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Microscopic investigation of the 8Li(n, γ ) 9Li reaction
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Background: The 8Li(n, γ ) 9Li reaction plays an important role in several astrophysics scenarios. It cannot be
measured directly and indirect experiments have so far provided only cross section limits. Theoretical predictions
differ by an order of magnitude.
Purpose: In this work we study the properties of 9Li bound states and low-lying resonances and calculate the
8Li(n, γ ) 9Li cross section within the no-core shell model with continuum (NCSMC) with chiral nucleon-nucleon
and three-nucleon interactions as input.
Methods: The NCSMC is an ab initio method applicable to light nuclei that provides a unified description of
bound and scattering states well suited to calculate low-energy nuclear scattering and reactions. For the capture
cross section calculation, we adjust calculated thresholds to experimental values.
Results: Our calculations reproduce the experimentally known bound states as well as the lowest 5/2− resonance
of 9Li. We predict a 3/2− spin-parity assignment for the resonance observed at 5.38 MeV. In addition to the very
narrow 7/2− resonance corresponding presumably to the experimental 6.43 MeV state, we find several other
broad low-lying resonances.
Conclusions: Our calculated 8Li(n, γ ) 9Li cross section is within the limits derived from the 1998 National
Superconducting Cyclotron Laboratory Coulomb-dissociation experiment [Phys. Rev. C 57, 959 (1998)]. How-
ever, it is higher than cross sections obtained in recent phenomenological studies. It is dominated by a direct E1
capture to the ground state with a resonant contribution at ≈ 0.2 MeV due to E2/M1 radiation enhanced by the
5/2− resonance.
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I. INTRODUCTION

In neutron-rich astrophysical environments, reactions in-
volving the short-lived 8Li nucleus may contribute to the
synthesis of heavier nuclei by bridging the stability gap of
mass A = 8 elements. In particular, the 8Li(n, γ ) 9Li cap-
ture reaction plays an important role in inhomogeneous
big bang nucleosynthesis and in the r-process. There, it
competes with the 8Li(α, n) 11B reaction and the 8Li β de-
cay, affecting the reaction path to A>8 isotopes and also
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the abundances of Li, Be, B, and C. The relevant re-
action chains are 7Li(n, γ ) 8Li(α, n) 11B(n, γ ) 12B(β+) 12C
and 7Li(n, γ ) 8Li(n, γ ) 9Li(α, n) 12B(β+) 12C [1–4]. In ad-
dition, the reaction chain with two-neutron captures 4He
(2n, γ ) 6He(2n, γ ) 8He(β−) 8Li(n, γ ) 9Li(β−) 9Be, of which
the 8Li(n, γ ) 9Li is also a component, has been considered as
an alternative to the triple-alpha process in overcoming the
A = 8 mass gap in the r-process for supernovae of type II
[5,6].

As the 8Li half-life is 840 ms and a neutron target is
not available, the 8Li(n, γ ) 9Li reaction cannot be measured
directly. There have been several attempts to determine its
cross section by indirect methods. Using a radioactive beam
of 9Li and the Coulomb-dissociation method with U and
Pb targets, only upper limits on the 8Li(n, γ ) 9Li cross sec-
tion were determined as it was not possible to estimate
the nuclear contribution to the dissociation [7]. A follow-up
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Coulomb-dissociation experiment using a Pb target reported
a null result and consequently a very low limit on the capture
cross section [8].

In Ref. [9], the direct 8Li(n, γ ) 9Lig.s. capture cross section
was computed in the framework of the potential model by de-
ducing the single particle spectroscopic factor for the ground
state of 9Li from a measurement of the angular distribution of
the 8Li(d, p) 9Lig.s. transfer reaction at Ec.m. = 7.8 MeV. The
obtained reaction rate was lower than the limit from Ref. [7]
but significantly higher than the limit from Ref. [8]. A similar
extraction, but with the spectroscopic factor obtained from the
angular distribution of the 9Be(8Li, 9Li) 8Be transfer reaction
measured with a 27 MeV 8Li radioactive nuclear beam, was
reported in Ref. [10]. The obtained reaction rate was compa-
rable to that from Ref. [9].

There were several other studies focused on the structure
of 9Li. Notably, the 2H(8Li, p) 9Li reaction with 76 MeV
radioactive 8Li beam was studied with the goal to obtain
single-neutron spectroscopic factors for states in 9Li [11].
Spectroscopic factors for the 9Li ground state have also been
investigated through the d (9Li, t ) 8Li one-neutron transfer
reaction at E/A = 1.68 MeV [12]. The first excited state of 9Li
was studied by the inelastic scattering of 9Li from deuterons
[13]. A very recent experiment investigated the structure of
9C, the mirror of 9Li, using proton resonant scattering [14].

The 8Li(n, γ ) 9Li cross section and its reaction rate have
also been the focus of several theoretical investigations, based
on various approaches. In Refs. [4,15], the reaction rate was
estimated based on the existing information for other nuclei.
Calculations combining the shell model and the potential
model were reported in Refs. [16,17]. In both these studies,
multi-major shell model spaces were used. Their predicted
reaction rate, however, differed significantly, with the former
reporting the rate about five times higher than the latter. The
potential model was also applied to a simultaneous study
of the 8Li(n, γ ) 9Li reaction and its mirror, 8B(p, γ ) 9C [18]
using consistent potential parameters. This study revealed a
sensitivity of the 8Li(n, γ ) 9Li cross section to the strengths
of the potential. In Ref. [19], the neutron capture on 8Li was
investigated by means of the microscopic cluster model again
with a simultaneous study of the 8B(p, γ ) 9C mirror reaction.
In this approach, the Pauli principle is exactly taken into
account. The obtained reaction rate was higher than that of
Ref. [17]. However, contrary to present experimental knowl-
edge, the 5/2− state was predicted as bound. The Coulomb
dissociation of 9Li on heavy targets was calculated using a
potential model for 9Li in Refs. [20,21] and the principle of
detailed balance was then used to obtain the 8Li(n, γ ) 9Li
reaction rate with results reported in the two studies differing
by about 50%. More recently, this reaction was investi-
gated within the framework of the modified potential cluster
model with the state classification of nucleons according to
the Young tableaux [22]. Multiple potential parametrizations
were explored with calculated cross sections within the upper
limits obtained in Ref. [7]. Overall, predictions of the reaction
rate by various theoretical approaches span more than an order
of magnitude.

In this work, we report the first ab initio calculation of the
8Li(n, γ ) 9Li cross section. We apply the no-core shell model

with continuum (NCSMC) [23–25] and use chiral nucleon-
nucleon (NN) and three-nucleon (3N) interactions as input. In
particular, we employ the chiral Hamiltonian from Ref. [26]
shown to describe well both light and medium mass nuclei.
The NCSMC provides a unified description of bound and
scattering states and allows us to investigate bound states of
9Li as well as its low-lying resonances. While in the present
evaluation of the capture cross section we adjust calculated
thresholds to experimental values, no other experimental in-
formation is used unlike in previous studies.

The paper is organized as follows: In Sec. II we briefly
review the NCSMC formalism. In Sec. III, we present our
results for 8Li, 9Li, and for the capture cross section. Finally,
in Sec. IV we draw our conclusions.

II. THEORETICAL FRAMEWORK

The starting point of our approach is the microscopic
Hamiltonian

H = 1

A

A∑
i< j=1

( �pi − �p j )2

2m
+

A∑
i< j=1

V NN
i j +

A∑
i< j<k=1

V 3N
i jk , (1)

which describes nuclei as systems of A non-relativistic
point-like nucleons interacting through realistic inter-nucleon
interactions. Modern theory of nuclear forces is based on the
framework of chiral effective field theory (EFT) [27,28]. The
quantum chromodynamics (QCD) Lagrangian is expanded in
powers of Q/�χ , where Q is the characteristic momentum in
the nuclear process and �χ ≈ 1 GeV represents the hard scale
of the theory. Such an expansion allows a systematic improve-
ment of the nuclear interaction and provides a hierarchy of
the NN and many-nucleon forces which naturally arises in a
consistent scheme [29–32].

In the present work we adopt the NN + 3N chiral interac-
tion applied in Ref. [26], denoted as NN + 3N(lnl), consisting
of an NN interaction up to the fourth order (N 3LO) in the
chiral expansion [33] and a 3N interaction up to next-to-next-
to-leading order (N 2LO) using a combination of local and
non-local regulators. Even though all the underlying parame-
ters (known as low-energy constants or LECs) are determined
in A = 2, 3, 4 nucleon systems, this interaction provides a
very good description of properties of both light and medium
mass nuclei [26], including 100Sn [34]. The chiral orders of
the adopted NN and 3N interactions are not consistent: the
former is included up to order N 3LO while the latter is at
N 2LO. While the N 3LO 3N contribution has been shown to
be rather small [35], the consistency of the regulator and/or
in particular the use of a non-local versus local regulators
plays a significant role for medium mass nuclei [36]. Even
though the NCSMC is formulated in coordinate space, the
inclusion of non-local momentum-space NN and 3N inter-
actions is straightforward owing to the use of expansions in
harmonic oscillator (HO) basis states, for which the Fourier
transformation is trivial [25].

A faster convergence of our calculations with respect to the
many-body basis size is obtained by softening the chiral in-
teraction through the similarity renormalization group (SRG)
technique [37–41]. The SRG unitary transformation induces
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many-body forces, included here up to the three-body level.
The four- and higher-body induced terms are small at the
λSRG = 2.0 fm−1 resolution scale used in present calculations
[26]. To verify this, we performed NCSM calculations for sev-
eral p-shell nuclei varying λSRG between 1.6 and 2.2 fm−1 and
found ground-state energy differences of the order of 1%. Due
to the complexity of the NCSMC calculations, results reported
in this paper were obtained for a fixed λSRG = 2.0 fm−1 value.

In the NCSMC [23–25], the many-body scattering prob-
lem is solved by expanding the wave function on continuous
microscopic-cluster states, describing the relative motion be-
tween target and projectile nuclei (here 8Li and the neutron),
and discrete square-integrable states, describing the static
composite nuclear system (here 9Li). The idea behind this
generalized expansion is to augment the microscopic cluster
model, which enables the correct treatment of the wave func-
tion in the asymptotic region, with short-range many-body
correlations that are present at small separations, mimicking
various deformation effects that might take place during the
reaction process. The NCSMC wave function for 9Li is repre-
sented as∣∣∣�Jπ T

A=9,− 3
2

〉
=

∑
λ

cJπ T
λ

∣∣9Li λJπT
〉

+
∑

ν

∫
dr r2 γ Jπ T

ν (r)

r
Aν

∣∣∣�Jπ T
νr,− 3

2

〉
. (2)

The first term of Eq. (2) consists of an expansion over square-
integrable energy eigenstates of the 9Li nucleus indexed by
λ. The second term, corresponding to an expansion over the
antisymmetrized channel states in the spirit of the resonating
group method (RGM) [42–46], is given by∣∣∣�Jπ T

νr,− 3
2

〉
= [( ∣∣8Li λ8Jπ8

8 T8
〉 ∣∣n 1

2
+ 1

2

〉 )(sT )
Y�(r̂8,1)

](Jπ T )

− 3
2

× δ(r−r8,1)

rr8,1
. (3)

Here, the index ν represents all relevant quantum numbers
except for those explicitly listed on the left-hand side of the
equation, and the subscript − 3

2 is the isospin projection, i.e.,
(Z − N )/2. The coordinate �r8,1 in Eq. (3) is the separation
vector between the 8Li target and the neutron.

The translationally invariant eigenstates of the aggregate
(|9Li λJπT 〉) and target (|8Li λ8Jπ8

8 T8〉) nuclei are all obtained
by means of the no-core shell model (NCSM) [47–49] using
a basis of many-body HO wave functions with the same fre-
quency, �, and maximum number of particle excitations Nmax

from the lowest Pauli-allowed many-body configuration. In
this work we used the HO frequency of h̄� = 20 MeV found
as optimal for p-shell nuclei in Ref. [26].

The discrete expansion coefficients cJπ T
λ and the contin-

uous relative-motion amplitudes γ Jπ T
ν (r) are the solution of

the generalized eigenvalue problem derived by representing
the Schrödinger equation in the model space spanned by the
expansions of Eq. (2) [25]. The resulting NCSMC equations
are solved by means of the coupled-channel R-matrix method
on a Lagrange mesh [50–52].

In general the sum over the index ν in Eq. (2) includes
all the mass partitions involved in the formation of the com-
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FIG. 1. 8Li (circles) and 9Li (diamonds) ground-state energy
dependence on the size of the NCSM and for 9Li also NCSMC (trian-
gles) basis. Extrapolations to infinite Nmax with their uncertainties are
presented on the right. The experimental values are shown by dashed-
dotted lines. The SRG-evolved NN + 3N(lnl) chiral interaction [26]
at the resolution scale of λSRG = 2.0 fm−1 and the HO frequency
h̄� = 20 MeV was used. Experimental data are from Ref. [55].

posite system 9Li, i.e., 8Li +n, 7Li +n + n, 6He + 3H, etc.
Here, we limit the present calculations to the 8Li +n clus-
ters of Eq. (3), which are by far the most relevant for the
low-energy 8Li(n, γ ) 9Li capture. The channel states for the
other mass partitions are energetically closed and their effect
is in part accounted for by means of the first term in Eq. (2).
Applications of the NCSMC with three-body clusters and with
coupling between different mass partitions can be found, e.g.,
in Refs. [53] and [54], respectively.

III. RESULTS

A. NCSM calculations for 8,9Li

The present NCSMC calculations require as input NCSM
eigenstates and eigenenergies of 8Li and 9Li. For 8Li, we
performed calculations up to Nmax = 10, while for 9Li up to
Nmax = 8 and 9 for the negative- and positive-parity states,
respectively. The ground-state energy dependence on the basis
size for both isotopes is presented in Fig. 1. The NCSM
extrapolated 9Li ground-state energy of −42.1(5) MeV for the
interaction used here has been reported in Ref. [26]. Compar-
ing to the experimental value of −45.34 MeV, the calculation
underbinds by a few percent. For 8Li we find the ground-state
energy −39.4(3) MeV compared to the experimental −41.28
MeV. The theoretical uncertainty is due to the extrapolation
to the infinite basis size performed using the exponential
function E (Nmax) = E∞ + ae−bNmax and varying the number
of Nmax points.

Excitation energies of 8Li low-lying states are shown in the
left panel of Fig. 2. The convergence of the NCSM approach
for the experimentally bound 1+ state and the narrow 3+ res-
onance is quite good. The agreement with experiment is quite
satisfactory for the 1+ state while the excitation energy of the
3+ state is overestimated by several hundred keV. The second
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FIG. 2. Comparison between the NCSM-calculated and the experimental energy spectra of 8Li (left panel) and 9Li (right panel). The
SRG-evolved NN + 3N(lnl) chiral interaction [26] at the resolution scale of λSRG = 2.0 fm−1 was used. The HO basis frequency was h̄� = 20
MeV. Experimental data are from Ref. [55].

1+ state is a broad resonance in experiment. In the NCSM
calculations, this is reflected by rapid changes of the excitation
energy with the size of the model space Nmax. Compared to
the known levels, we predict additional states close to the 1+

2 ,
most notably a 0+ resonance. We note that both the predicted
0+ and the 2+ resonances have been previously investigated
by studying the n+7Li continuum [56] working within a pre-
decessor of the NCSMC approach, known as NCSM/RGM.
Experimental evidence for these resonances in 8B, the isospin
mirror of 8Li, has been reported in Ref. [57].

NCSM results for the low-lying excitation energies of
9Li with the interaction used here have been reported in
Ref. [26]. For completeness, we present the negative-parity
level energies in the right panel of Fig. 2. The convergence
of the experimentally bound 1/2− state is satisfactory, though
the experimental 1/2− − 3/2− splitting is underestimated in
the calculation. We find the 5/2−

1 state quite close to the
experimentally established 5/2− resonance. In addition, we
predict a 3/2− and a 7/2− level that might correspond to the

TABLE I. 8,9Li ground-state energies, quadrupole and magnetic
moments, and the M1 transition rate between their bound states. In
particular, B(M1; 1+→2+) and B(M1; 1/2−→3/2−) for 8Li and 9Li,
respectively, is shown. NCSM calculations have been performed with
the NN+3N(lnl) chiral interaction. Experimental results are from
Refs. [55,61].

Eg.s. [MeV] Q [e fm 2] μ [μN] B(M1) [μ2
N]

8Li
NCSM −39.4(3) +2.95(15) +1.48 4.164
Expt −41.28 +3.14(2) +1.654 5.0(16)
9Li
NCSM −42.1(5) −2.5(2) +2.91 3.23
Expt −45.34 −3.06(2) +3.437 N/A

experimentally observed resonances at 5.38 MeV and 6.43
MeV with undetermined spins and parities.

Calculated ground-state properties of the two isotopes and
the M1 transition rate between their bound states are summa-
rized in Table I. Only one-body transition operators were used.
Overall agreement with experiment is quite reasonable. The
magnetic dipole moment discrepancies could be attributed to
the missing two-body currents [58] while the underestimation
of the quadrupole moments is most likely due to the limited
basis size. The calculations should also be in general improved
by the SRG evolution of the transition operators [34,59,60].

For the microscopic cluster component of the NCSMC
expansion, Eq. (3), we used two NCSM eigenstates corre-
sponding to the two 8Li bound states, the 2+ ground state
and the 1+ excited state. In principle, we could have included
also the experimentally narrow 3+ state. However, since our
focus is on the low-energy 8Li(n, γ ) 9Li radiative capture,
the impact of the 3+ state is expected to be negligible while
the technical complexity of the calculations would increase
substantially. As for the composite 9Li states entering the
expansion in Eq. (2), we used the eight lowest negative-parity
and six lowest positive-parity NCSM eigenstates of 9Li with
total angular momentum J ∈ {1/2, 3/2, 5/2, 7/2} and isospin
T = 3/2.

B. NCSMC results for 9Li

We performed NCSMC calculations for 9Li for Nmax =
4, 6, 8 basis spaces. The 9Li NCSM positive-parity states
entering the expansion in Eq. (2) were obtained in Nmax+1
spaces, i.e., up to Nmax = 9. We found two bound states,
the 3/2− ground state and the 1/2− excited state, in agree-
ment with experiment. The NCSMC ground-state energies are
shown in Fig. 1 and the separation energies with respect to
the 8Li +n threshold for both the 3/2− and 1/2− states are
given in Table II. NCSMC calculations increase the binding
energies compared to the NCSM results at any fixed Nmax due
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kinetic energy of 8Li +n in the center-of-mass frame.

to the inclusion of the cluster basis component. The separation
energies are quite stable with varying Nmax. The calculated
1/2− separation energy is quite close to the experimental one
while the ground-state separation energy is underestimated
by about 1.2 MeV. This could be due to a weaker spin-orbit
strength and/or missing strength in the T = 3/2 part of the
3N interaction.

Below the 8Li +n energy of 4 MeV in the center of
mass, we find three P-wave resonances corresponding to two
3/2− and a 5/2− state. Corresponding eigenphase shifts and
selected partial wave phase shifts are shown in Figs. 3. The

TABLE II. 9Li bound-state energies, in MeV, with respect to
the 8Li +n threshold. NCSMC calculations have been performed
with the NN+3N(lnl) chiral interaction [26] at the resolution scale
of λSRG = 2.0 fm−1. The HO basis frequency was h̄� = 20 MeV.
Experimental data are from Ref. [55].

Jπ T Nmax = 4 Nmax = 6 Nmax = 8 Expt.

1/2− 3/2 −0.98 −1.09 −1.14 −1.37
3/2− 3/2 −2.76 −2.94 −2.81 −4.06

convergence with respect to Nmax is quite satisfactory, es-
pecially for the two sharper resonances. We note that the
eigenphase shifts are obtained from the S-matrix eigenvalues
while the partial wave phase shifts are obtained from diagonal
matrix elements of the S-matrix.

In the leftmost three panels of Fig. 4, we show the bound-
state energies, in addition to the energies and widths of the
three resonances for the Nmax = 4, 6, 8 model spaces. These
are shown alongside available experimental data. The numer-
ical values for the Nmax = 8 space are then given in Table III.
Selected eigenphase shifts and S-wave phase shifts obtained
in the Nmax = 8 space are presented in Fig. 5. It is clear
that the calculated 5/2− resonance is a good match to the
experimentally known resonance at 4.296 MeV. We predict
that the 5.38 MeV level is 3/2−. On the other hand, the exper-
imentally very narrow 6.43 MeV level does not correspond to
our calculated very broad second 3/2−. Rather, it presumably
corresponds to the calculated 7/2− state shown in the right
panel of Fig. 2 and in the top panel of Fig. 5 as an extremely
narrow resonance. For a more realistic description of this
state, we would most likely need to include the 3+ state of 8Li
in the NCSMC cluster basis of Eq. (3) [62]. The 8Li 3+ state
that appears at 2.255 MeV in experiment (see the left panel of
Fig. 2) would obviously also impact other higher lying—and
in particular higher spin—resonances, e.g., the 7/2+ and the
second 5/2+, shown in Fig. 5.

The decreasing 3/2− and 1/2− eigenphase shifts that start
at δ = 0o in Fig. 5 correspond to the two bound states. On
the other hand, all calculated S-wave phase shifts and their
associated eigenphase shifts are rising at their respective

FIG. 4. Energies of 9Li bound states and low-lying resonances with respect to the 8Li +n threshold. The leftmost three panels show NCSMC
calculations at Nmax = 4, 6, and 8. The fourth panel shows the NCSMC-pheno Nmax = 8 calculation. The NN + 3N(lnl) chiral interaction was
used. Coloured bars represent the widths of resonances. Experimental data in the rightmost panel are from Ref. [55]. Question marks are used
where data is unavailable.
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TABLE III. 9Li bound-state and resonance energies with respect
to the 8Li +n threshold with the corresponding resonance widths. All
values in MeV. NCSMC and NCSMC-pheno calculations have been
performed with the NN+3N(lnl) chiral interaction in the Nmax = 8
space. Experimental data are from Ref. [55].

NCSMC NCSMC-pheno Expt

Jπ T E � E � E �

3/2− 3/2 2.65 2.5(4) 2.62 2.5(4) N/A N/A
3/2− 3/2 1.41 0.59 1.37 0.61 1.32a 0.60(10)a

5/2− 3/2 0.67 0.56 0.23 0.11 0.23 0.10(3)
1/2− 3/2 −1.14 – −1.37 – −1.37 –
3/2− 3/2 −2.81 – −4.07 – −4.06 –

aExperimental spin and parity assignment uncertain.

thresholds, i.e., the corresponding scattering lengths are neg-
ative. In particular, for the 6S5/2(2+) partial wave we find the
scattering length of −0.44 fm while for 4S3/2(2+) we find
−0.13 fm. We note that a broad 5/2+ T = 3/2 resonance in
9Be, an isospin analog of a resonance in 9Li, was very recently
reported in Ref. [63]. It was found below the T = 3/2 5/2−
resonance, the isospin analog of the 4.296 MeV resonance in
9Li.

Before proceeding with the calculation of the capture cross
section, the NCSMC results were phenomenologically ad-
justed to reproduce experimental thresholds and positions of
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known resonances in an approach known as NCSMC-pheno
[64,65]. This step is necessary to obtain a quantitative eval-
uation of the capture cross section. The resulting evaluation
embodies an advanced microscopic understanding of the un-
derlying nuclear structure and reaction mechanism obtained
from a chiral NN + 3N Hamiltonian, but is no-longer a purely
theoretical prediction. The phenomenological modifications
are rather small and were accomplished first by adjusting
the 8Li excitation energy of the 1+ state to its experimental
value and, second, by fitting the 9Li NCSM input energies
to reproduce the experimental 9Li energies in the NCSMC
calculations. We performed the NCSMC-pheno calculations
for the Nmax = 6 and Nmax = 8 model spaces. As seen in the
left panel of Fig. 2, our calculated excitation energy for the
8Li 1+ state is quite close to experiment. Consequently, it
only needs a −45 keV adjustment in the Nmax = 8 calculation.
Next, we adjust the lowest NCSM 9Li eigenenergies in the
3/2−, 1/2− and 5/2− channels (used as input in the NCSMC
calculation) to reproduce the experimental separation energies
of the 3/2− and 1/2− bound states and the 5/2− resonance
centroid energy. As seen in the middle panel of Fig. 4, the
NCSMC 1/2− energy is already quite close to experiment,
therefore a shift of −0.3 MeV in the lowest 1/2− NCSM
eigenvalue is sufficient to reproduce the separation energy.
For the 3/2− and 5/2− channels, we need to modify the
eigenvalues by about −1 MeV, i.e., 2.5% of the calculated
ground-state (g.s.) energy.

The resulting NCSMC-pheno bound-state energies, cen-
troids and widths of the lowest three calculated resonances
and selected eigenphase shifts for the Nmax = 8 model space
are presented in the fourth panel of Fig. 4 and in Fig. 6, respec-
tively. Due to the negligible adjustment of the 8Li 1+ energy,
channels other than the 1/2−, 3/2−, 5/2− are basically un-
modified compared to the original NCSMC calculation.

In Table III, we summarize bound-state energies, as well
as centroid energies and widths of the lowest three calculated
resonances obtained in the Nmax = 8 NCSMC and NCSMC-
pheno calculations. Within the table, these are compared
to available experimental data. The resonance energies and
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width have been determined from the eigenphase shift deriva-
tives as well as from an S-matrix analysis in the complex
momentum space. The two methods agree very well for all
the resonance energies and the widths of the two sharper
resonances while they give a few hundred keV differences for
the width of the broad 3/2− resonance. This could be inter-
preted as a theoretical uncertainty, indicated in the table. We
re-iterate that only the bound-state energies and the 5/2− res-
onance energy were fitted in the NCSMC-pheno calculations.
The widths of the resonances are predictions as well as the
energies of the two 3/2− states. Our calculations reproduce
very well the experimental properties of the 5/2− resonance,
and the first calculated 3/2− resonance matches the energy
and width of the experimental 5.38 MeV state.

A realistic description of the structure of the 9Li ground
state is essential for the description of the capture reaction. In
Fig. 7, we show the cluster form factors (overlap functions)
for the 9Li 3/2− g.s., defined by r 〈�Jπ T

νr,− 3
2
|Aν |�Jπ T

A=9,− 3
2
〉 with

the states from Eqs. (2) and (3). The dashed lines represent
the NCSM cluster form factors that serve as input to the NC-
SMC equations [24,25]. While the NCSMC-pheno overlaps
extend beyond n- 8Li separations of 10 fm, the NCSM ones
are basically zero starting at 7 fm. By integrating the over-
lap functions squared, one obtains spectroscopic factors (SF),
which we present in Table IV together with the asymptotic
normalization coefficients (ANCs). Although the NCSM and
NCSMC-pheno cluster form factors differ, the spectroscopic
factors are very similar. Still, we observe some reduction
when continuum microscopic cluster states are included. The
9Li(g.s.)↔ 8Li(g.s.)+n NCSMC-pheno total SF, 1.00, is in
good agreement with the experimental value of 0.90(13) re-
ported in Ref. [11]. Smaller SFs were reported in Refs. [9]
[0.68(14)], [10] [0.62(13)], and [12] [0.65(15)]. Overall,
our total NCSMC-pheno SFs, 1.00 [9Li(g.s.)↔ 8Li(2+)+n]
and 0.48 [9Li(g.s.)↔ 8Li(1+) + n], are in excellent agree-
ment with those obtained within the Variational Monte Carlo
(VMC) method with Argonne and Illinois interactions, 0.97

TABLE IV. 9Li 3/2− g.s. asymptotic normalization coefficients
(ANC) obtained in the NCSMC-pheno calculations and spectro-
scopic factors (SF) obtained in the NCSM and NCSMC-pheno.
Calculations were performed in the Nmax = 8 space. See Fig. 7 for
other details.

ANC [fm−1/2] SF NCSM SF NCSMC-pheno

4P3/2(2+) 1.026 0.64 0.59
6P3/2(2+) 0.995 0.41 0.41
2P3/2(1+) −1.009 0.39 0.37
4P3/2(1+) −0.663 0.11 0.11

and 0.46, respectively [66,67]. Our calculated ANC values can
be compared to the experimental determination of (ANC)2 =
1.33(33) fm−1 obtained from the angular distribution analysis
of the 8Li(d, p) 9Ligs transfer reaction [68]. A slightly smaller
(ANC)2 = 0.92(14) fm−1 was reported in Ref. [69] which is
in excellent agreement with our calculations.

C. 8Li(n, γ ) 9Li radiative capture

We use a standard one-body electromagnetic current in
the long wave length approximation taking into account E1,
M1, and E2 multipolarities. In particular, the electric dipole
operator can be cast in the form

D̂ = e

√
4π

3

A∑
i=1

τ z
i

2
riY10(r̂i ), (4)

with τ z
i and �ri = rir̂i representing the isospin third component

and center of mass frame coordinate of the ith nucleon. This
form of the E1 transition operator includes the leading effects
of the meson-exchange currents through the Siegert,s theo-
rem. Two-body currents are expected to play a role for M1
transitions [58]. Since the capture proceeds dominantly by E1
radiation, we neglect the M1 two-body currents. As we uti-
lize an SRG evolved chiral Hamiltonian, the electromagnetic
transition operators should also be consistently SRG evolved.
Such step is not taken in this work. In general, the SRG
transformation is mostly driven by short range correlations in
the NN interaction and its effect on long-range operators is
rather small [34,59,60].

Our calculated 8Li(n, γ ) 9Li capture cross section is pre-
sented in Fig. 8. We compare NCSMC-pheno results obtained
in the Nmax = 8 and Nmax = 6 spaces. Overall, we find a good
stability of the calculations. By increasing the model space,
the cross section gets reduced slightly and the difference can
serve as an estimate of the uncertainty. The capture to the
9Li ground state dominates the total cross section. The ex-
cited state contribution is suppressed by more than an order
of magnitude. In the low-energy region displayed in Fig. 8,
the non-resonant E1 capture is the leading contribution. The
E2/M1 capture enhanced by the 5/2− resonance is visible as
a bump around 0.23 MeV.

Our calculated cross section is on the higher side but
still within the limits derived from the 1998 NSCL Coulomb
dissociation experiment [7] shown in Fig. 8 by black points
and vertical lines. These limits should be compared to the E1
contribution to the capture to the ground state.
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The 8Li(n, γ ) 9Li reaction rate obtained from our total cap-
ture cross section is shown in Fig. 9. In addition, we present
the contribution of the capture to the ground state to the overall
reaction rate. Our results are smaller by a factor of 4 and 2
compared to values reported in Refs. [15] and [16], respec-
tively. However, they are higher by a factor of 2 compared to
the recent potential cluster model calculations from Ref. [22].
One of the reasons for the smaller reaction rate obtained in
the latter calculations is the lower value of the spectroscopic
factor used as input for the potential cluster model calculations
compared to the spectroscopic factor obtained as an output of
our many-body calculations.
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FIG. 9. 8Li(n, γ ) 9Li reaction rate obtained in the Nmax = 8
NCSMC-pheno calculations. The upper line shows the total reaction
rate, and the lower line shows the ground-state contribution.

IV. CONCLUSIONS

We applied the ab initio NCSMC to study properties of
9Li bound states and low-lying resonances, and calculated
the 8Li(n, γ ) 9Li cross section. Chiral nucleon-nucleon and
three-nucleon interactions from Refs. [33] and [26] served as
input for our calculations, though for the purpose of predicting
the capture cross section we adjusted the thresholds and the
position of the lowest resonance to their experimental values.

Our calculations reproduce experimentally known bound
states as well as the lowest 5/2− resonance of 9Li. We predict
the 5.38 MeV resonance to be a 3/2− state. In addition to the
very narrow 7/2− resonance, corresponding most likely to the
experimental 6.43 MeV state, we find several other broad low-
lying resonances. In particular, at 2.6 MeV above the 8Li +n
threshold we find a broad 3/2− resonance with the width of
2.5 MeV. The description of the 7/2− resonance and of the
higher lying 7/2+ and 5/2± resonances can be improved by
including the 8Li 3+ state in the NCSMC trial wave function
[Eqs. (2) and (3)]. We plan to perform such calculations in the
future.

Our calculated 8Li(n, γ ) 9Li capture cross section is on the
higher side but within the limits derived from the 1998 NSCL
Coulomb dissociation experiment. It is dominated by the di-
rect E1 capture to the ground state with a resonant contribution
around 0.23 MeV due to E2/M1 radiation enhanced by the
5/2− resonance.

The reaction rate obtained from our calculated capture
cross section is lower than early evaluations. However, it is
higher by about a factor of two compared to recent poten-
tial cluster model calculations. Our results indicate that the
8Li(n, γ ) 9Li reaction might play a more important astrophys-
ical role than recently considered.

Results presented in this paper demonstrate current capa-
bilities of the NCSMC. With high-precision chiral NN + 3N
interactions as the input, we are able to predict with con-
fidence properties of light nuclei even with a large neutron
excess. NCSMC calculations of several other radiative capture
reactions important for astrophysics including 7Be(p, γ ) 8B,
11C(p, γ ) 12N, and 14C(n, γ ) 15C are under way. In the future
we plan on quantifying the uncertainty related to the conver-
gence of the chiral expansion (before and after the application
of phenomenological corrections) by extending the methodol-
ogy of Ref. [70] to capture cross sections.
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