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Chandrasekhar limit for rotating quark stars
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The limiting mass is a significant characteristic for compact exotic stars. In the case of quark stars the limiting
mass can be expressed in terms of fundamental constants and the bag constant. In the present paper, using bag
model description, the maximum mass of a rotating quark star is found to depend on the rotational frequency
apart from other fundamental parameters. The analytical results obtained agree with the results of several relevant
numerical estimates as well as observational evidences.
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I. INTRODUCTION

The theoretical investigation for quark stars has turned
out to be a worldwide enterprise after the first prediction
of the quark core at the center of the core collapsed neu-
tron stars [1]. The idea of the quark star was brought to
light by soviet physicists Ivanenko and Kurdgelaidze [1,2],
about five years after the Gell-Mann prediction of quarks [3].
Several recent observations of compact and comparatively
cooler stars (SWIFTJ1749.4-2807 [4], RXJ185635-3754, and
3C58 [5]) also provide evidence in favor of the existence
of quark stars. Unlike other compact astrophysical objects
and main sequence stars, the quark stars are self-bound by
strong interaction rather than by gravity alone [6,7]. Apart
from this unique characteristic, the density of the quark stars
is remarkably high (even higher than nuclear density, i.e.,
2.4 × 1014 g/cm3 [8]) and quark stars hence gain immense
importance as a natural laboratory for quark matter.

The quark star is considered to be the very end product
of the stellar evolution. As the fuel of a star (neutron star)
tends to get exhausted, the radiation pressure of the star can
no longer balance the self-gravity. As a result, the core part
of the star starts collapsing due to its own gravity. However,
in certain cases, the density turns out to be substantially
high and therefore a quark core is spontaneously generated
(even without strangeness) at the center of the star. Although
initially the collapse takes place in the core part, it grows
over time and occupies the entire star eventually by capturing
free neutrons from the vicinity of the surface in absence of
the Coulomb barrier. In addition to this process, a thin outer
crust of comparatively lower density is also generated outside
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the quark core (≈1/1000 of the average density of the star),
which does not contain any free neutrons [7]. Consequently,
the effect due to the outer crust of the quark star is ignorable
in the limiting mass as well as the limiting radius. The newly
formed quark phase contains only two flavors of quarks (u and
d quarks) as it is generated from the nonhyperonic baryons
(mainly neutrons). Later the strangeness can be developed in
the two-flavor quark state via weak interaction (ud → us, in
excess of the d quark) by absorbing the energy of the quark
star [9,10] and thus transforms into a strange quark star (SQS).
The SQS is basically composed of three flavors of quarks
(contains the strange quark in addition to the u and d quarks)
confined in a hypothetical large bag [8,11], which is char-
acterized by the bag constant. The strange quark matter can
be treated as the perfect ground state of strongly interacting
matter as predicted by Witten (see Refs. [6,7]). Also, there are
several alternative models [12–14] supporting the conjecture
of the SQS (for a review, see Ref. [15]). But in another pos-
sibility, a quark star can be formed by clumping of ambient
quark matters due to the gravitational interaction essentially
like other normal stars. This is only possible if a significant
percentage of strange quarks [7] is present in the system. Such
“pure” quark stars [16] might belong to a hypothetical quark
galaxy or might result from the accumulation of strangelets
[17–19]. The primordial strange star can be another possible
example of the quark star. According to this conjecture, quark
stars were formed due to the phase transition in the early
Universe. Later those transform into strange stars in order to
maintain stability as assumed in the work of Ref. [7].

The key difference between the ordinary stars and the
quark star is that the mass of an ordinary star is almost entirely
due to the baryons, whereas for the quark star one has to
define the effective mass for the u and d quarks, as those
(quarks) are known to have very small masses. As the quark
star may be expected to be produced due to hadron quark
transition in neutron stars, its limiting mass is expected to be
very close to that of the neutron star. As a result, one can
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estimate the total mass of the star by solving the Tolman-
Oppenheimer-Volkov equations [20] numerically [21,22] by
adopting the conjecture proposed by Witten [7]. In several
recent works [23,24], the limiting mass for the spinning quark
star is also studied using the same procedure as used for the
case of the static quark star. But there is no argument in the
literature that favors the existence of limiting mass which,
like ordinary compact objects [25], depends dominantly on
the fundamental constants. Moreover, unlike neutron stars
(which are bound by gravity), quark stars are self-bound by
strong interaction (see Refs. [6,26]). Thus, it is not strictly
necessary to include the density as a function of radius. Quark
stars are confined compact objects, but their densities hover
near nuclear densities and hence the bag constant seems to
cover appropriately the strong interaction section, particularly
in view of the Quark Mass Density-dependent model (QMD)
of the quark star masses. A salient feature of this approach
is that it is independent of any particular equation of state
models and the entire dynamics comes from the confinement
mechanism modeled by QMD. In the work of Banerjee et al.
[27], an analytical study for the limiting mass carried out for
static quark stars, starting from the energy balance relations
as proposed by Landau [28], is found to depend mainly on
the fundamental constants and the MIT bag constant [29].
In the current paper, we look into such a theoretical limit
for the case of rotating quark stars and estimate the possible
limiting frequency of such compact stars. The effect of the
bag constant and rotational frequency at the limiting mass and
radius has also been studied in the theoretical regime.

Since the quark stars are self-bound by strong interaction
[6,26] (which is far stronger than the gravitational field), they
can withstand high rotational frequency without having no-
table shape deformation [ellipticity �10−4–10−7 [30,31] even
in the case of millisecond (time period) stars]. So, the modeled
quark stars are considered to be rigid and spherical in our
entire calculation. But as those stars are highly dense and
massive, the volume of such a compact star can no longer
remain a Euclidean sphere (i.e., volume 4

3πRadius3) due to
curvature of space-time. So, the general relativistic correction
is to be taken into account in the calculation of volume of the
star.

The paper is organized as follow, in Secs. II and III, we
give an account of the bag constant and the Fermi energy
respectively. In Sec. IV, the effective mass per particle of
the quark star is calculated in the context of particle physics.
Section V deals with the energy calculation and the results.
Finally in Sec. VI, concluding remarks are given.

II. BAG CONSTANT

The MIT bag model has turned out to be a successful model
of hadronic structure and achieved immense successes in
hadron spectroscopy [32–34]. According to this phenomeno-
logical model, massless pointlike quarks are confined in a
hypothetical bag and the state is characterized by a parameter
bag constant B.

The bag constant B depicts the difference between the
vacuum energy densities of the nonperturbative and the pertur-
bative ground states of the quarks [29] and depends on density

(and temperature, in general). In the case of the quark star, the
entire star is assumed to be such a bag, which contains all the
constituent quarks.

The primary objective of this paper is to obtain analytical
results of a rotating star that can be compared relative to a
static star. In order to achieve this, we have made use of only
the essential features of this model, to the extent of providing
a dynamic mass to the constituent light quarks. This approach
has also been adopted in several other recent works [8,12,35]
which address the issue of the static mass limit of similar
compact stars.

III. FERMI ENERGY

In the current paper, the limiting mass for the quark star
is estimated by adopting the simple energy balance picture,
as proposed by Landau [28]. According to this approach, the
total energy per fermion (e) attains the minima at the limiting
case of the star, given by

e = e f + eG + erot, (1)

where, e f , eG, and erot represent the contributions of the Fermi
energy, gravitational energy, and kinetic energy due to the
rotation of the star, respectively. The Fermi energy density of
the noninteracting fermions measures the maximum occupied
energy by the fermions per unit volume, at the ground state of
the system [36]. In the case of the quark star, the Fermi energy
occupies a significant fraction of the total energy of the star,
mainly depending on the Fermi number density (n) and radius
of the star (R). The Fermi energy density can be expressed in
terms of chemical potential (μ), given by [27]

E f = g

8π2
μ4, (2)

where g is the statistical degeneracy factor of the system. The
chemical potential (μ) for a star having N number of fermions
is described as

μ =
(

9π

2g

) 1
3 N

1
3

R
. (3)

So, the expression for the Fermi energy per particle takes the
form

e f = E f

n
= 3

4

(
9π

2g

) 1
3 N

1
3

R
. (4)

IV. EFFECTIVE MASS PER PARTICLE

The effective mass of the quarks is an essential quantity,
in order to estimate the total mass of the star as well as
the gravitational potential and the rotational kinetic energy.
According to our assumption (rigid and spherical star), the
effective mass of the entire star (M) is given by

M = e f N + VB, (5)

where V is the volume of the star. Extremizing the above
expression of total mass M with respect to R, and further
simplifying, the expression for the bag constant (B) is
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reduced:

B = e f N

3V
. (6)

Applying the above expression of the bag constant (B) in
Eq. (5), the simplified form of the total mass (M) of the star is
obtained, given by

M = 4VB, (7)

and thus the effective mass (m) of each quark inside the star is

m = M

N
= 4VB

N
. (8)

Being fermions, the effective mass of the quark coincides
with the quark chemical potential. As a result, from the limit
of vanishing quark density [27,37,38] we get

μ = B/n

or n = B/μ. (9)

Now applying Eqs. (3) and (9) in Eq. (8), the desired expres-
sion for effective mass per quark particle (m) can be obtained
in terms of fundamental constants and bag constants.

V. FORMALISM AND RESULT

The gravitational potential and rotational kinetic energy per
particle at the point (R, θ, φ) (in the spherical polar coordinate
system) with respect to the center of the star can be written in
terms of effective mass and other parameters as

eG = −G
Mm

R
and

erot = mc2(γ − 1). (10)

where γ = 1√
1 − ( 2πωR cos θ

c )2
and c is the speed of light in

space. From the above expression it can be observed that,
unlike the gravitational and Fermi energy, the kinetic energy
per particle changes over θ for any fixed value of R. So, in
order to overcome the θ dependence in further calculations, a
θ -averaged kinetic-energy term (〈erot〉) is taken into account.
Now the total effective energy per particle takes the form

e = e f + eG + 〈erot〉. (11)

According to Landau’s energy balance picture, the limiting
radius (Rmax) and the corresponding mass (Mmax) of the star
can be obtained by extremizing the total energy per particle
(e) with respect to the total number of particles (N). Although
the star is assumed to be spherical in our entire calculation,
the volume V of the star is not the same as that of a Euclidean
sphere (i.e., 4

3πR3) as those stars are highly dense and massive
[39]. As a result, the general relativistic correction in volume
is not negligible in the present calculation; hence we use
relativistic volume [40], given by

dV = √|gμν |drdθdφ, (12)

where gμν represents the μνth component of the space-time
metric and (r, θ, φ) are the coordinates in the spherical polar
coordinate system.

FIG. 1. Variation of the limiting mass (Mmax) with the rotational
frequency of the star. The solid line represents the variation for the
actual frequency ω while the dotted line is for the observed redshifted
frequency (ν).

The limiting mass and radius, which are calculated by
extremizing the total energy e, are independent of the de-
generacy factor g (see Ref. [27]; the result holds also in the
rotating case). Consequently, we address a general solution
for both types of quark stars (the two-flavored normal quark
star and the three-flavored strange quark star). In the current
paper, we also studied the dependence of the limiting mass,
radius, and total number of particles N on the bag constant as
well as the rotational frequency. The rotational effect of the
star is parametrized by the rotational frequency (ω); however,
due to the extreme compactness and mass of the star [radius
to mass ratio �2.2903 in geometric units, see Fig. 4(c)], the
general relativistic effects emerge prominently in the observed
rotational frequency (ν) (as observed by a far away observer)
[41,42]. As a result, a far away observer would observe a
redshifted form (ν) of the actual frequency (ω), given by

ν = ω

√
1 − 2GM

c2R
, (13)

where M and R are the mass and radius of the star, re-
spectively. Consequently, a significant deviation from ω is
obtained in the observed frequency (ν) in the case of fast
spinning stars as shown in Fig. 1. The variation of the limiting
mass Mmax with observed redshifted frequency (ν) and actual
frequency (ω) is described in Fig. 1 for a chosen value of bag
constant B = (145 MeV)4.

From Fig. 2 it is evident that, for each chosen value of the
bag constant, the limiting mass remains almost unchanged in
the lower-frequency range. But as the frequency (ν) reaches
≈300 Hz, the kinetic energy becomes sufficiently high to
be taken into consideration for the evaluation of the effec-
tive mass. As a result Mmax starts increasing gradually with
frequency, however it suffers a rapid increase above the fre-
quency of 600 Hz. Beyond a certain limit of Mmax for a given
bag constant (B) the star becomes so massive that observed
frequency (ν) starts falling with increasing ω due to gravita-
tional effect. This provides a limiting value of ν (i.e., νmax)
(see Fig. 2) for each value of the bag constant. We also show
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FIG. 2. Variation of limiting mass (Mmax) with observed frequency (ν) for different values of ban constant (B).

the masses and observed frequencies of some recently dis-
covered massive compact stars (see Table I) in the same plot
and compare with our calculated masses and frequencies for
different values of bag constants (using χ2 analysis). It is to be
noted that the stars (pulsars) mentioned in Table I are probably
neutron stars with or without quark cores, rather than pure
quark stars. But since their average densities are estimated to
be close to the nuclear density, one can compare those pulsars
with the calculated outcomes of the current paper. The χ2 for
our fit is defined as χ2 = ∑

i
Mcal−Mobs

Mcal
, where Mcal represents

the calculated mass and Mobs is the mass estimated from
the observation (Table I). From our χ2 analysis the best-fit
value of B is obtained around (136.5 MeV)4 (see Fig. 3; PSR
J1311-3430 is excluded for larger uncertainty in mass). For
this best-fitted value of the bag constant, the mass variation
with observed frequency is shown by the solid black line in
Fig. 2. Figures 4(a) and 4(b) describe the variation of limiting
radius Rmax and corresponding number of particle containing
the star (Mmax), respectively. In both cases, the same limiting
frequencies (νmax) are observed for individual values of bag
constants.

The limiting frequencies (νmax) are found to be different for
different values of the bag constant. The corresponding varia-
tion of νmax is plotted in Fig. 5, showing that the νmax increases
almost linearly with B1/4. Several numerical models and sim-

TABLE I. Newly discovered massive pulsars.

Object Mass in M� Ref.

PRS J1614-2230 1.9280.017
0.017 [43,44]

PSR J0348+0432 2.010.04
0.04 [45]

PSR J0740+6620 2.14+0.1
−0.09 [46]

PSR J1311-3430 2.15 − 2.7 [47]

PSR B1957+20 2.40.12
0.12 [48]

PSR J1600-3053 2.3+0.7
−0.6 [49,50]

PSR J2215+5135 2.27+0.17
−0.15 [51,52]

PSR J0751+1807 2.100.2
0.2 [53,54]

PSR B1516+02B 1.94+0.17
−0.19 [55]

ulations [32,56,57] indicate that the value of the bag constant
for a stable quark matter system lies within the range of
≈(130 MeV)4–(162 MeV)4. This range of bag constant corre-
sponds to the observed frequency (ν) range 677.4–1052.6 Hz
(see Fig. 5). As a consequence, the span of 677.4–1052.6 Hz
addresses the possible upper bound of the observed frequency
(ν) of quark stars (millisecond order) [58]. In contrast, these
values of the bag constant [(130 MeV)4–(162 MeV)4] indicate
the range of actual frequency (ω) 1131–1755.0 Hz, which
agrees with the work of Gourgoulhon emphet al. [59]. For
example, according to the best-fit point of our χ2 analysis
[B = (136.5 MeV)4], the maximum value of the observed
frequency (νmax) of the quark star is ≈747.7346 Hz (which
agrees with observational evidences of fast spinning pulsars).
However, the corresponding actual frequency (ωmax) for that
case is ≈1248 Hz.

In the current paper we have looked at an significant quan-
tity given by the radius to the Schwarzschild radius ratio
( Rmax

Rsch
, inverse of compactness) of the star. The variation of

the ratio ( Rmax
Rsch

) with frequency (ν) is traced out for different
values of bag constants [see Fig. 4(c)]. In the low-frequency
range (ω < 200 Hz), the numerical value of the ratio is found
to be independent of the bag constant and remains almost
unchanged (≈2.2903 in geometric unit, as obtained from the
work of Ref. [27]) with frequency [Fig. 4(c)]. But it starts

FIG. 3. Variation of χ 2 value with bag constant B.
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(a)

(c)

(b)

FIG. 4. Variation of (a) limiting radius (Rmax), (b) Nmax, and (c) radius mass ratio with ν for three different values of bag constant.

falling gradually with increasing frequency as the rotational
frequency reaches 300 Hz. In this range of frequencies, a
minute dependence of the bag constant is observable. How-
ever, at higher frequencies, all the Rmax

Rsch
curves for the different

bag constants suffer a quick fall toward unity. From the above
study, it is evident that the compactness of the quark star is
extremely high, but it cannot become a black hole even in the
limiting case. Thus they (strange stars) and a black hole could
coexist as candidates of cold dark matter. While their phe-
nomenological signatures may not be sufficient to distinguish

FIG. 5. Limiting observed frequency (νmax) and corresponding
actual frequency ω vs B1/4 graph.

between them, their different signatures in the gravitational
wave scenario may be interesting to study [60].

VI. CONCLUSION

In this paper we have studied the limiting mass for the
rotating quark star, which is introduced here as the “Chan-
drasekhar limit for rotating quark stars.” The limit mostly
depends on the universal constants and the bag parameter
as well as the angular velocity of the star. The maximum
possible observed frequency (νmax) is also estimated in the
current paper, which agrees with recent observations [43,46–
48,50,52,53,58] as well as results based on numerical simu-
lation [59]. A relation between the limiting radius (Rmax) and
corresponding Schwarzschild radius (Rsch) for a range of rota-
tional frequencies has also been resolved in our current paper.
The numerical value of the quantity Rmax

Rsch
lies at ≈2.2903 for a

static star (close to the work of Banerjee emphet al. [27], i.e.,
2.6667, where the relativistic correction in volume is not taken
into account), however it tends toward unity for an extreme
case of rotation (ω → Rmaxc). But for a fast spinning star, the
Schwarzschild radius cannot address the event horizon [40].
So, in order to obtain the event horizon for such spinning
bodies, the Kerr space time has to be taken into account,
which provides a comparatively smaller horizon than that of
the Schwarzschild metric system [40]. Consequently, one can
conclude that a quark star can never behave as a black hole.

035806-5



HALDER, BANERJEE, GHOSH, AND RAHA PHYSICAL REVIEW C 103, 035806 (2021)

ACKNOWLEDGMENTS

Two of the authors (S.B. and A.H.) wish to acknowledge
the support received from St. Xavier’s College. A.H. also
acknowledges the University Grant Commission (UGC) of
the Government of India, for providing financial support, in

the form of UGC-CSIR NET-JRF. The work of S.R. was
performed under the aegis of the Raja Ramanna Fellowship
of the Department of Atomic Energy, Government of India.
S.R. also gratefully acknowledges the hospitality of Frankfurt
Institute of Advance Studies.

[1] D. D. Ivanenko and D. F. Kurdgelaidze, Astrophysics 1, 251
(1965).

[2] D. Ivanenko and D. F. Kurdgelaidze, Nuovo Cimento Lettere 2,
13 (1969).

[3] D. Griffiths, Introduction to Elementary Particles (Wiley,
New York, 2008).

[4] H. W. Yu and R. X. Xu, Res. Astron. Astrophys. 11, 471 (2010).
[5] M. Prakash, J. M. Lattimer, A. W. Steiner, and D. Page, Nucl.

Phys. A 715, 835 (2003).
[6] P. Jaikumar, C. Gale, D. Page, and M. Prakash, Int. J. Mod.

Phys. A 19, 5335 (2004).
[7] E. Witten, Phys. Rev. D 30, 272 (1984).
[8] H. Li, X.-L. Luo, and H.-S. Zong, Phys. Rev. D 82, 065017

(2010).
[9] A. Bhattacharyya, S. K. Ghosh, P. S. Joarder, R. Mallick, and

S. Raha, Phys. Rev. C 74, 065804 (2006).
[10] C. Alcock, E. Farhi, and A. Olinto, Astrophys. J. 310, 261

(1986).
[11] J. Rohlf, Modern Physics from Alpha to Z0 (Wiley, New York,

1994).
[12] P. Haensel, J. L. Zdunik, and R. Schaefer, A&A 160, 121

(1986).
[13] S. K. Ghosh and P. K. Sahu, Int. J. Mod. Phys. E 2, 575 (1993).
[14] F. Weber, M. Orsaria, H. Rodrigues, and S.-H. Yang,

Proceedings of the International Astronomical Union 8, 61
(2012).

[15] J. Madsen, Lect. Notes Phys. 516, 162 (1999).
[16] F. Weber, J. Phys. G 27, 465 (2001).
[17] S. Banerjee, A. Bhattacharyya, S. K. Ghosh, S. Raha, B. Sinha,

and H. Toki, Mon. Not. R. Astron. Soc. 340, 284 (2003).
[18] S. Fredriksson, D. Enstrom, J. Hansson, S. Ekelin, and A.

Nicolaidis, arXiv:astro-ph/9810389.
[19] D. Enstrom, S. Fredriksson, J. Hansson, A. Nicolaidis, and S.

Ekelin, arXiv:astro-ph/9802236.
[20] T. Overgard and E. Ostgaard, A&A 243, 412 (1991).
[21] G. Burgio, M. Baldo, P. Sahu, A. Santra, and H.-J. Schulze,

Phys. Lett. B 526, 19 (2002).
[22] T. Harko and K. S. Cheng, A&A 385, 947 (2002).
[23] G. Bozzola, P. L. Espino, C. D. Lewin, and V. Paschalidis, Eur.

Phys. J. A55, 149 (2019).
[24] M. Szkudlarek, D. Gondek-Rosinska, L. Villain, and M.

Ansorg, Astrophys. J. 879, 44 (2019).
[25] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs,

and Neutron Stars: The Physics of Compact Objects (Wiley,
New York, 1983).

[26] E. Zhou, J. Phys.: Conf. Ser. 861, 012007 (2017).
[27] S. Banerjee, S. K. Ghosh, and S. Raha, J. Phys. G 26, L1 (2000).
[28] Collected Papers of L. D. Landau, edited by D. T. Haar

(Pergamon, New York, 1965), pp. 60–62.
[29] T. Yazdizadeh and G. H. Bordbar, Astrophysics 56, 121 (2013).
[30] B. J. Owen, Phys. Rev. Lett. 95, 211101 (2005).
[31] G. Ushomirsky, C. Cutler, and L. Bildsten, Mon. Not. R.

Astron. Soc. 319, 902 (2000).

[32] T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev.
D 12, 2060 (1975).

[33] A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn, Phys. Rev.
D 10, 2599 (1974).

[34] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F.
Weisskopf, Phys. Rev. D 9, 3471 (1974).

[35] G. Alaverdyan and Y. Vartanyan, Astrophysics 60, 563
(2017).

[36] K. H. C. Kittel, Thermal Physics, 2nd ed. (Freeman, San
Francisco, 1969).

[37] G. N. Fowler, S. Raha, and R. M. Weiner, Z. Phys. C 9, 271
(1981).

[38] M. Plumer, Quark-gluon-plasma und vielfacherzeugung in der
starken wechselwirkung, Ph.D. thesis, Philipps University at
Marburg/Lahn, 1984.

[39] J. Synge and A. Schild, Tensor Calculus, Dover Books on
Mathematics (Dover, New York, 2012).

[40] M. Hobson, E. P, G. Efstathiou, and A. Lasenby, General Rel-
ativity: An Introduction for Physicists (Cambridge University,
Cambridge, England, 2006).

[41] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields
(Butterworth, Washington, DC, 2008).

[42] A. K. Dubey and A. K. Sen, Int. J. Theor. Phys. 54, 2398
(2015).

[43] E. Fonseca et al., Astrophys. J. 832, 167 (2016).
[44] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, Nature (London) 467, 1081 (2010).
[45] J. Antoniadis et al., Science 340, 1233232 (2013).
[46] H. T. Cromartie et al., Nature Astronomy 4, 72 (2020).
[47] H. An, R. W. Romani, T. Johnson, M. Kerr, and C. J. Clark,

Astrophys. J. 850, 100 (2017).
[48] M. H. van Kerkwijk, R. P. Breton, and S. R. Kulkarni,

Astrophys. J. 728, 95 (2011).
[49] S. M. Ord, B. A. Jacoby, A. W. Hotan, and M. Bailes, Mon.

Not. R. Astron. Soc. 371, 337 (2006).
[50] Z. Arzoumanian et al., Astrophys. J. Suppl. Ser. 235, 37 (2018).
[51] J. W. Broderick et al., Mon. Not. R. Astron. Soc. 459, 2681

(2016).
[52] M. Linares, T. Shahbaz, and J. Casares, Astrophys. J. 859, 54

(2018).
[53] D. J. Nice, E. M. Splaver, I. H. Stairs, O. Lohmer, A.

Jessner, M. Kramer, and J. M. Cordes, Astrophys. J. 634, 1242
(2005).

[54] S. C. Lundgren, A. F. Zepka, and J. M. Cordes, Astro. Phys. J.
453, 419 (1995).

[55] P. C. C. Freire, AIP Conf. Proc. 983, 459 (2008).
[56] F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005).
[57] S. Banerjee, Pramana 91, 27 (2018).
[58] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs,

Astrophys. J. 129, 1993 (2005).
[59] E. Gourgoulhon, P. Haensel, R. Livine, E. Paluch, S. Bonazzola,

and J. Marck, Astron. Astrophys. 349, 851 (1999).
[60] S. Singh, R. Mallick, and R. Prasad, arXiv:2003.00693.

035806-6

https://doi.org/10.1007/BF01042830
https://doi.org/10.1007/BF02753988
https://doi.org/10.1016/S0375-9474(02)01514-2
https://doi.org/10.1142/S0217751X04022566
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1103/PhysRevD.82.065017
https://doi.org/10.1103/PhysRevC.74.065804
https://doi.org/10.1086/164679
https://doi.org/10.1142/S0218301393000236
https://doi.org/10.1017/S1743921312023174
https://doi.org/10.1007/BFb0107314
https://doi.org/10.1088/0954-3899/27/3/326
https://doi.org/10.1046/j.1365-8711.2003.06298.x
http://arxiv.org/abs/arXiv:astro-ph/9810389
http://arxiv.org/abs/arXiv:astro-ph/9802236
https://doi.org/10.1016/S0370-2693(01)01479-4
https://doi.org/10.1051/0004-6361:20020260
https://doi.org/10.1140/epja/i2019-12831-2
https://doi.org/10.3847/1538-4357/ab1752
https://doi.org/10.1088/1742-6596/861/1/012007
https://doi.org/10.1088/0954-3899/26/1/101
https://doi.org/10.1007/s10511-013-9272-y
https://doi.org/10.1103/PhysRevLett.95.211101
https://doi.org/10.1046/j.1365-8711.2000.03938.x
https://doi.org/10.1103/PhysRevD.12.2060
https://doi.org/10.1103/PhysRevD.10.2599
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1007/s10511-017-9507-4
https://doi.org/10.1007/BF01410668
https://doi.org/10.1007/s10773-014-2464-3
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.3847/1538-4357/aa947f
https://doi.org/10.1088/0004-637X/728/2/95
https://doi.org/10.1111/j.1365-2966.2006.10646.x
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.1093/mnras/stw794
https://doi.org/10.3847/1538-4357/aabde6
https://doi.org/10.1086/497109
https://doi.org/10.1086/176402
https://doi.org/10.1063/1.2900274
https://doi.org/10.1016/j.ppnp.2004.07.001
https://doi.org/10.1007/s12043-018-1597-y
https://doi.org/10.1086/428488
http://arxiv.org/abs/arXiv:2003.00693

