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Variational and parquet-diagram calculations for neutron matter. III. S-wave pairing
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We apply parquet-diagram summation methods for the calculation of the superfluid gap in S-wave pairing
in neutron matter for realistic nucleon-nucleon interactions such as the Argonne v6 and the Reid v6 potentials.
It is shown that diagrammatic contributions that are outside the parquet class play an important role. These
are, in variational theories, identified as “commutator contributions.” Moreover, using a particle-hole propagator
appropriate for a superfluid system results in the suppression of the spin-channel contribution to the induced
interaction. Applying these corrections to the pairing interaction, our results agree quite well with quantum
Monte Carlo data.
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I. INTRODUCTION

The nature and role of fermionic pairing and superfluid-
ity in nuclei and nuclear matter has been a subject of great
interest for many years [1]. Beginning with work by Bohr,
Mottelson, and Pines [2] there was persistent interest among
nuclear theorists in what could be learned from the quantum
many-body problem of infinite nuclear matter composed of
nucleons interacting through the best nucleon-nucleon (NN)
interaction available.

Bardeen-Cooper-Schrieffer (BCS) theory as originally for-
mulated [3] is intrinsically a mean-field theory. Cooper, Mills,
and Sessler [4] were the first to realize that the BCS equa-
tion per se could also be solved for hard-core interactions,
but that still leaves the question open to what extent such
a theory could capture the physics of a strongly interact-
ing system. This issue was addressed by the introduction
of Jastrow-Feenberg correlation factors [5–7]. Major ad-
vances were made with the replacement of cluster expansions
by Fermi hypernetted-chain (FHNC) diagram-resummation
techniques [8,9], facilitating the unconstrained optimiza-
tion of Jastrow-Feenberg correlations (FHNC-Euler-Lagrange
(FHNC-EL) method). The fact that optimized hypernetted-
chain summations included the summations of high-order
contributions to the perturbation series was first observed
by Sim, Buchler, and Woo [10], it was put on a rigorous
foundation in the work by Jackson, Lande, and Smith [11,12]
who showed, for bosons, that the optimized hypernetted chain
theory for Jastrow-Feenberg correlations is equivalent to the
self-consistent summation of all ring and ladder diagrams, the
“parquet” diagrams.

When implemented in a BCS extension, these advances
have made possible the development of a rigorous corre-
lated BCS (CBCS) theory (Ref. [13], see also Ref. [14])
that respects the U(1) symmetry-breaking aspect of the su-
perfluid state—i.e.,the nonconservation of particle number. A

recent in-depth study of correlations in the low-density Fermi
gas [15], with emphasis on the presence of Cooper pairing
and dimerization, documents the power of the Euler-Lagrange
(EL) FHNC approach adopted in the present work. The ma-
jor drawback of these calculations was that they employed
simple state-independent correlation functions. This makes
the method suitable for simple interactions, but improvements
must be sought for realistic nuclear Hamiltonians.

In recent work [16,17], we have utilized the equivalence
between parquet-diagram summations and optimized varia-
tional methods to develop methods that address exactly this
problem. We will review these in the next section.

II. VARIATIONAL AND PARQUET-DIAGRAM THEORY

A. The normal ground state

Let us briefly describe the Jastrow-Feenberg variational
and parquet-diagram summation method and its implementa-
tion to superfluid systems.

We assume a nonrelativistic many-body Hamiltonian,

H = −
∑

i

h̄2

2m
∇2

i +
∑
i< j

v(i, j). (2.1)

Popular models of the nucleon-nucleon force [18–22] rep-
resent the interaction as a sum of local functions times
correlation operators, i.e.,

v̂(i, j) =
n∑

α=1

vα (ri j ) Ôα (i, j), (2.2)

where ri j = |ri − r j | is the distance between particles i and
j, and the Oα (i, j) are operators acting on the spin, isospin,
and possibly the relative angular momentum variables of the
individual particles. According to the number of operators n,
the potential model is referred to as a vn model potential.
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Reasonably realistic models for nuclear matter keep at least
the six base operators, these are

Ô1(i, j; r̂i j ) ≡ Ôc = 1,

Ô3(i, j; r̂i j ) ≡ σ i · σ j,

Ô5(i, j; r̂i j ) ≡ Si j (r̂i j ) ≡ 3(σ i · r̂i j )(σ j · r̂i j ) − σ i · σ j,

Ô2n(i, j; r̂i j ) = Ô2n−1(i, j; r̂i j )τ1 · τ2, (2.3)

where r̂i j = ri j/ri j . We will omit the arguments when unam-
biguous.

There are basically two methods of comparable diagram-
matic richness for manifestly microscopic calculations of
properties of such strongly interacting systems. These are the
Jastrow-Feenberg variational method [23] and the parquet-
diagram summations [11,12]. For Bose systems, and for
purely central interactions, these two methods have been
shown to lead to exactly the same equations. For a strongly
interacting and translationally invariant normal system, the
Jastrow-Feenberg method starts with an ansatz for the wave
function, [23]

�0(r1, . . . , rN ) = F (r1, . . . , rN )�0(1, . . . , N ), (2.4)

F (r1, . . . , rN ) =
N∏

i, j=1
i< j

f (ri j ), (2.5)

where �0(r1, . . . , rN ) denotes a model state, which for nor-
mal Fermi systems is a Slater determinant, and F is the
correlation operator which can, of course, also contain three-
body correlations. For Bose systems, �0(1, . . . , N ) = 1. The
correlation functions f (ri j ) are obtained by minimizing the
energy, i.e., by solving the Euler-Lagrange equations

E0 = 〈�0|H |�0〉
〈�0 | �0〉 ≡ Ho, (2.6)

δE0

δ f
(r12) = 0. (2.7)

Evaluation of the energy (2.6) for the variational wave
function [(2.4) and (2.5)] and analysis of the variational prob-
lem are carried out by cluster expansion and resummation
methods. The procedure has been described at length in re-
view articles [8,24] and pedagogical material [9].

No derivation comparable in rigor to that of Refs. [11,12]
exists for fermions. We have analyzed in Ref. [25] the rela-
tionship between specific classes of diagrams generated by
the cluster expansion and optimization procedure of Jastrow-
Feenberg theory and classes of parquet diagrams, specifically
rings, ladders, and self-energy corrections. Besides the local-
ization procedures used to establish the agreement between
the boson versions of Jastrow-Feenberg and parquet dia-
grams, a “collective” approximation must be made for the
particle-hole propagator. Moreover, since the Fermi sea breaks
Galilean invariance, specific Fermi sea averages must be made
to make all two-body vertices functions of the momentum
transfer only. These procedures have been discussed and ex-
amined in detail in Ref. [25].

The situation is much more complicated for realistic
nuclear Hamiltoninans of the form (2.2). A plausible gen-

eralization of the Jastrow-Feenberg function (2.5) would
be [26–28] the “symmetrized operator product form

�SOP
0 = S

⎡⎢⎣ N∏
i, j=1
i< j

f̂ (i, j)

⎤⎥⎦�0, (2.8)

where

f̂ (i, j) =
n∑

α=1

fα (ri j ) Ôα (i, j), (2.9)

and S stands for symmetrization. The symmetrization is nec-
essary because the operators Ôα (i, j) and Ôβ (i, k) do not
necessarily commute. The need to symmetrize the operator
product causes, however, severe complications and so far no
summation that comes anywhere close to the diagrammatic
richness of the (F)HNC summations for state-independent
correlations has been found. As a consequence, no uncon-
strained optimization method analogous to Eq. (2.7) could
be developed. Instead, the correlation functions fα (r) have
been either assumed to be of some simple parameterized
form, or calculated by a low-order effective Schrödinger
equation [low-order constrained variation (LOCV)]. Opera-
tor contributions were calculated in a chain approximation
“single-operator chains” which can be understood [29] as
a simplified version of the random-phase approximation.
We have shown in previous work [30] that this leads to
sensible results only if the commutator terms generated
by the symmetrization of the correlation operator (2.9) are
omitted.

In view of these complications, Smith and Jackson [31]
developed the parquet-diagram summations for a fictitious
system of bosons interacting via a v6 model Hamiltonian. It
turned out that the equations derived were the same as the
Bose version of the hypernetted chain equations derived from
a variational wave function [(2.8) and (2.9)] when all com-
mutators are omitted, and supplemented by the optimization
condition (2.7). This leads to the conclusion that the commu-
tator diagrams correspond to diagrams in perturbation theory
that are beyond the parquet class.

The physical mechanism described by commutator dia-
grams is exemplified in the two simple processes shown
diagrammatically in Fig. 1. In the left diagram, a pair of parti-
cles that enter the process in a specific (singlet or triplet) state
will always remain in that state. The red wavy lines therefore
describe interactions in the same channel. This is not changed
by the exchange of a (spin-)density fluctuation depicted by
the chain of two blue lines. In the right diagram, a spin is
absorbed, transported through a spin-fluctuation, described
again by the chain of two blue wavy lines, and reabsorbed
at a later time. In that situation, the magenta wavy line may be
a triplet interaction, whereas the red lines are singlet interac-
tions or vice versa. Evidently, this makes little difference if the
interactions are the same in spin-singlet and spin-triplet states.
On the other hand, there is no reason that the two processes are
similar if the interactions are very different, which is the case
for modern nucleon-nucleon interactions [18,21].

Taking this into account and the evidence that simplistic
choices of the pair correlation functions fα (ri j ) lead to sen-
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FIG. 1. The figure shows the essential processes are included
in the “twisted chain” interaction correction. The red wavy lines
are either spin-singlet or spin-triplet interactions, the magenta line
may be either of the two, and the chain of blue lines represents a
contribution to the induced interaction ŴI (from Ref. [17]).

sible results only when commutator diagrams are omitted,
we have in recent work [17] added the leading corrections
that capture the essential physics of the commutator diagrams.
To make the method practical, we have used approximations
suggested by the Jastrow-Feenberg theory and the insight
about diagram topology from parquet diagram summations.
The results showed that the “beyond-parquet” diagrams are,
especially in low-density neutron matter and in the singlet in-
teraction channel, more important than any other many-body
corrections.

B. Strongly interacting superfluids

Let us now turn to the generalization of the correlated wave
functions method to superfluid systems. Having reviewed
the FHNC-EL theory and its relation to parquet diagrams
above, we can restrict ourselves to the discussion of what
changes for a superfluid system. Older work has either as-
sumed that the superfluid state deviates little from the normal
state [13–15,32–34] and/or adopted low-order cluster expan-
sions [6,35–37]. In recent work [25], we have developed the
Jastrow-Feenberg variational approach for a superfluid system
to a level comparable to that of the normal system. This
has made the identification with parquet-diagrams possible.
A number of important results will be discussed below.

The basic idea of a correlated BCS state is to use for the
model state in Eq. (2.4) an uncorrelated BCS state

|BCS〉 =
∏

k

[uk + vka†
k↑a†

−k↓]| 〉, (2.10)

where | 〉 is the vacuum state and the uk, vk are the Bogoliubov
amplitudes satisfying u2

k + v2
k = 1. A correlated state is then

constructed by applying a correlation operator F to that state.
Since the state (2.10) does not have a fixed particle number,
we must write the correlated state in the form

|CBCS〉 =
∑
m,N

∣∣� (N )
m

〉〈m(N )|BCS〉, (2.11)

where the {|m(N )〉} form a complete set of N-body Slater
determinants, and the |� (N )

m 〉 are correlated and normalized

N-body states forming a nonorthogonal basis of the Hilbert
space, see Eq. (A1).

In what follows, we will refer to expectation values with
respect to the uncorrelated state (2.10) as 〈. . .〉0 and those with
respect to the correlated state (2.11) as 〈. . .〉c. Physically inter-
esting quantities like the (zero temperature) Landau potential
of the superfluid system

〈H ′〉c = 〈CBCS|Ĥ ′|CBCS〉
〈CBCS|CBCS〉 , Ĥ ′ ≡ Ĥ − μN̂, (2.12)

are then calculated by cluster expansion and resummation
techniques. Above, μ is the chemical potential.

There are basically two ways to deal with the correlated
wave function (2.11).

1. Weakly coupled systems

We rely in this section heavily on definitions and methods
of correlated basis functions (CBF) theory that have been
discussed elsewhere [8,9,24]. To settle the notation, we give
the definitions of the essential quantities in Appendix.

If the superfluid gap is small compared to the Fermi energy,
then it is legitimate to simplify the problem by expanding
〈H ′〉c, Eq. (2.12) in the deviation of the Bogoliubov am-
plitudes uk, vk from their normal state values u(0)

k = n̄(k),
v

(0)
k = n(k), where n(k) = θ (kF − k) is the Fermi distribution

and n̄(k) = 1 − n(k). This approach adopts a rather different
concept than the original BCS theory: A wave function of
the form (2.10) begins by creating Cooper pairs out of the
vacuum. Instead, the approach (2.11) begins with the normal,
correlated ground state and generates one Cooper pair at
a time out of the normal system as suggested recently by
Leggett [38]. Adopting such an expansion in the number of
Cooper pairs, the correlation functions f (ri j ) and possibly
higher-order correlations can be optimized for the normal
system.

Carrying out this expansion in the number of Cooper pairs,
we have arrived in Ref. [13] at the energy expression of the
superfluid state

〈Ĥ ′〉c = E0 − μN + 2
∑

k, | k | >kF

v2
k(ek − μ) − 2

×
∑

k, | k | <kF

u2
k(ek − μ)

+
∑
k,k′

ukvkuk′vk′Pkk′ . (2.13)

Above, E0 ≡ H (N )
o is the energy expectation value (2.6) of the

normal N-particle system. The ek are the single-particle en-
ergies derived in CBF theory [39], see Appendix. The paring
interaction has the form

Pkk′ = Wkk′ + (|ek − μ| + |ek′ − μ|)Nkk′ , (2.14)

Wkk′ = 〈k ↑,−k ↓|W (1, 2)|k′ ↑,−k′ ↓〉a, (2.15)

Nkk′ = 〈k ↑,−k ↓|N (1, 2)|k′ ↑,−k′ ↓〉a. (2.16)

The effective interaction W (1, 2) and the correlation cor-
rections N (1, 2) are given by the compound-diagrammatic

035808-3



E. KROTSCHECK AND J. WANG PHYSICAL REVIEW C 103, 035808 (2021)

ingredients of the FHNC-EL method for off-diagonal quan-
tities in CBF theory [39].

The Bogoliubov amplitudes uk, vk are obtained in the stan-
dard way by variation of the energy expectation (2.13). This
leads to the familiar gap equation

�k = −1

2

∑
k′

Pkk′
�k′√

(ek′ − μ)2 + �2
k′

. (2.17)

The conventional (i.e., “uncorrelated” or “mean-field”)
BCS gap equation [40] is retrieved by replacing the effective
interaction Pkk′ matrix elements by the matrix elements of the
bare interaction.

2. Strongly coupled superfluids

The above treatment of a superfluid state has a number of
appealing features. One is that the theory can me mapped onto
an ordinary BCS theory, where the effective interactions and,
if applicable, the single-particle spectrum, are calculated for
the normal system. The other is that no assumptions need to
be made on the correlation operator other than that the relevant
matrix elements can be calculated with sufficient accuracy.

The basic assumption of the “weak-coupling” approxima-
tion is that the superfluid gap at the Fermi surface is small
compared to the Fermi energy. This assumption is not met in
low-density neutron matter where the gap energy can indeed
be of the order of half of the Fermi energy; this is a common
feature of practically all neutron matter gap calculations since
the 1970s [6] until recently [32,41]. To examine this problem,
we have derived in Ref. [25] the full variational and Fermi-
HNC theory for a superfluid state of the form (2.11). Without
going into the gory details of this derivation, we mention for
the expert only the central feature: The exchange line

	(rkF ) = ν

N

∑
k

n(k)eik·r (2.18)

is replaced by two types of lines,

	v (r) ≡ ν

N

∑
k

v2
keik·r and 	u(r) ≡ ν

N

∑
k

ukvkeik·r,

(2.19)
where ν = 2 is the degree of degeneracy of the single-
particle states and N = ν

∑
k v2

k. The resulting gap equation
is the same as Eq. (2.17), the only difference being that the
ingredients W (1, 2) and N (1, 2) should be determined self-
consistently for a superfluid system and depend implicitly on
the 	v (r) and 	u(r).

The second result is more subtle and deserves further dis-
cussion: The Euler equation (2.7) for a superfluid correlated
state leads to physically incorrect solutions, in fact it has no
solutions for systems that are attractive in the sense that the
Landau parameter F s

0 < 0.

C. Analysis of effective interactions

The understanding of the above-mentioned unphysical so-
lutions of the Euler equations, the construction of effective
interactions, and their choice and consequences for the pairing
problem are closely related. To explain the situation, we must

briefly review the relationship between FHNC-EL theory and
parquet diagram summations. We do this for the simplest case
that higher-order exchange diagrams are omitted; these are
quantitatively important even in the low-density limit [25], but
do not change the message of our analysis.

The summation of parquet diagrams implies, among
others, the summation of ring diagrams with a local “particle-
hole” interaction Ṽp−h(q). The long-wavelength limit is
related to the Fermi liquid parameter

Ṽp−h(0+) = 2m

3m∗ F s
0 . (2.20)

One should not expect that this relationship is satisfied
exactly [42] when Ṽp−h(0+) is obtained by diagram sum-
mations, and F s

0 is from hydrodynamic derivatives; the
(dis-)agreement can be taken as a test for the accuracy of the
implementation of the theory [16,25].

The density-density response function is in that case

χ (q, ω) = χ0(q, ω)

1 − Ṽp−h(q)χ0(q, ω)
, (2.21)

where χ0(q, ω) is the Lindhard function [43]. The static struc-
ture function S(q) is related to the density-density response
function χ (q, ω) through

S(q) = −
∫ ∞

0

dh̄ω

π
Imχ (q, ω). (2.22)

The connection to the Euler equation (2.7) of the FHNC-
EL theory is established by assuming a “collective”
approximation for the Lindhard function which is constructed
such that the ω0 and ω1 sum rules are satisfied,

−Im
∫ ∞

0

dh̄ω

π
χ coll

0 (q, ω)

= −Im
∫ ∞

0

dh̄ω

π
χ0(q, ω) = SF (q), (2.23)

−Im
∫ ∞

0

dh̄ω

π
ωχ coll

0 (q, ω)

= −Im
∫ ∞

0

dh̄ω

π
ωχ0(k, ω) = t (q), (2.24)

where t (q) = h̄2q2/2m and SF (q) is the static structure func-
tion of the noninteracting Fermi system. This leads to

χ coll
0 (q, ω) = 2t (q)

(h̄ω + iη)2 − [ t (q)

SF (q)

]2
(2.25)

and, consequently, to the collective approximation for the
density-density response function

χ coll(q, ω) = 2t (q)

(h̄ω + iη)2 − [ t (q)
SF (q)

]2 − 2t (q)Ṽp−h(q)
.

(2.26)
In this case, the frequency integration (2.22) can be carried
out analytically, which leads to the simplest form of the Euler
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equation of FHNC-EL theory [24],

S(q) = SF (q)√
1 + 2S2

F (q)
t (q) Ṽp−h(q)

. (2.27)

Since S(q) ∝ q for q → 0+, negative values of Ṽp−h(q) and,
hence, negative values of F s

0 are permitted.
In the superfluid system, the variational principle (2.7)

leads to the same equation (2.27), a small additional term [25]
does not change our analysis. However, the static structure
function has the form

SF (q) = 1 − ρ

ν

∫
d3reiq·r[	2

v (r) − 	2
u(r)

]
. (2.28)

It follows immediately from the definitions (2.19) that the
long-wavelength limit of SF (q) is

SF (0+) = 2

∑
k u2

kv
2
k∑

k v2
k

> 0. (2.29)

Hence, SF (0+) > 0 for the superfluid system. As a conse-
quence, Eq. (2.27) has no sensible solution of F s

0 < 0 even
for an infinitesially small but finite gap.

The problem is readily solved by abandoning the “col-
lective” approximation (2.26), in other words moving from
the pure Jastrow-Feenberg wave function to the parquet sum-
mations. There have been several suggestions for a Lindhard
function for a superfluid system [44–47], the most frequently
used form for T = 0 is given below. In the superfluid case,
χ0(q, ω) also depends on the spins. In terms of the usual
relationships of BCS theory,

u2
k = 1

2

(
1 + ξk

Ek

)
v2

k = 1

2

(
1 − ξk

Ek

)
, (2.30)

with ξk = t (k) − μ and Ek =
√
ξ 2

k + �2
k we have [44,48–50]

χ
(ρ,σ )
0 (k, ω) = ν

N

∑
p

b(ρ,σ )
p,k

[
1

h̄ω − Ek+p − Ep + iη

− 1

h̄ω + Ek+p + Ep + iη

]
(2.31)

with

b(ρ,σ )
p,k = 1

4

[(
1 − ξp

Ep

)(
1 + ξk+p

Ek+p

)
± �p

Ep

�k+p

Ek+p

]
= v2

pu2
k+p ± upvpuk+pvk+p, (2.32)

where the upper sign applies to the density channel and the
lower to the spin channel, respectively.

A similar analysis applies to the effective interaction
W (1, 2) and the energy numerator term N (1, 2). In principle,
these two quantities are nonlocal two-body operators. The
leading, local contributions to these operators are readily ex-
pressed in terms of the diagrammatic quantities of FHNC-EL
theory [24]:

N (1, 2) = N (r12) = �dd(r12), W (1, 2) = W (r12),

(2.33)

where �dd(r12) is the “direct correlation function” of FHNC
theory [8,24]. In an approximation corresponding to the one

spelled out in Eqs. (2.27) we have

�̃dd(q) = 1

SF (q)

{[
1 + 2S2

F (q)

t (q)
Ṽp−h(q)

]−1/2

− 1

}
, (2.34)

W̃ (q) = t (q)

S2
F (q)

{
1 −

[
1 + 2S2

F (q)

t (q)
Ṽp−h(q)

]−1/2
}

= − t (q)

SF (q)
�̃dd(q). (2.35)

These relationships display the same problems as the S(q)
above, namely that they lead to unphysical results for negative
F s

0 . The solution is again found by examining the construction
ofW̃ (q) from the viewpoint of perturbation theory.

Equation (2.21) defines an energy-dependent effective
interactionW̃ (q, ω) which we write as the sum of the energy-
independent term Ṽp−h(q) and the energy-dependent induced
interactionW̃ I (q, ω)

W̃ (q, ω) = Ṽp−h(q)

1 − Ṽp−h(q)χ0(q, ω)

= Ṽp−h(q) + Ṽ 2
p−h(q)χ0(q, ω)

1 − Ṽp−h(q)χ0(q, ω)
. (2.36)

An energy-independent effective interaction W̃ (q) is then de-
fined such that it leads to the same S(q), i.e.,

S(q) = −
∫ ∞

0

dh̄ω

π
Im

χ0(q, ω)

1 − Ṽp−h(q)χ0(q, ω)

= −
∫ ∞

0

dh̄ω

π
Im

[
χ0(q, ω) + χ2

0 (q, ω)W̃ (q, ω)
]

!= −
∫ ∞

0

dh̄ω

π
Im

[
χ0(q, ω) + χ2

0 (q, ω)W̃ (q)
]
,

(2.37)

where the last line defines W̃ (q) and, through Eq. (2.36),
the static induced interaction W̃ I (q) = W̃ (q) − Ṽp−h(q). If
we furthermore use the collective approximation (2.26) for
χ0(q, ω), then Eq. (2.35) follows.

Realizing these connections there is, of course, no reason
for not using the full Lindhard functions for defining the
effective interaction W̃ (q) in (2.37). This can be done using
the Lindhard function for the normal system, or (2.31). The
latter is numerically rather demanding, we have carried this
out in Ref. [25]. It turns out that the use of (2.31) makes
little difference for Ṽp−h(q), we have therefore used in our
ground-state calculations the Lindhard function for the normal
system.

This is different for the gap equation, partly due to the ex-
ponential dependence of the superfluid gap on the interaction
strength. We have therefore used (2.31) and ω = 0 for the
effective interactions in the pairing calculation which is more
appropriate for these low-energy phenomena [51].
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D. Analysis of the gap equation

The appearance of the “energy numerator” term in the pair-
ing interaction matrix element (2.14) is a feature that might be
unfamiliar to the reader who is only familiar with mean-field
theories, but it comes in quite naturally when the gap equation
is expressed in terms of the T matrix [52]. This section is
devoted to a discussion of the importance of this term which
arises in an expansion of the correlated BCS state (2.11) in the
number of Cooper pairs. We stress again that no assumption
on the nature of the correlation operator has been made in the
derivation.

If the gap at the Fermi surface is small, then we can replace
the pairing interaction W̃ (k) by its S-wave matrix element at
the Fermi surface,

W̃F ≡ 1

2k2
F

∫ 2kF

0
kdkW̃ (k) = NWkF ,kF . (2.38)

Then we can write the gap equation as

1 = −W̃F

∫
d3k′

(2π )3ρ

⎡⎣ 1√
(ek′ − μ)2 + �2

kF

− |ek′ − μ|√
(ek′ − μ)2 + �2

kF

SF (k′)
t (k′)

⎤⎦, (2.39)

which is almost identical to Eq. (16.91) in Ref. [52]. In par-
ticular, the second term, which originates from the energy
numerator generated in Eq. (2.17) by the second term of Pkk′

in Eq. (2.14), has the function of regularizing the integral for
large k′.

This observation leads us to two conclusions: First, the
effective interaction W̃ (k) should be identified with a lo-
cal approximation to the T -matrix. This is also evident
because its diagrammatic structure contains both particle-
particle and particle-hole reducible diagrams. Second, a
correct balance between the energy numerator and the inter-
action term are essential to guarantee the convergence of the
integral.

When the gap is large, one can no longer argue that the
energy numerator, which vanishes at the Fermi surface, is
negligible. The convergence of the integrals is, in this case,
guaranteed by the fact that the interactions fall off for large
k′. Since the integrals would diverge if the interactions did
not fall off, the precise asymptotic form can have a profound
quantitative influence on the magnitude of the gap.

To be more precise, we can again study the behavior of the
integrand for large k′:

Pkk′ = Wkk′ + (|ek − μ| + |ek′ − μ|)Nkk′

→ W0,k′ + t (k′)N0,k′ . (2.40)

From Eq. (2.35) we can now conclude that these two terms
always cancel for large arguments.

The cancellation of these two terms is, of course, a conse-
quence of either the functional optimization of the correlations
or the parquet diagram summations. It is therefore expected
that the actual value of the gap depends sensitively on how
the energy numerator is treated. This also applies to the ques-
tion of how one should deal with a nontrivial single-particle
spectrum; comments on this are found in Ref. [32]. Simi-
lar concerns apply to calculations that use state-independent
correlation functions of the form (2.5), including our own
work [32]: The correlations are optimized for the central
channel of the interaction, but the paring interaction is cal-
culated in the singlet-S channel. Hence, the cancellations
between energy numerator and interaction term are vio-
lated. The alternative, namely calculating the correlations
for a model where the singlet-S channel is taking as state-
independent interaction, is not a viable one because such a
system would become unstable against infinitesimal density
fluctuations at densities much smaller than those of interest
here.

Finally, we go back to the seminal paper by Cooper, Mills,
and Sessler [4], who showed that the gap equation has in-
deed solutions for interactions with strongly repulsive cores.
Taming the strongly repulsive core of the nucleon-nucleon
interaction was also the original intention of the Jastrow
method [53], one might therefore legitimately ask if using
Jastrow correlation in combination with a BCS state does not
double count the short-ranged correlations.

As long as the theory is based on a clean expansion in
the number of Cooper pairs, there is by construction no over-
counting problem, but it is instructional to see the interplay
between Jastrow-correlations and BCS correlations. To see
that, it is sufficient to examine the two-body approximation
which is still occasionally being used [35–37,54]. We also
restrict ourselves, for simplicity, to state-independent corre-
lations. In that approximation, we have

W (2)(r) = f 2(r)v(r) + h̄2

m
|∇ f (r)|2 ,

�
(2)
dd (r) = f 2(r) − 1 ≡ h(r). (2.41)

Following Ref. [4], Eq. (15), we introduce

χ̃ (k) = 1

2

�k′√
(ek′ − μ)2 + �2

k′

. (2.42)

The short-ranged structure of the correlations is determined by
the short-wavelength behavior of the gap equation, in that case
we get for the coordinate space representation of the right-
hand side of the gap equation as

[
− h̄2

2m
∇2 − μ

]
h(r)χ (r) + h(r)

[
− h̄2

2m
∇2 − μ

]
χ (r) +

[
f 2(r)v(r) + h̄2

m
|∇ f (r)|2

]
χ (r)

= f (r)χ (r)

[
− h̄2

m
∇2 + v(r)

]
f (r) − h̄2

m
∇ · (h(r)∇χ (r)) − 2μh(r)χ (r). (2.43)
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Above, the first two terms come from the energy numerator
and the last from the interaction. If we assume that the corre-
lation function is determined by a Schrödinger-like equation
as, for example, in the LOCV method, then the Jastrow cor-
relation function serves to cancel the short-ranged interaction.
Combining these terms as in the second line shows how the
Jastrow correlation function f (r) eliminates the short-ranged
part of the interaction, leaving χ (r) to deal with BCS-specific
correlations. On the other hand, ignoring the energy numera-
tor term destroys this cancellation.

A further evidence for the delicate balance between the
two terms in the pairing interaction (2.14) is uncovered by
calculating the particle-hole average∑

ph

[Wph′ + (|ep − μ| + |eh − μ|)Nph]

=
∑

ph

[Wph + (ep − eh)Nph].

Using a free single-particle spectrum and the local approxima-
tions (2.34) and (2.35), we find that this average is zero. This
is actually only a special case of a more general statement that
the particle-hole average of CBF effective interaction is zero
for optimized correlation functions.

This means, of course, that both the “average zero” prop-
erty and the cancellation of the short-ranged structure of the
interaction does not apply for cases where the correlation
functions are optimized for, say, the central part of the inter-
action, but then the singlet projection is used for the pairing
calculation.

III. APPLICATION TO NEUTRON MATTER

A. General remarks

We have carried out calculations for static properties and
superfluid pairing gaps in neutron matter based on two repre-
sentative NN interactions acting in the T = 1 channel, namely

the v6 version of the Reid soft-core potential [18] as for-
mulated in Eqs. (A1)–(A8) of Ref. [20], and the Argonne
v6 potential [21]. Several types of calculations were done:
Parquet calculations as described in Ref. [16], and parquet
calculations including the most important nonparquet correc-
tions, the “twisted chain” diagrams [17]. The calculations for
the ground-state calculations were all done for the normal sys-
tem. We have, in Ref. [25], also used the superfluid Lindhard
functions (2.31) which requires a rather demanding numerical
calculation to capture the sharp structures of the integrands
around the Fermi surface. In that work, we have determined
that this causes no visible change in the essential inputs for
the pairing interaction, even if the gap is of the order of half
the Fermi energy.

For the calculation of the effective interactions, we have
used both the normal Lindhard function as well as the gener-
alizations (2.31) to superfluid systems.

B. Effective interactions

Let us return to the effective interactions (2.35). Following
the discussions of Secs. II C and II D, we can write the induced
interaction in the state-dependent parquet scheme as

W̃ (α)
I (q, 0) =

[
Ṽ (α)

p−h(q)
]2

χ
(α)
0 (q, 0)

1 − Ṽ (α)
p−h(q)χ (α)

0 (q, 0)
. (3.1)

where the superscript α refers to the operator channel 1, L̂ ≡
(σ1 · r̂)(σ2 · r̂), and T̂ ≡ σ1 · σ2 − (σ1 · r̂)(σ2 · r̂).

We have included in the induced interaction W̃ I (q) ≡
W̃ I (q, ω = 0) the leading exchange diagram which are im-
portant to establish a reasonable agreement between the
long-wavelength limit of the particle-hole interaction and
Landau’s Fermi-liquid parameter F s

0 , i.e.,we use for the
particle-hole interaction in Eq. (2.36) in the {1, L̂, T̂ } channel
basis

Ṽ (α)
p−h(q) = Ṽ (α)

p−h,d(q) + Ṽ (α)
p−h,ex(q), (3.2)
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FIG. 2. The figures show, for kF = 0.4 fm−1, the central and longitudinal components of both the “direct” particle-hole interaction Ṽ (α)
p−h,d(q)

(black lines, left scale), and effective interaction including exchange diagrams Ṽ (α)
p−h(q) ≡ Ṽ (α)

p−h,d(q) + Ṽ (α)
p−h,ex(q) (blue lines, left scale.) We show

both the parquet results and those including nonparquet corrections (lines with markers). Also shown are the normal system Lindhard function
(red dashed line, right scale) and the superfluid system Lindhard function (red solid line) in the density (left panel) and spin channel (right
panel), respectively.
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FIG. 3. Same as Fig. 2 for kF = 0.8 fm−1.

where the Ṽ (α)
p−h,ex(q) is calculated as spelled out in the Ap-

pendix of Ref. [16] and χ
(L)
0 (q, 0) = χ

(T )
0 (q, 0) ≡ χ

(σ )
0 (q, 0).

One can go beyond this relatively simple approximation and
include higher-order exchange diagrams, these would, among
others, establish the correct relationships between the sum
rules for the Fermi liquid parameters and those for the for-
ward scattering amplitudes [55]. The effect may be important
at higher densities and in the case of P-wave pairing [56].
However, the most important input to the calculation is the
particle-hole irreducible interaction V̂p−h(q). This should not
be identified with some local approximation of the G matrix.
This is seen most easily in a self-bound system like nuclear
matter by the simple argument that the Fermi-sea average
of the G matrix should basically be the interaction correc-
tion to the binding energy which is negative. On the other
hand, the matrix element of V (1)

p−h(r) at the Fermi surface is
the interaction correction to the incompressibility which is
positive [57]. The more important consideration is, in our
opinion, to establish a reasonably accurate agreement between

the long-wavelength limit (2.20) and the hydrodynamic com-
pressibility

mc2 = d

dρ
ρ2 d

dρ

E

N
= mc∗2

F + Ṽp−h(0+) ≡ mc∗2
F

(
1 + F S

0

)
,

(3.3)

where c∗
F =

√
h̄2k2

F
3mm∗ is the speed of sound of the noninteracting

Fermi gas with the effective mass m∗. We have discussed this
issue in Ref. [16].

Our work goes beyond previous calculations in two im-
portant aspects. One is the full execution of the localized
parquet diagrams, including the “twisted chain” diagrams that
go beyond the parquet class. The second is the use of a
Lindhard function (2.31) appropriate for superfluid systems.
Both of these corrections are expected to be most visible at
low densities but for different reasons:

The bare singlet interaction is close to forming a bound
state; therefore a small change in the effective interaction
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FIG. 4. The figures shows, for kF = 0.4 fm−1, the central (left figure) and longitudinal components (right figure) of the effective
interactions W̃ (α)(q), using the normal system Lindhard functions (blue lines) and the superfluid system Lindhard functions (red lines). The
results including “beyond parquet” diagrams are marked with crosses.
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FIG. 5. Same as Fig. 4 for kF = 0.8 fm−1.

can cause a rather large change in the short-ranged correla-
tions [58]. A very careful evaluation of all relevant quantities
is therefore essential.

Moreover, at low densities, the superfluid gap is about half
of the Fermi energy, therefore there is no reason to assume that
the use of a Lindhard function appropriate for a normal system
is justified. Note also that limq→0 χ (σ )(q, 0) = 0, i.e.,the use
of a superfluid Lindhard function suppresses the induced in-
teractionsW̃ (L)(q) andW̃ (T )(q) in the long-wavelength limit.

Let us therefore go through the individual steps. All calcu-
lations refer to the v6 version of the Argonne potential [21], we
have chosen a density of kF = 0.4 fm−1 where the superfluid
gap is close to its maximum value as a function of density, and
to kF = 0.8 fm−1, where it is declining but still visible. Input
to the calculations are the particle-hole irreducible interac-
tions Ṽ (α)

p−h(q) and the Lindhard functions χ
(α)
0 (q, 0). We show

these for the above two typical values of kF in Figs. 2 and 3.
Practically all of these results look rather innocuous. As

shown in our previous work [16], the inclusion of exchange di-
agrams is important to have a reasonably accurate relationship
between the Fermi liquid parameters obtained from hydro-
dynamic derivatives and the long-wavelength limit of the

particle-hole interaction. The “twisted chain” diagrams are the
most pronounced many-body correction at low densities [17],
but their effect is moderate. Considering the exponential de-
pendence of the superfluid gap on the interaction strength,
these processes can, of course, be quantitatively relevant.

The superfluid Lindhard function deviates, in the density
channel, by about 10 to 20 percent from the normal system
Lindhard function. The most pronounced new effect is that the
superfluid Lindhard function in the spin channel, χ

(σ )
0 (q, 0),

goes to zero in the long wavelength limit. At low densi-
ties, kF = 0.4 fm−1, this falloff already happens at q = kF

which has the effect of suppressing the induced interaction.
As expected, all corrections become smaller with increasing
density. In the case of the superfluid Lindhard function, this
is partly the case due to the smaller value of the gap, but evi-
dently the correction in the spin channel is still quite visible.

Turning to the interactions that actually go into the gap
equation, we show in Figs. 4 and 5 the interaction W̃ (q)
appearing in Eq. (2.15). A somewhat surprising, but easily un-
derstood, feature is the rather dramatic consequence of using
the superfluid Lindhard function in the density channel: The
fact that the long-wavelength limit Ṽp−h(0+) is of the order
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FIG. 6. The left figures shows, for kF = 0.4 fm−1, the singlet-S-wave effective interaction, using both the normal system Lindhard function
(blue line) and the superfluid Lindhard function (red line). Also shown is the “direct” part of the particle-hole interaction (magenta line). The
right figure shows the same potentials at kF = 0.8 fm−1. Both figures refer to the “beyond parquet” calculation.
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FIG. 7. The figure shows the density dependence of the singlet
pairing interaction in both “parquet//1” approximation (black lines)
and including both “beyond parquet” corrections and those stemming
from using a superfluid Lindhard function (red lines).

of −0.5eF , and that value of the Lindhard function changes
by about 20%, can change the induced interaction by a factor
of 2 which is seen in the left part of Fig. 4. This finding is
consistent with the observation that the effect is smaller when
nonparquet diagrams are included because the magnitude of
Ṽp−h(0+) is decreased. Of course, it must be kept in mind that
the agreement between the F s

0 obtained from Ṽp−h(0+), see
Eq. (2.20), and that obtained from the hydrodynamic speed of
sound, Eq. (3.3), is only approximate [16].

The similarly significant change of the longitudinal part of
the effective interaction, as shown in the right part of Fig. 4,
is much more expected and comparable in both parquet and
“beyond parquet” results. As we go to higher density, see
Figs. 5, the effects become smaller simply due to the fact that
the superfluid gap becomes smaller, but they are still quite
visible.

Since we are concerned with 1S0 pairing, we need to map
the 1, L̂, and T̂ channel interactions onto the S wave,

W̃ (S)(q) = W̃ (1)(q) −W̃ (L)(q) − 2W̃ (T )(q). (3.4)

The interactions are shown in Fig. 6. Somewhat unexpectedly,
the results show much less effect from using the superfluid
Lindhard functions. The reason is found in the fact that the
corrections go, in both the central and the spin channels, in the
same direction and lead to an apparent partial cancellation, see
Eq. (3.4). We could not see an argument that this cancellation
is generic, but rather we consider it a coincidence.

Figure 7 gives an overall account of the density dependence
of the S-wave pairing interaction. Generally, the inclusion of
“beyond-parquet” diagrams reduces the interaction strength,
the effect is most pronounced at intermediate densities. We
also see clearly that the corrections from using a superfluid
Lindhard function are smaller, with increasing density, at
longer wavelengths which is due to the fact that the gap gets
smaller.

C. BCS pairing

Once the ground-state correlations and effective interac-
tions are known, the superfluid gap function �k can be
determined by solving the gap equation (2.17).

The gap equation was solved by the eigenvalue method
with an adaptive mesh as outlined in the Appendix of
Ref. [15]. We have adopted a free single-particle spectrum
for ek as it occurs in Eqs. (2.14) and (2.17). One could also
use the actual spectrum of CBF single-particle energies [39],
in both the pairing interaction (2.14) and the denominator of
Eq. (2.17). We have discussed and studied the effect of these
modifications in previous work [32], there is no reason for
repetition. A recent very extensive comparison with earlier
work [35,41,54,59–65] is found in Ref. [36]. We can, there-
fore, focus in this paper on the aspect where we went beyond
previous work [25,32].

Our results for the superfluid gap for the two potentials are
shown in Fig. 8. Evidently the difference of the gap between
these two potential models is almost negligible and certainly
within the accuracy of both the FHNC/parquet//1 approxi-
mation. We have above shown that specific “beyond parquet”
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FIG. 8. Superfluid gap �kF at the Fermi momentum as a function of Fermi wave number kF for the Argonne V6 interaction (left figure)
and the Reid V6 potential (right figure). We show the parquet calculation (black curve), the “beyond parquet” results (blue curve) using the
Lindhard function for normal systems, and the “beyond parquet” results using the superfluid Lindhard function (red curves). The crosses show
the results for the bare Argonne and Reid interactions, these data are from Ref. [66]. The magenta squares in the left figure are quantum Monte
Carlo data from Ref. [67].
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FIG. 9. Same as Fig. 8 for the gap in units of the Fermi energy of the noninteracting Femri gas.

corrections to the effective interaction should enhance the
repulsion between particles in the singlet state, and Figs. 8
and 9 show exactly this effect. In fact, these contributions
bring our results quite close to the quantum Monte Carlo data
of Ref. [67]. On the other hand, the influence of using a su-
perfluid Lindhard function appears modest. Considering that
inspection of the individual pieces of the effective interactions
suggests exactly the opposite, we conclude that our specific
results are circumstantial and may well be totally different for
other interactions or, for example, P-wave pairing.

In comparison to the quantum Monte Carlo data of
Ref. [67] it must, of course, be noted that our interaction
model is somewhat different. We have used the full v6 inter-
action, wheras Ref. [67] uses the S-wave part of the Argonne
potential. We have tried to use that interaction, too, but it
turned out that the pure S-wave interaction leads to a spin-
odal instability in which case the parquet equations have no
solution.

IV. SUMMARY AND PROSPECTS

The work reported in this paper represents the most rig-
orous calculation yet performed for nuclear systems within
correlated BCS theory. We have described new calculations
of the pairing gap in the 1S0 partial-wave channel.

Our work goes beyond the calculations reported in
Ref. [32] in several important aspects: We have replaced the
state-independent FHNC/parquet summation method by the
state-dependent parquet summation method [16]. We have
also included the leading “beyond parquet” corrections [17],
the reason for why these diagrams can be important in par-
ticular in the 1S0 interaction channel has been discussed in
the introduction in connection with Fig. 1. Finally, we have
used a superfluid Lindhard function for the calculation of the
particle-hole propagator. We found that each of these effects
is quite substantial and the fact that the sum of all of these cor-
rections is modest seems circumstantial rather than generic.

We need to reiterate the importance of the energy numera-
tor term which originates from the fact that the correlated BCS
theory is formulated in terms of what should be considered
a static approximation of the T matrix. We have examined,
in Eq. (2.43), the relationship between low-order variational

calculations and the analysis of the gap equation due to
Cooper, Mills, and Sessler (see also Ref. [68]). An important
issue is the demonstration of how Jastrow-Feenberg cor-
relations assume the task of short-ranged screening which
is otherwise accomplished by the pair wave function χ (r),
Eq. (2.42). This works, of course, only for state-dependent
interactions if the correlations are optimized in each operator
channel separately. This casts some doubts on earlier calcula-
tions of the superfluid gap, including our own [25,32], which
use state-independent correlation functions.

Improvements can be sought in different ways: To look
at P-wave pairing, we need to extend the theory to in-
clude a spin-orbit interaction. Another option is to add some
phenomenological information into the particle-hole interac-
tion V̂p−h(q) in order to enforce the agreement between the
Fermi liquid parameter F s

0 obtained from the long-wavelength
limit (2.20) and from the hydrodynamic derivative (3.3). To
do the same for F a

0 requires to extend the theory to arbitrary
spin polarization. Work along these lines is in progress.

Another important aspect that we have not touched in
this paper is the importance of three-body interactions. There
is the general consensus that three-body interactions are
important in nuclear systems at higher densities. The literature
on the issue is vast, see Ref. [69] for a recent discussion.
For the problem at hand, three-body forces are expected to
be most important for P-wave pairing at high densities, see,
e.g., Ref. [70] and Ref. [71] for a very complete discussion
of the earlier literature and, in particular, the sensitivity of the
pairing gap on the choice of the interaction. A generalization
of parquet theory for three-body forces could be carried out
along the lines of three-body Jastrow-Feenberg [72,73] or
parquet theory [74] but has not been carried out so far. We
hesitate very much to speculate what the effect of including
three-body forces in parquet/CBF theory would do, a solid
calculation would go far beyond the scope of this paper.
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APPENDIX: CORRELATED BASIS
FUNCTIONS THEORY

For the development of a microscopic theory for superfluid
systems we need the basic ingredients of CBF theory. We give
here only the definitions of the relevant quantities to the extent
that they are needed for the present work, details may be found
in pedagogical material [9] and review articles [8,24].

CBF theory uses the correlation operator F to generate a
complete set of correlated and normalized N-particle basis
states through ∣∣� (N )

m

〉 = FN |m(N )〉
〈m(N )|F †

N FN |m(N )〉1/2
, (A1)

where the {|m(N )〉} form a complete basis of model states,
normally consisting of Slater determinants of single-particle
orbitals.

In general, we label “hole” states which are occupied in |o〉
by h, h′, hi , . . . , and unoccupied “particle” states by p, p′, pi,

and so on. To display the particle-hole pairs explicitly, we will
alternatively to the notation |m〉 use |�p1...pd h1...hd 〉. A basis
state with d particle-hole pairs is then

|�p1...pd h1...hd 〉 = [
I (N )

p1,...h1

]−1/2
FN a†

p1
· · · a†

pd
ahd

· · · ah1
|o〉.

(A2)
For the off-diagonal elements Om,n of an operator Ô, we

sort the quantum numbers mi and ni such that |m〉 is mapped
onto |n〉 by

|m〉 = a†
m1

a†
m2

· · · a†
md

and
· · · an2

an1
|n〉. (A3)

From this we recognize that, to leading order in the particle
number N , any matrix element of an operator Ô

Om,n = 〈�m|Ô|�n〉 (A4)

depends only on the difference between the states |m〉 and |n〉,
and not on the states as a whole. Consequently, Om,n can be
written as matrix element of a d-body operator

Om,n ≡ 〈m1 m2 . . . md |O(1, 2, . . . d ) |n1 n2 . . . nd〉a. (A5)

(The index a indicates antisymmetrization.)

The key quantities for the execution of the theory are diag-
onal and off-diagonal matrix elements of unity and H −Ho,

Mm,n = 〈�m|�n〉 ≡ δm,n + Nm,n, (A6)

Wm,n = 〈�m|H − 1
2 (Hm + Hn)|�m〉. (A7)

Equation (A7) defines a natural decomposition [9,39] of the
matrix elements of H into the off-diagonal quantities Wm,n
and Nm,n and diagonal quantities Hm.

To leading order in the particle number, the diagonal ma-
trix elements of H −Ho become additive, so that for the above
d-pair state we can define the CBF single particle energies

〈�m|H −Ho|�m〉 ≡
d∑

i=1

epihi + O(N−1), (A8)

with eph = ep − eh, where

ep = 〈�p| H −Ho|�p〉 = t (p) + u(p),

eh = −〈�h| H −Ho|�h〉 = t (h) + u(h), (A9)

and u(p) is an average field that can be expressed in terms of
the compound diagrammatic quantities of FHNC theory [39].

According to (A5), Wm,n and Nm,n define d-particle opera-
tors N and W , e.g.,

Nm,o ≡ Np1 p2...pd h1h2...hd ,0

≡ 〈p1 p2 . . . pd |N (1, 2, . . . , d ) | h1h2 . . . hd〉a,

Wm,o ≡ Wp1 p2...pd h1h2...hd ,0

≡ 〈p1 p2 . . . pd |W (1, 2, . . . , d ) | h1h2 . . . hd〉a. (A10)

Diagrammatic representations of N (1, 2, . . . , d ) and
W (1, 2, . . . , d ) have the same topology [39]. In homogeneous
systems, the continuous parts of the pi, hi are wave numbers
pi, hi; we abbreviate their difference as qi.

In principle, the N (1, 2, . . . , d ) and W (1, 2, . . . , d ) are
nonlocal d-body operators. Above, we have shown that we
need, for examining pairing phenomena, only the two-body
operators. Moreover, the low density of the systems we are ex-
amining permits the same simplifications of the FHNC theory
that we have spelled out in Sec. II A. In that approximation,
the operators N (1, 2) and W (1, 2) are local, and we have [24]

N (1, 2) = N (r12) = �dd(r12)

W (1, 2) = W (r12), W̃ (k) ≡ W̃ (k) = − t (k)

SF (k)
�̃dd(k).

(A11)
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