0.2 gives the lowest energy, and Gaussian center
parameters of two nucleons in the first quasicluster are shifted
from this basis state using the random numbers. We consider
two sets of the basis states: two shifted particles in the first
quasicluster are either protons (with spin up and spin down) or
neutrons (with spin up and spin down). Both of these two cor-
respond to the isovector pairing-like excitation of protons and
neutrons. In principle, it is possible to consider the isoscalar
pairing of proton-neutron excitation, but this effect will be
shown to be small, maybe because the proton-neutron corre-
lation is already included in the quasicluster model. Here, the
distance of the shifts are giving using random numbers {r;},
which have the probability distribution P(|r;|) proportional to
exp [—|ril/o],

P(|ri|) ocexp[=[ril/o]. €))

The value of ¢ is chosen to be 1 fm. After generating {r;}, we
multiply the sign factor to each r;, which allows r; to be posi-
tive and negative with equal probability. The shifts of all three
(x, v, z) directions for the two nucleons originally in the first
quasicluster are given using random numbers generated in this
way. Importantly, the random numbers used for the proton-
proton excitation are identical to those of neutron-neutron
excitation. In principle, the two-particle—two-hole states mix
nonisoscalar states. However, if the amplitude for each basis
state for proton excitation and that for the neutron excitation
are identical, the isospin symmetry is restored. Therefore,
the model space still keeps the room to be isoscalar, which
guarantees that the mixing of nonisoscalar components is a
physical effect owing to the Coulomb effect and not a numer-
ical artifact.

It is known that proton-neutron pairing is quite important
in N = Z nuclei [36-39], which can be probed in the same
manner. For the basis states corresponding to the proton-
neutron pairing, the Gaussian center parameters of the spin-up
proton and spin-up neutron in one quasicluster are randomly
generated. However, the number of basis states must to be
reduced due to the computational time.

D. Superposition of the basis states

The 18 AQCM basis states introduced in Sec. IIB (R =
0.5, 1.0,1.5,2.0, 2.5, 3.0 fm and A = 0.0, 0.2, 0.4) and 100
two-particle-two-hole states introduced in Sec. IIC (50 are
for proton-proton excitation and 50 are for neutron-neutron
excitation) are superposed based on GCM. These 118 basis
states are abbreviated to {®;} (i = 1—118). They are projected
to the eigenstates of parity and angular momentum by using
the projection operator PX.,

2J +1
2

PJIi =P 8

/dQ D) “R(R). (10)

Here Dy, is the Wigner D function and R(S2) is the rotation
operator for the spatial and spin parts of the wave function.
This integration over the Euler angle €2 is numerically per-
formed. The operator P" is for the parity projection (P* =
(14 P")/+/2 for the positive-parity states, where P’ is the
parity-inversion operator), which is also performed numeri-
cally. This angular momentum projection enables to generate
different K number states as independent basis states from
each Slater determinant. Therefore, the total wave function
W, after the K mixing is denoted as

U = ZCKPK i (11)

The coefficients {cK} are obtained together with the energy
eigenvalue E when we diagonalize the norm and Hamiltonian
(H) matrices, namely by solving the Hill-Wheeler equation.
Even if the number of the basis states is 118 for the 07 state,
which has only K = 0, the dimension of the matrices for the
other J” states increases through the K-mixing process.
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E. Hamiltonian

The Hamiltonian consists of the kinetic energy and
potential energy terms. For the potential part, the interac-
tion consists of central (Vcemra]), spin-orbit (Vspin-orbil)’ and
Coulomb terms. For the central part, the Tohsaki interaction
[40] is adopted. This interaction has finite range three-body
terms in addition to two-body terms, which is designed to re-
produce both saturation properties and scattering phase shifts
of two « clusters. For the spin-orbit part, we use the spin-orbit
term of the G3RS interaction [41], which is a realistic inter-
action originally developed to reproduce the nucleon-nucleon
scattering phase shifts.

The Tohsaki interaction consists of two-body (V) and
three-body (V®) terms,

Veentral = ZV}” > ve. (12)

2% i, Ak itk

1

where V(.z ) and VG ) have three ranges,
V(2) Z V(Z) exp [ (ri ) ] (W(2) Mé{Z)PGPf)ij’
13)
v

3
2= e
a=1

X (WO

ri—r;)?  (ri— rk)2:|

1 1
MPPTPT), (WD — MPTPT), . (14)
Here, P° PT represents the exchange of the spin-isospin parts
of the wave functions of two interacting nucleons. The phys-
ical coordinate for the ith nucleon is r;. The details of the
parameters are shown in Ref. [40], but we use the F1’ param-
eter set for the Majorana parameter (M>) of the three-body
part introduced in Ref. [9].

The G3RS interaction [41] is a realistic interaction, and the
spin-orbit term has the following form;

spm -orbit = Z Vls (15)
l#/

where
VIS _ (Vl —d, (r; I‘J')Z
17

Here, L is the angular momentum for the relative motion
between the ith and jth nucleons, and S is the sum of the
spin operator for these two interacting nucleons. The operator
P(30) stands for the projection onto the triplet-odd state. The
strength of the spin-orbit interactions is set to V! =V? =
16800 MeV, which allows consistent description of '>C and
160 [9].

— Ve ®n)PCOIL S, (16)

III. RESULTS

A. AQCM basis states

We start the discussion with the result of AQCM basis
states. Figure 1 shows for '>C the expectation value of the
Hamiltonian calculated within the 0T AQCM basis state as
a functions of R representing the distance between the qua-
siclusters with the equilateral triangular configuration. The

2
R (fm)

FIG. 1. 07 energy curves of 1>C calculated with AQCM. The hor-
izontal axis shows the parameter R representing the distance between
the quasiclusters with the equilateral triangular configuration. The
dotted, solid, and dashed curves are the cases of A equal to 0.0, 0.2,
and 0.4.

dotted, solid, and dashed curves are the cases of A equal
to 0.0, 0.2, and 0.4. The dotted line (A = 0.0) represents
the three-a cluster model, where the « breaking effect and
spin-orbit contribution are absent. The spin-orbit effect shows
up by setting A to finite values. The « cluster model gives the
lowest energy at a large R value of about 3 fm. The spin-orbit
interaction strongly lowers the energy of the AQCM states
with finite A, giving minima at smaller R values. However,
the finite A values cause the increase of the kinetic energy,
and the optimal state is obtained as a balance of these two fac-
tors. The optimal energy of —86.68 MeV is obtained around
R =2.1fm with A =0.2.

After solving the eigenvalue problem (Hill-Wheeler equa-
tions) in the 12-body space spanned by the 18 AQCM basis
states (R = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 fm and A = 0.0, 0.2,
0.4), we obtain the lowest 0T state at —88.04 MeV, lower than
the energy of the optimal basis state (R = 2.1 fm, A = 0.2) by
about 1.4 MeV.

B. Inclusion of two-particle—two-hole states

Then we add successively to the 18 AQCM basis states 50
proton and 50 neutron two-particle-two-hole states. Figure 2
shows the energy convergence of the '>C ground state as a
function of increasing Hilbert space dimension. The inclusion
of the basis states from 19 to 68 on the horizontal axis is for
the two-particle—two-hole excited states of the two protons
and has an effect of lowering the energy by about 2 MeV,
which is quite large.

Next we add basis states corresponding to the two-particle—
two-hole excitation of the two neutrons (number 69 to 118
on the horizontal axis of Fig. 2). At first, the energy again
strongly decreases. This is because the mixing of the excited
states of the neutrons has the effect of the restoration of
the isospin symmetry. The isospin symmetry is broken when
proton excited states are included, and the broken symmetry
is restored by the inclusion of the neutron excited states.
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FIG. 2. Energy convergence for the lowest 0% state of >C as
a function of Hilbert space dimension. On top of 18 AQCM basis
states, 50 proton two-particle—two-hole states (numbers 19 to 68)
and 50 neutron two-particle-two-hole states (numbers 69 to 118) are
added successively.

As mentioned in the framework section, the random num-
bers used to shift the Gaussian centers of the two nucleons
from the quasicluster are identical in cases of both proton
excitation and neutron excitation. The two-particle-two-hole
states allows the mixing of nonisoscalar components, but if
the amplitude for each basis state for proton excitation and
that for the neutron excitation are identical, the isospin sym-
metry is restored. This guarantees that the isospin breaking
calculated here is not a numerical artifact but a physical
effect; indeed it is broken by the Coulomb interaction. The
0" energy converges to —91.66 MeV, and the mixing of the
two-particle—two-hole states contributed to the lowering of the
ground state energy by more than 3.5 MeV (the experimental
energy of '2C ground state is —92.2 MeV).

C. Level spacing of 0* and 2+

It has been known that traditional « cluster models give
very small level spacing for the ground 0% and first 27 state;
normally the value is about 2—3 MeV compared with the
observed value of 4.6 MeV. It is also known that this defect
can be overcome by including the « breaking effect. The
ground state corresponds to the subclosure configuration of
p3,2 in terms of the jj-coupling model, and the spin-orbit
interaction works attractively especially for the OF state (on
the other hand, the excitation to spin-orbit unfavored orbits
mixes in the 27 state).

Our result for the 0T —2% energy spacing is summarized
in Fig. 3. Here, the column “AQCM” shows the result ob-
tained after diagonalizing the Hamiltonian consisting of the
18 AQCM basis states. The 0" —27 energy spacing is obtained
as 3.9 MeV, slightly smaller than the experiment. The AQCM
model space only contains the K = 0 component. The column
“p-2p2h” shows the result after adding 50 two-particle—two-
hole states for the protons, where K quantum number is still
fixed to K = 0. The mixing of 50 two-particle—two-hole states

—80: AQCM p-2p2h n-2p2h K-mixing .
L . .
2 :
L N .
0 :

_90: — -

FIG. 3. 0t —27" energy spacing of '>C. The column “AQCM”
shows the result obtained after diagonalizing the Hamiltonian con-
sisting of the 18 AQCM basis states with K = 0. The column
“p-2p2h” shows the result after adding 50 two-particle—two-hole
states for the protons within K = 0. In the column “n-2p2h”, 50
two-particle-two-hole states for the neutrons are mixed, where K
quantum number is still fixed to K = 0. The last column “K-mixing”
shows the energy of the 27 state when K mixing is invoked.

strongly contributes to the lowering of the ground state, and
the 0T —27 energy spacing increases to 5.1 MeV, larger than
the experiment. In the column “n-2p2h” the two-particle—two-
hole states for the neutrons are mixed, where K quantum
number is still fixed to K = 0. The 0" —2" energy spacing
further increases to 6.7 MeV, quite larger than the experiment.
The result shows that the BCS-like pairing effect is quite
important for the 0T state and increases the level spacing
between 01 and 21, However, the mixing of the two-particle—
two-hole states allows the K mixing for the 2% state. The
angular momentum projection procedure produces different K
states (K = 1, 2) as independent basis states from each two-
particle-two-hole state, while AQCM basis states (i = 1—18)
only contain a K = 0 component due to the symmetry of the
equilateral triangular (Ds3;) symmetry even after breaking o
clusters. After taking into account this K-mixing effect, as
shown in the column “K-mixing,” the energy of the 2" state
significantly comes down and finally the spacing becomes
4.9 MeV, a quite reasonable value.

D. Isospin mixing in the ground state

The « cluster wave function is isoscalar, and this situation
is the same even if we change « clusters to quasiclus-
ters. However, here we included in the model space the
two-particle-two-hole excitation of protons and neutrons as
independent basis states, and thus the isospin symmetry can
be broken by the Coulomb interaction (the nuclear part of the
interaction is still isoscalar). The mixing of the finite isospin
can be estimated by the square of the total isospin operator.
As a result, the operator becomes a two-body one,

0" =>"t;t;, (17)
ij
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where ¢ = 1;/2 is the isospin operator for the ith nucleon.
The ground state of the present model gives the value of
0.016. The eigenvalues of this operator are 0, 2, and 6 for
the T =0, T =1, and T = 2 states, respectively. Thus, the
present value of 0.016 means that the isospin is broken at
least by the order of 1073, which is consistent with other
calculations. For instance, the mixing of 7 = 1 component
in the order of 10~* in ®Be is discussed based on the Green’s
function Monte Carlo approach [42]; however, the breaking of
the isospin symmetry is taken into account in the nuclear inter-
action level there, contrary to the present work. As mentioned
previously, our model space has the room to form the isoscalar
(many-body T = 0) configuration even after the inclusion of
the two-particle—two-hole states, and thus the present result
of the isospin mixing is a physical effect attributed to the
Coulomb interaction and not a numerical artifact.

E. Other physical quantities

A physical quantity which reflects the mixing of two-
particle-two-hole excitation is required to confirm the effect.
As such a candidate, the expectation value of the principal
quantum number N of the harmonic oscillator,

]\7 = 2:(1;r -a;,
i

can be easily calculated. Here the summation is over all the
nucleons. The lowest value for '>C is 8, corresponding to
the state where four nucleons are in the lowest s shell and
eight nucleons are in the p shell. The result obtained with
the 18 AQCM basis states gives the value of 9.15, and, af-
ter inclusion of the two-particle-two-hole state, the values
slightly changes to 9.13, but is almost identical. Thus, unfor-
tunately, this quantity cannot be utilized to discriminate the
effect of two-particle—two-hole states. Note that AQCM with
A = 0 (equilateral triangular configurations of three-« clus-
ters without breaking) gives a slightly larger value of 10.45,
to which the spin-orbit interaction does not contribute. Thus,
the attractive effect of the spin-orbit, which is incorporated
by introducing finite A values, shrinks the relative distances
among the quasiclusters.

This shrinkage of the system after transforming o clus-
ters to quasiclusters and incorporating the spin-orbit effect
is reflected in the electromagnetic transition probability. The
B(E2) value from the first excited state (2 state) to the
ground state is calculated as 10.19 ¢*fm* for the AQCM
basis states with A = 0, and the value drops to 6.56 &% fm*
after including the AQCM basis states with finite A values,
where the experimental value is 7.8 4 0.4 ¢? fm*. After taking
into account the two-particle-two-hole states, the value again
increases to 9.83 ¢ fm* (K mixing is performed for the 2+
state). This value is rather sensitive to the mixing of the two-
particle-two-hole states.

The effect of « cluster breaking can be seen in the expec-
tation value of the one-body spin-orbit operator,

OLs = Zli “Sis

(18)

19)

80—
12
L 12¢ ]

84t

p—2p2h i n—-2p2h

L L%

—92} ]

50 100
number of the basis states

energy of the 0" state (MeV)

L L

FIG. 4. Energy convergence for the 0% state of >C; 120 two-
particle—two-hole basis states are coupled to the 18 AQCM basis
states. The basis states from 19 to 58 on the horizontal axis are
excited states of the two protons, from 59 to 98 are excited states
of the two neutrons, and from 99 to 138 are excited states of a proton
and a neutron.

where [; and s; are orbital angular momentum and spin opera-
tors for the ith nucleon, respectively. The expectation value
is zero for the o cluster states and 4 for the (s /2)4 (p3 /2)8
configuration of the jj-coupling shell model (0.5 for each
nucleon in p3,,). The value is 1.88 for the state obtained with
18 AQCM basis states, which is just an intermediate state
between the shell and cluster limits. After the inclusion of
the two-particle-two-hole states, the value sightly increases
to 2.03.

We can also calculate the expectation value of the two-
body spin-orbit operator. Here, its functional form is identical
to the spin-orbit term in the Hamiltonian [Eq. (16)], and we
just show the expectation value of the spin-orbit term, which is
—15.38 MeV. Not only the relative angular momenta between
nucleons in different clusters, but those in the same cluster are
also nonzero after transforming o clusters to quasiclusters,
hence this matrix element is huge. However, the inclusion
of the spin-orbit effect also induces the kinetic energy, and
eventually the net effect becomes smaller.

F. Effects of proton-neutron pairing

We have examined the effect of two-particle-two-hole ex-
citations of protons and neutrons. However, it is known that
proton-neutron pairing is quite important in N = Z nuclei
[36-39]. We can partially probe this effect; however, it is
necessary to reduce the number of the basis states for each
component of the two-particle-two-hole excitation from 50
to 40 because of the calculation time. For the basis states
corresponding to the proton-neutron pairing, the Gaussian
center parameters of the spin-up proton and spin-up neutron
in one quasicluster are randomly generated.

The energy convergence for the 0* state of '2C is shown in
Fig. 4: 120 two-particle—two-hole basis states are coupled to
the 18 AQCM basis states. The basis states from 19 to 58 on
the horizontal axis are excited states of the two protons, from
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59 to 98 are excited states of the two neutrons, and from 99 to
138 are excited states of a proton and a neutron. The number
of basis states is not enough and the energy convergence is
not perfect; nevertheless, we can see the basic trend. Unex-
pectedly, the contribution of the proton-neutron excitation is
rather limited. Apparently, the proton-neutron correlations are
already included within the dynamics of the three-quasicluster
model.

IV. CONCLUSIONS

It has been shown that the cluster and single-particle cor-
relations can be taken into account in the ground state of >C.
The recent development of the antisymmetrized quasicluster
model (AQCM) allows us to generate j j-coupling shell-model
wave functions from « cluster models. The cluster dynamics
and the competition with the jj-coupling shell-model struc-
ture can be estimated rather easily. In the present study, we
further included the effect of single-particle excitation; the
mixing of the two-particle-two-hole excited states was con-
sidered. The single-particle excitation had not always been
taken into account in the standard cluster model analyses.

The two-particle-two-hole states are found to strongly
contribute to the lowering of the ground state owing to the
pairing-like correlations. By extending AQCM, all of the basis
states were prepared on the same footing, and they were super-
posed based on the framework of GCM. For the preparation
of the two-particle—two-hole states, we used random numbers
to shift the Gaussian centers of the two nucleons from the
quasicluster. It is stressed that identical sets of random num-
bers were used in generating the basis states of both proton
excitation and neutron excitation. Although the two-particle—
two-hole states allow the mixing of nonisoscalar components,
if the amplitude for each basis state for proton excitation
and that for the neutron excitation are identical, the isospin
symmetry is restored. Thus, in principle, the model space

contains the room to form the isoscalar (many-body 7 = 0)
configuration even after two-particle—two-hole effect is con-
sidered. This procedure ensures that the isospin breaking here
is a physical effect. The 0T energy converges to —91.66 MeV
compared with the experimental value of —92.2 MeV, and the
mixing of the two-particle—two-hole states contributed to the
lowering of the ground state energy by more than 3.5 MeV.

The isospin symmetry is now broken by the Coulomb in-
teraction, which can be estimated by the square of the isospin
operator. The ground state of the present model gives the value
of 0.016. The eigenvalues of this operator are 0, 2, and 6 for
the T =0, T =1, and T = 2 states, respectively. Thus, the
present value of 0.016 means that the isospin is broken at least
by the order of 1073,

A physical quantity which reflects the mixing of two-
particle—two-hole excitation is required to confirm the effect.
As such a candidate, the expectation value of the principal
quantum number N of the harmonic oscillator was calculated.
The result obtained with the 18 AQCM basis states gives the
value of 9.15 and, after inclusion of the two-particle-two-hole
state, the value slightly changes to 9.13, but is almost iden-
tical. Thus, unfortunately, this quantity cannot be utilized to
discriminate the effect of two-particle—two-hole states.

The proton-neutron pairing is known to play an important
role in N = Z nuclei, and we can prepare proton-neutron two-
particle—two-hole states as the basis states, but unexpectedly
the contribution is rather limited. It is considered that the
proton-neutron correlations are already included within the
dynamics of the three quasiclusters in the present model.
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