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A microscopic description of the interaction of atomic nuclei with external electroweak probes is required
for elucidating aspects of short-range nuclear dynamics and for the correct interpretation of neutrino oscillation
experiments. Nuclear quantum Monte Carlo methods infer the nuclear electroweak response functions from
their Laplace transforms. Inverting the Laplace transform is a notoriously ill-posed problem; and Bayesian
techniques, such as maximum entropy, are typically used to reconstruct the original response functions in the
quasielastic region. In this work, we present a physics-informed artificial neural network architecture suitable
for approximating the inverse of the Laplace transform. Utilizing simulated, albeit realistic, electromagnetic
response functions, we show that this physics-informed artificial neural network outperforms maximum entropy
in both the low-energy transfer and the quasielastic regions, thereby allowing for robust calculations of electron
scattering and neutrino scattering on nuclei and inclusive muon capture rates.
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I. INTRODUCTION

Electron scattering experiments are powerful tools to
simultaneously investigate the short- and long-range many-
body dynamics of atomic nuclei. These experiments con-
tributed to demonstrating the limitations of an independent
particle picture of the nucleus that fails to provide a fully
quantitative description of atomic nuclei [1]. At large mo-
mentum transfer, the large excess of neutron-proton correlated
pairs with respect to the proton-proton and neutron-neutron
pairs has highlighted the importance of the tensor component
of the nuclear interaction and the interplay between nucle-
onic and partonic degrees of freedom [2–4]. The field has
experienced a renewed interest also in view of its interplay
with high-precision measurements of neutrinos and their os-
cillations [5]. This is the main focus of the accelerator-based
neutrino oscillation program, which includes ongoing experi-
ments such as NOvA [6] and T2K [7] and planned ones such
as DUNE [8] and Hyper-K [9]. Nuclear targets are utilized in
the detectors to increase the event rate. Hence, the determi-
nation of oscillation parameters requires accurate theoretical
calculations of neutrino-nucleus interactions in a broad range
of energy spanning from tens of MeV to a few GeV, in which
a variety of reaction mechanisms are at play [10–12]. We
also note that neutrino experiments utilizing the liquid argon
time projection chamber technology have reached a degree of
sophistication suitable for identifying short-range correlated
pairs of nucleons [13].

In the low-energy regime, the inclusive lepton-nucleus
cross section is dominated by coherent scattering, excitations

of low-lying nuclear states, and collective modes. Coherent
elastic neutrino-nucleus scattering (CEνNS), recently com-
puted within nuclear ab initio approaches [14], is relevant to
test standard-model predictions, for supernova physics, and
for enabling validation of dark-matter detector background
and detector-response models [15]. At energies on the order
of hundreds of MeV, the leading mechanism is quasielastic
(QE) scattering, in which the probe interacts primarily with
individual nucleons bound inside the nucleus. Corrections to
this leading mechanism arise from processes in which the lep-
ton couples to interacting nucleons, via nuclear correlations
and two-body currents.

The inclusive lepton-nucleus scattering cross section is
completely determined by the electroweak response func-
tions, which hold all information about the dynamics of the
nuclear target. The Green’s function Monte Carlo (GFMC)
method [16] has been successfully employed to compute
the electromagnetic, neutral-current, and charged-current re-
sponse functions of 4He and 12C in the QE region, up to
moderate values of the momentum transfer [17–20] and the
muon capture rates of 4He and 3H [21]. These calculations
have unambiguously demonstrated the importance of properly
treating nuclear correlations and meson exchange currents
even for QE kinematics. Within this approach, the electroweak
response functions are inferred from their Laplace transforms,
denoted as Euclidean responses, that are estimated during the
GFMC imaginary time propagation. Retrieving the energy
dependence of the response functions from their Euclidean
counterparts is nontrivial.
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The maximum entropy method (MaxEnt) [22,23] has been
extensively employed to retrieve the energy dependence of
the electroweak response functions. Despite its success in the
QE region, MaxEnt appears to be inadequate to precisely
reconstruct the low-energy structure of the nuclear response
functions. In Ref. [18], experimental inputs on the low-lying
nuclear transitions have been utilized to properly describe
the longitudinal electromagnetic responses of 12C in the
low-energy region. A comparison between GFMC and exact
Faddeev results for the 3H muon capture rate has contributed
to exposing the shortcomings of MaxEnt in reconstructing the
charged-current response functions near the nuclear breakup
threshold, corresponding to energies of a few MeV [21]. In
addition, although heuristics have been used, to the best of our
knowledge there is no rigorous way to propagate the statisti-
cal uncertainties of the Euclidean response into the response
function and to quantify the systematic errors due to the ap-
proximate inversion of the Laplace transform. These errors
would propagate into the GFMC estimates of lepton-nucleus
cross sections and are critical for informative comparisons
with experiments.

In recent years, an increase in available computing re-
sources has been accompanied by a prodigious rise of
techniques based on machine learning (ML), which are
now ubiquitous in physics [24]. Within low-energy nuclear
physics, artificial neural networks (ANNs) have been used
to devise a global statistical model for β− half-lives [25], to
determine nuclear masses and charge radii [26,27], as well
as to estimate ground state energies and radii of nuclei by
using results from no-core shell model and coupled-cluster
calculations [28,29]. Gaussian process emulators were used
in Ref. [30] for Bayesian model mixing in order to predict
bound nuclides between silicon and titanium. The authors of
Ref. [31] represent the deuteron’s wave function with ANNs.
In Ref. [32] ANNs were used to model the Jastrow correlator
of A � 4 nuclei. Several works have demonstrated that ML
approaches are suitable for solving inverse problems [33,34].
In particular, Refs. [35,36] utilized ANNs to recover the
electron single-particle spectral density in the real frequency
domain from the fermionic Green’s function in the imaginary
time domain. The same problem was tackled in Ref. [37] by
utilizing an Adams-Bashforth residual ANN. In both cases,
the ANN approaches have been found to outperform MaxEnt
implementations.

In this work we develop a novel ANN architecture suitable
for approximately inverting the Laplace transform of realistic
nuclear electromagnetic response functions, similar to those
computed with the GFMC method. The simulated responses
utilized in the training dataset exhibit a sharp Gaussian peak
corresponding to the low-energy elastic transition and an
asymmetric broad peak in the QE region. The positions,
heights, and widths of these two peaks are modeled con-
sistently with their energy and momentum transfer behavior
as measured by electron-scattering experiments. In contrast
to previous approaches, we incorporate physics-grounded
constraints into the neural-network architecture and use an
entropic cost function. We demonstrate an improved accuracy
of the inversion in the low-ω region with increased robust-
ness to noise as compared with MaxEnt techniques. This

robustness is especially relevant in view of applications of
nuclear quantum Monte Carlo methods to the calculations of
the electroweak response functions of larger nuclei relevant to
the neutrino-oscillation program, including 16O and 40Ar. One
such approach, the auxiliary field diffusion Monte Carlo [38],
suffers from a more severe sign problem than the GFMC; this
will in turn result in noisier Euclidean response functions.

This work is organized as follows. In Sec. II we state the
problem to be solved and discuss the relevant features of the
nuclear electromagnetic responses. In Sec. III we describe our
ML algorithm. In Sec. IV we present our results, and in Sec. V
we discuss our conclusions.

II. NUCLEAR RESPONSES

In the one-photon exchange approximation, the inclusive
electron-nucleus scattering cross section can be expressed
in terms of the longitudinal and transverse response func-
tions, RL(q, ω) and RT (q, ω), respectively, where q and ω are
the electron momentum and energy transfers. The response
functions encode all information on nuclear structure and
dynamics and are defined as

Rα (q, ω) =
∑

f

〈0| j†
α (q, ω)| f 〉〈 f | jα (q, ω)|0〉

× δ(E f − ω − E0), (1)

for α = L, T . In Eq. (1), |0〉 and | f 〉 represent the initial
and final nuclear states of energies E0 and E f , respectively,
and jL(q, ω) and jT (q, ω) are the electromagnetic charge and
current operators, respectively.

A direct calculation of Rα (q, ω) requires evaluating all of
the individual transition amplitudes induced by the charge and
current operators and is therefore impractical except for very
light nuclear systems [39,40]. The use of integral transform
techniques has proven helpful in circumventing these diffi-
culties. One such approach is based on the calculation of the
Euclidean response [41], which corresponds to the Laplace
transform

Eα (q, τ ) =
∫ ∞

0
dω e−ωτ Rα (q, ω). (2)

Fixing the intrinsic energy dependence of the charge and cur-
rent operators to the QE peak, ωQE =

√
q2 + m2 − m, where

m denotes the mass of the nucleon, one can express the Eu-
clidean responses as ground-state expectation values

Eα (q, τ ) = 〈0| j†
α (q, ωQE)e−(H−E0 )τ j(q, ωQE)|0〉,

where H is the nuclear Hamiltonian. These expectation values
can be evaluated by using the GFMC method on a uniform
grid of nτ imaginary-time points [17,41]. A set of noisy
estimates for Eα (q, τi ) can be obtained by performing inde-
pendent imaginary-time propagations, from which the average
Euclidean response Ēα (q, τi ) and the covariance Ci j between
the data at τ = τi and τ = τ j can be readily estimated [18].
Note that, in general, the covariance matrix C is nondiagonal
because of correlations among the imaginary-time points.
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Problem statement and the MaxEnt approach

In addition to the imaginary time T = [τ1, . . . , τnτ
], we

discretize the continuous variables ω on nω grid points and
thus define � = [ω1, . . . , ωnω

] and the kernel K (ωi, τ j ) =
e−ωiτ j 	ωi, where 	ωi is the discretization width at ωi. Drop-
ping, for simplicity, the momentum transfer dependence and
the subscript α of the response functions, we can rewrite the
Laplace transform of Eq. (2) in the compact matrix form

E (T ) = K (�, T )R(�),

where E (T ) ∈ Rnτ , R(�) ∈ Rnω , and K (�, T ) ∈ Rnτ ×nω . The
response function can thus be formally (for an appropriate
definition of ·−1) recovered by

R(�) = K (�, T )−1E (T ). (3)

However, the inversion of K (�, T ) is numerically unsta-
ble because of the exponentially small tails in the kernel
function for large ω. Retrieving the response function from
noisy GFMC estimates of E (τ ) involves significant difficulty;
widely different response functions can correspond to very
similar Euclidean responses.

Several algorithms have been developed for approximately
inverting the Laplace transform by using prior knowledge
about the solution. Arguably the most robust and popular
of these is MaxEnt [22,23], which has been used to recon-
struct the (smooth) energy dependence of the nuclear response
functions around the QE peak [18–20]. Within MaxEnt, the
solution of the inverse problem is the response function that
maximizes the posterior probability P(R|E ) [i.e., the condi-
tional probability of R(�) given E (T )]. Bayes’ theorem states
that the posterior probability is proportional to the product
P(E |R) × P(R), where P(E |R) is the likelihood function and
P(R) is the prior probability, containing information about the
response function to be reconstructed. Arguments based on
the central limit theorem show that the asymptotic limit of the
likelihood function is given by P(E |R) ∝ exp(−χ2/2), where

χ2 =
nτ∑

i, j=1

[E (τi ) − Ē (τi )]C
−1
i j [E (τ j ) − Ē (τ j )]. (4)

Since the response functions are positive and normalizable,
they can be interpreted as probability distributions. The princi-
ple of maximum entropy states that the values of a probability
distribution are to be assigned by maximizing the entropy,
which is defined by

S =
nω∑

i=1

[
R(ωi ) − M(ωi ) − R(ωi ) ln

(
R(ωi )

M(ωi )

)]
	ωi. (5)

The positive-valued M(ω) is the default model and encodes
our prior knowledge about R(ω) in the absence of data. The
entropy measures how much the response function differs
from the model. It vanishes when R(ω) = M(ω) and is nega-
tive when R(ω) �= M(ω).

MaxEnt improves upon the standard χ2 minimization by
using the prior information, whereby R(ω) can be interpreted
as a probability distribution. For given Ē (τi ), Ci j , and default
model M(ωi ), the response functions are found minimizing

the quantity

Q = 1
2χ2 − αS, (6)

where α is a fixed parameter that controls the relative im-
portance between the entropy and the error terms. Despite its
tendency to underfit the data [42], in this work we adopt the
historic MaxEnt approach [43], which consists in choosing α

so that χ2 = nτ . On the other hand, the more sophisticated
classic MaxEnt [44] and Bryan MaxEnt [22]—both relying
on the probability P(α|E ) to determine α—tend to overfit the
data since P(α|E ) is evaluated only approximately in practice
[45,46]. In general, the arbitrariness in choosing α prevents
a robust reconstruction of the rich structure that character-
izes the low-ω region of R(ω), without running the risk of
overfitting E (τ ) and hence causing spurious oscillation in the
reconstructed response function.

III. PHYSICS-INFORMED NEURAL NETWORK

As mentioned in the preceding section, the inversion of
K (�, T ) is numerically unstable, and retrieving R(�) from
E (T ) is an ill-posed inverse problem. To overcome this
difficulty, we seek an approximate solution by designing a
physics-informed neural network, which we dub “Phys-NN,”
that is suitable for finding a controlled approximation R̂(�)
for the right-hand side of Eq. (3).

A. The Phys-NN model

To model R̂(�), we start by constructing a set R of basis
functions that takes into account the physics of the problem,
while being as broadly applicable as possible. Note that each
term in the matrix K (�, T ), is proportional to e−τ jωi and
therefore a reasonable choice to capture its structure is the
Gaussian kernel basis, defined as

φ(x, μ, σ ) = 1√
2πσ

e− (x−μ)2

2σ2 , x ∈ R. (7)

Finding the location and the scale of the Gaussian kernel,
denoted by μ ∈ R and σ > 0, respectively, is part of the
ML training problem. The first layer of the neural network,
whose architecture is displayed in Fig. 1, takes as input the
nτ -dimensional vector E (T ). To form a basis for each E (τ ),
we apply nη Gaussian units of the form (7), where nη is a
hyperparameter. We then contract these Gaussian units with
the resulting hidden layer outputs multiplied by weights wi, j

to obtain the output associated with ωi. Formally, the Phys-NN
is given by

f (E (T ); θ) =

⎡
⎢⎣

∑nτ

j=1 W1, j
∑nη

k=1 φ(E (τ j ), μ j,k, σ j,k )
...∑nτ

j=1 Wnω, j
∑nη

k=1 φ(E (τ j ), μ j,k, σ j,k )

⎤
⎥⎦,

(8)

where we use θ = (μ, σ,W ) to denote the collection of
training parameters μ, σ ∈ Rnτ ×nη and W ∈ Rnω×nτ . We can
express Eq. (8) componentwise by

f (ωi ) =
nτ∑
j=1

Wi, j

nη∑
k=1

φ(E (τ j ), μ j,k, σ j,k ), i = 1, . . . , nω.
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FIG. 1. Schematic overview of the Phys-NN approach.

In order to ensure that the response function is positive for
all ω ∈ �, the output is passed through an exponential func-
tion, and the final approximation of the response functions is
given by

R̂(�; θ) = 1

N0
e f (E (T );θ).

The normalization factor N0 ensures that the integral of
R̂(�; θ)) coincides with E (τ0), so that the output of the
Phys-NN automatically satisfies the sum rule of the response
function.

B. Simulated data

To train the Phys-NN, we use two distinct datasets of
physically meaningful R(ω), E (τ ) pairs that are simulated
as follows. The responses belonging to the first dataset—a
few of which are displayed in Fig. 2—are characterized by
a single asymmetric peak, corresponding to the QE reaction

FIG. 2. Training data examples of response functions exhibiting
a single asymmetric QE peak.

mechanism, modeled by a skew-normal distribution

RQE(ω) = NQE φ(ω,ωQE, σQE)�

(
α(ω − ωQE)

σQE

)
,

where φ(ω,ωQE, σQE) is the Gaussian density defined in
Eq. (7) and

�(x) = 1

2

[
1 + erf

(
x√
2

)]

is the Gaussian’s cumulative distribution function. The values
of NQE, σQE, and α are obtained according to arguments based
on the scaling of the response functions [47].

First, we sample the variable q, corresponding to the mo-
mentum transfer, from a uniform distribution between 100
and 700 MeV. Consistent with nonrelativistic calculations
of the electromagnetic response functions, we assume that
ωQE = q2/(2mN ) + ε, where mN is the nucleon mass and
ε = 25 MeV is the nuclear binding. A suitable definition for
the QE region corresponds to the interval ψ = [−1, 1] for
the scaling variable. Hence, in the nonrelativistic case, the
width of the QE peak is approximately 2qkF /mN , and we
take the Fermi momentum to be kF = 180 MeV, according to
Ref. [48]. In the simulated responses, we encode this behavior
by allowing 20% fluctuations of σQE around its central value
2qkF /mN . The height of the quasielastic peak is NQE/σQE

and NQE guarantees that RQE(ω) is normalized to unity. The
skewness parameter α is randomly sampled between 2 and 10;
the normal distribution is recovered for α = 0. This interval
has been chosen to reproduce the typical asymmetry displayed
by the electromagnetic responses of light nuclei.

As shown in Fig. 3, the responses belonging to the sec-
ond dataset exhibit two distinct peaks, corresponding to the
elastic (EL) and QE transitions, namely, REL(ω) + RQE(ω).

035502-4



MACHINE-LEARNING-BASED INVERSION OF NUCLEAR … PHYSICAL REVIEW C 103, 035502 (2021)

FIG. 3. Training data examples of response functions character-
ized by an EL narrow peak in addition to the QE peak.

The elastic transition contributes in the low-ω region, and it
is characterized by a δ-like peak centered at ωEL = q2/(2MA),
with MA ≈ 4mN being the mass of the 4He nucleus. We model
the EL response with a Gaussian distribution

REL(ω) = φ(ω,ωEL, σEL),

where σEL is uniformly sampled between 5 and 10 MeV to
get a much narrower peak than the QE one. The integrated
strength of the EL transition is proportional to the square
of the elastic transition form factor FEL(q). Inspired by the
sum-of-Gaussians parametrizations of FEL(q) in Ref. [49],
we sample NEL proportional to e− γ

2 q2
, where we take γ =

400 MeV to reproduce the low-momentum behavior of FEL(q)
for the 4He nucleus. A direct consequence of this choice is that
the strength of the EL peak decreases with the momentum
transfer. Consistent with the one-peak case, we enforce the
normalization

E (τ0) =
∫

dω[REL(ω) + RQE(ω)] = 1.

The response functions are conveniently tabulated on a
uniform ω grid between 0 and 2 GeV with nω = 2000. The
corresponding Euclidean responses are obtained by numer-
ically integrating R(ω). Since the simulated response are
smooth functions of ω, the numerical integration error on the
Euclidean responses is smaller than 10−5. To mimic the statis-
tical error of GFMC calculation, we “corrupt” the simulated
E (τ ) by adding stochastic noise [36]:

E (τi ) + εi, (9)

where εi are independent samples from a Gaussian distribu-
tion with mean zero and standard deviation σ . Consistent
with GFMC calculations of the Euclidean electromagnetic
responses of 4He, which typically involve the sampling
of ≈2.5 × 106 GFMC configurations for each value of
imaginary-time, we take σ = 10−4 in most of our tests.

For each of the one-peak and two-peaks cases, we generate
a total of 500 000 pairs (Rk (�), Ek (T )) ∈ Rnω+nτ of responses
and corresponding Euclidean responses, which we then parti-
tion into training (T ), validation (V ), and test/out-of-sample
(O) datasets. The one-peak and two-peaks test datasets com-
prise 1000 pairs each; the combined test dataset is just the
union of these two sets. We use 80% and 20% of the remain-
ing data for training the network and validation, respectively.
Since MaxEnt is relatively slow—taking about 5 seconds to

perform one inversion of the Laplace transform—our com-
parison is limited to the test dataset.

C. Training

Values for the parameters θ are found by the standard
supervised learning approach of approximately solving

min
θ

1

|T |
∑
k∈T

�(Ek (T ), Rk (�), R̂k (�; θ)) (10)

by using a minibatch-based stochastic gradient descent pro-
cedure to minimize an empirical loss function. Our overall
objective in Eq. (10) is the average loss over the |T | points in
the training set. For each data and model output, we employ a
loss function that is the sum of a response cost and a Euclidean
cost,

�(Ek, Rk, R̂k ) = γRSR(Rk, R̂k ) + γEχ2
E (Ek, R̂k ),

where γR, γE > 0 are user-defined parameters. The response
cost is defined according to the entropy measure of Eq. (5),
namely

SR(R, R̂) =
nω∑

i=1

[
R(ωi ) − R̂(ωi ) − R(ωi ) ln

(
R(ωi )

R̂(ωi )

)]
	ωi,

(11)

and ensures that the reconstructed response functions are close
to the original ones. The Euclidean cost, which is aimed at
aligning the Laplace transform of R̂(�; θ) with the original
Euclidean response, is the reduced χ2 per degrees of freedom,

χ2
E (E , R̂) = 1

nτ

nτ∑
j=1

1

σ 2
j

(E (τ j ) − Ê (τ j ))
2. (12)

Compared with Eq. (4), in Eq. (12) we have assumed
a diagonal covariance matrix, with the diagonal elements
corresponding to variance of the independent Gaussian distri-
butions of Eq. (9): σ 2

j = σ 2 = 10−8 for all j. This assumption
can be easily relaxed when dealing with correlated data. We
evaluate Ê (T ; θ) = K (T ,�)R̂(�; θ) by using a simple trape-
zoidal rule

Ê (τ j ) =
nω∑

i=1

e−ωiτ j R̂(ωi )	ωi. (13)

As discussed in the following section, the positive values of
γR and γE are chosen to compensate for the fact that χ2

E (E , R̂)
is typically much larger than the entropy SR(R, R̂).

Since the inversion of the Laplace transform is an ill-
posed problem, there are many response functions whose
Laplace transform are compatible with the original Euclidean
responses. Consequently, there are instances in which χ2

E is
small even when the reconstructed response is not similar
to the original one, leading to potential instabilities in the
minimization procedure. To tame this behavior, we split the
training into two phases.

In the first phase, we take γR = 107 and γE = 10−7 and
optimize the network using the Adam [50] optimizer with a
learning rate of 10−3. Since γR 
 γE , the entropy response
cost dominates the loss function and drives the reconstructed
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response functions close to the original ones. Once the SR has
reduced significantly, we enter the second phase of the opti-
mization, where we keep γR = 107 but increase the relative
importance of the Euclidean cost by taking γE = 1 so that
Phys-NN learns to keep the Laplace transform of the response
function close to the original Euclidean response. Reducing
the learning rate in the second phase to 10−5 is necessary in
order to keep the reconstructed response functions close to the
optimal ones found in the previous phase.

The neural-network variants are implemented in Python
3.6 by using TensorFlow 2.0 libraries [51]. Training, valida-
tion, and testing are performed using systems with NVIDIA
Tesla V100 SXM2 GPUs with 32 GB HBM2 hosted at Ar-
gonne’s Joint Laboratory for System Evaluation. Each model
is trained with a wall clock time of approximately 4 hours.

IV. RESULTS

We consider three realizations of Phys-NN that differ in
the datasets used for training, validation, and testing purposes:
one-peak data only, two-peak data only, and combined one-
peak and two-peak data. We quantify the accuracy of our
approach using three metrics averaged over the associated
test/out-of-sample dataset O. We use the average entropy

SR = 1

|O|
∑
k∈O

SR(Rk, R̂k ),

with the entropy SR defined in Eq. (11), as well as the average
reduced χ2

E ,

χ2
E = 1

|O|
∑
k∈O

χ2
E (Ek, R̂k ),

with χ2
E defined in Eq. (12). We also employ a metric R2

R for
the response functions, which is defined as an average over
|O| terms of the form

R2
R(Rk, R̂k ) =

∑nω

i=1[R̂k (ωi ) − Rk (ωi )]2∑nω

i=1[R̂k (ωi ) − R̄k (ω)]2
. (14)

A. Out-of-sample tests

The values for the three testing metrics for the single-peak,
two-peak, and combined datasets are listed in Table I. For both
Phys-NN and MaxEnt, the one-peak reconstructions are the
closest to their original inputs, the two-peak reconstructions
are the worst, and the combined dataset reconstructions rest
between those of the other two datasets. This behavior is not
unexpected, since the response functions characterized by two
peaks, with the EL one in the low-ω region, are notoriously
more difficult to reconstruct than those having a single broad
QE peak.

For Phys-NN, the one-peak response function metrics 1 −
R2

R and SR are on the order of 10−5. The reduced χ2 is also
close to 1; smaller values indicate potential overfitting [52].
When reconstructing responses belonging to the two-peak
dataset, we observe slightly worse, although still satisfactory,
performance compared with the one-peak case, as quantified

TABLE I. Phys-NN and MaxEnt testing metrics SR, 1 − R2
R, and

χ 2
E for the one-peak, two-peak, and combined datasets. The standard

errors on the last digit of χ 2
E are given in parentheses. The scale is set

according to the results of Phys-NN.

1 − R2
R χ 2

E SR

×10−4 ×10−4

Phys-NN
One-peak 0.42 1.171(13) 0.72
Two-peak 9.04 3.220(87) 9.16
Combined 0.61 2.335(14) 3.66

MaxEnt
One-peak 29.7 1.015 (1) 60.4
Two-peak 84.8 1.016 (1) 107
Combined 57.2 1.015 (1) 83.7

by the larger values of all three metrics; for the combined
dataset, χ2

E is only slightly larger than 2.
In Table I one can see in what ways Phys-NN outperforms

MaxEnt: both the 1 − R2
R and SR values obtained with MaxEnt

are significantly worse, up to two orders of magnitude, than
those of Phys-NN. This is a clear indication that Phys-NN cap-
tures the energy dependence of the response functions better
than does MaxEnt. Since historic MaxEnt finds the optimal
response function by fixing α of Eq. (6) so that χ2

E = 1, it is
not surprising that MaxEnt’s reduced χ2 values are closer to
1 than those found by Phys-NN. As evidenced by the other
two metrics, because of the ill-posed nature of the problem,
achieving χ2

E ≈ 1 does not guarantee an accurate reconstruc-
tion of the original response functions.

To further examine the performance of Phys-NN and Max-
Ent, in Fig. 4 we display box plots of the distributions of the
1 − R2

R, SR, and χ2
E metrics for the one-peak (top row) and

two-peak (bottom row) datasets. Consistent with the results
listed in Table I, for both Phys-NN and MaxEnt, the one-peak
1 − R2

R and SR distributions are narrower and centered on
smaller values than are the two-peak ones, while the combined
dataset results are intermediate between the two. Since Phys-
NN is trained to keep the reconstructed response function as
close as possible to the original ones, we observe a much
smaller spread of 1 − R2

R and SR values compared with Max-
Ent. This behavior, which is exhibited across the one-peak,
two-peak, and combined datasets, provides additional support
for Phys-NN’s reconstruction performance.

Because the historic MaxEnt algorithm is based on χ2
E

minimization, the resulting distributions of χ2
E for both the

one-peak dataset and the two-peak dataset are narrow and cen-
tered on 1. The spread associated with the Phys-NN results is
larger. To investigate correlations between χ2

E and SR, in Fig. 5
we show scatter plots for the one-peak and two-peak datasets.
Some correlation is visible in the Phys-NN results, displayed
in the top two panels, especially for the two-peak dataset. Con-
versely, the MaxEnt scatter plots show no correlation between
χ2

E and SR, since the χ2
E values are relatively constant around

one, even for widely different SR. The correlations between
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FIG. 4. Box plots of (left) R2, (middle) χ 2
E , and (right) SR for the Phys-NN and MaxEnt methods. The top and bottom rows refer to the

one-peak and two-peaks datasets, respectively. The line in the middle of the box denotes the median, and the box represents the range between
the 25% and 75% quantiles. Whiskers cover the area between the 1% and 99% quantiles; data beyond these whiskers are outliers and are
indicated by circles.

χ2
E and 1 − R2

R exhibit an almost identical pattern and are thus
not included here.

Direct comparison of Phys-NN and MaxEnt outputs is
presented in Fig. 6, where we display the Phys-NN best (left
panels), average (central panels), and worst (right panels)

FIG. 5. Correlation plots of χ 2
E versus SR as obtained with the

Phys-NN (top row) and MaxEnt (bottom row) methods. The left
and right columns refer to the one-peak dataset and the two-peak
dataset, respectively. The reference lines indicate the median χ2

E and
SR values.

reconstructed response functions, according to the SR values
of the Phys-NN results, and the corresponding Euclidean
responses from the one-peak dataset. Here, the training is
performed on the combined dataset, to better test whether
Phys-NN is able to learn how to simultaneously reconstruct
one-peak and two-peak response functions. The uncertainty
associated with the random initialization of the Phys-NN pa-
rameters is estimated by performing ten independent training
procedures, each corresponding to a distinct random seed used
by the training procedure. We gather the predictions obtained
from each of these ten runs to estimate the error band dis-
played by the shaded area in Fig. 6. Not only the best and the
average but also the worst response functions reconstructed
with the Phys-NN are in better agreement with the original
ones than are those obtained with the MaxEnt algorithm. The
Laplace transform of the Phys-NN response functions are also
in excellent agreement with the original Euclidean responses:
The χ2

E values are 1.071, 0.902, and 1.834 for the best, av-
erage, and worst reconstructions, respectively. As discussed
previously, by design the MaxEnt χ2

E values are all very close
to 1.

An analogous pattern emerges in the two-peak dataset. In
this case, the best and the average Phys-NN responses, repre-
sented in the left and central panels of Fig. 7, respectively, are
in excellent agreement with the original ones. Only minor dis-
crepancies are visible in the worst reconstruction, displayed
in the right panels. Although larger than in the one-peak case,
the Phys-NN reduced χ2

E values are more than satisfactory:
The values for the best, average, and worst reconstructions
are 1.102, 1.024, and 6.996, respectively. This behavior is
reflected in the excellent agreement between the original and
reconstructed Euclidean responses. On the other hand, despite
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FIG. 6. Comparison between the Phys-NN and MaxEnt reconstructions for the one-peak dataset. The top row displays the response
functions and the bottom row the corresponding Euclidean responses.

the MaxEnt values for χ2
E again being very close to 1, MaxEnt

consistently fails to resolve the EL peak in the low-energy
region. In addition, it often yields QE peaks that are shifted to
higher energy transfer than in the original response functions.

Among the shortcomings of the MaxEnt technique, the
most problematic is probably its poor performance in the
low-energy transfer region. The results shown in Fig. 7 clearly
indicate that Phys-NN performs much better there. To quan-
tify this behavior, we define an ω-dependent entropy, SR(ω),
by restricting the integral of Eq. (11) to an interval of 5 MeV
around each value of the energy transfer grid ωi in the region
0 < ω < 200 MeV. First, we compute SR(ω) for all the re-
sponses in the test datasets; then we calculate the average and
the standard error of this quantity, displayed by the shaded ar-
eas in Fig. 8 for the one-peak (left panel) and two-peak (right
panel) case. The Phys-NN results are consistently below the
MaxEnt ones, indicating better reconstruction performance

for both one-peak and two-peak data. This fact will likely have
important implications for GFMC calculations of the inclusive
lepton-nucleus cross section in the low-energy regime.

B. Predictions on noisier inputs

An important feature of any reconstruction technique is its
robustness to the noise level of the input Euclidean response
functions. We analyze how the performance of the Phys-NN
and MaxEnt methods deteriorate when the standard deviation
of the Gaussian noise of Eq. (9) is increased from σ = 10−4

to σ = 10−3. For the results in this section, we indicate the
dataset used for training by including the training data stan-
dard deviation in parentheses. Training is always done on
the combined dataset, and the training strategy and hyperpa-
rameters are unchanged from those used for the noise level
σ = 10−4.

FIG. 7. Same as Fig. 6 for the two-peak dataset.
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FIG. 8. Energy-dependent entropy for the Phys-NN and Max-
Ent results for the one-peak (left panel) and two-peak (right panel)
datasets.

In Fig. 9 we compare sample reconstructed response func-
tions when the noise on the input Euclidean is increased from
σ = 10−4 to σ = 10−3. In both the one-peak (top panel) and
two-peak (bottom panel) response, MaxEnt clearly is more
susceptible to the increased noise level than is Phys-NN. In
the one-peak case, MaxEnt(10−3) significantly overestimates
the height of the QE peak and shifts its maximum to higher
energies compared with the original response function; this
behavior is not present in the Phys-NN reconstructions. In
the two-peak case, Phys-NN captures the EL peak in the
low-energy region for both values of σ . On the other hand, the
MaxEnt reconstruction, already not fully satisfactory for σ =
10−4, fails to reproduce the EL peak for σ = 10−3. As with
the one-peak case, for this higher noise level MaxEnt(10−3)
overestimates the height QE peak, and its position is shifted
toward higher energies than in the original response function.

To further quantify these results, we calculate the change
in the entropy due to the increase in the noise level in the
input in the test dataset. The average values of SR obtained
from Phys-NN and MaxEnt calculations are plotted in Fig. 10.
We observe that the change in the entropy due to the increase
in the noise level is one order of magnitude larger for Max-
Ent than that for Phys-NN(10−3). In Fig. 10, we also report

FIG. 9. Phys-NN and MaxEnt reconstruction performance with
increasing level of noise in the input Euclidean responses for one-
peak (top row) and two-peak (bottom row) datasets.

FIG. 10. Change in the entropy from increasing the standard
deviation of the Gaussian noise in the input Euclidean responses from
σ = 10−4 to σ = 10−3.

results for Phys-NN(10−4), obtained by training Phys-NN on
the low-noise data. In this case, the entropies increase by
4.00 × 10−4 and 51.3 × 10−4 for the one-peak and two-peak
test datasets, respectively. While still a significant improve-
ment compared with MaxEnt, the results for Phys-NN(10−4)
are not as good as those obtained by Phys-NN(10−3). We
conclude that Phys-NN is able to capture the main character-
istics of the response functions even from noisier Euclidean
responses. We note that it is beneficial to be able to train on
a set of responses having noise levels comparable to those of
the target Euclidean responses.

V. CONCLUSIONS

This work introduces Phys-NN, a physics-informed ANN
approach to approximately invert the Laplace transform and
reliably reconstruct the electromagnetic response functions of
atomic nuclei from their corresponding Euclidean responses.

We train, validate, and test Phys-NN, using 106 response
functions that exhibit the same features as those measured
in electron scattering experiments. Half of the simulated re-
sponses are characterized by a single asymmetric broad peak
in the quasielastic region; the other half possess an additional
sharp Gaussian peak to model the low-energy transfer elastic
transition. Unbiased Gaussian noise (σ = 10−4) is added to
the Euclidean responses to simulate the statistical error of typ-
ical GFMC calculations for the 4He nucleus. For training, we
use a loss function with two terms. The first, inspired by the
MaxEnt method, is an entropic loss to keep the reconstructed
response functions close to the original ones. To avoid flat
directions and improve the convergence of the optimization,
we include a second term that seeks to keep the Laplace
transform of the reconstructed responses close to the input
Euclidean responses.

On a test dataset independent of that used in the training,
we demonstrate that Phys-NN significantly outperforms Max-
Ent in terms of both the SR and 1 − R2

R metrics, especially
on response functions characterized by two peaks. Direct ex-
amination of the reconstructed responses shows that Phys-NN
is capable of capturing the low-energy structures of the re-
sponses that are often completely missed by MaxEnt. We also
find that Phys-NN better reproduces the position and height of
the QE peak. Phys-NN produces about an order of magnitude

035502-9



KRISHNAN RAGHAVAN et al. PHYSICAL REVIEW C 103, 035502 (2021)

improvement over MaxEnt in an energy-dependent entropy
measure, especially for energy transfer up to 200 MeV. This
feature of Phys-NN is promising for the reliable reconstruc-
tion of the low-energy structure of nuclear response functions
and muon capture rates from GFMC calculations of the Eu-
clidean responses.

Our results show that Phys-NN is robust on a number
of levels. First, Phys-NN has only two hyperparameters (the
number of ANN Gaussians and the learning rate), and the rel-
atively small amount of validation data used for determining
values for these proved to be sufficient. Second, the Phys-NN
outputs from ten independent training trials show remarkably
little spread among the predicted responses, indicating a de-
sirable insensitivity within the training process employed. We
stress that the associated uncertainty bands do not represent
the full theoretical error of our predictions, which in principle
requires propagating the statistical errors of the Euclidean
response through the response functions. In future work, we
intend to include full uncertainty quantification and propa-
gation by leveraging the linearity of the Laplace transform.
Third, when deployed on noisier testing data, Phys-NN main-
tains its advantage over MaxEnt.

In addition to the Laplace transform, primarily utilized
within the GFMC method, the Lorentz kernel is com-
monly used in the nuclear physics community [53]. While
initially restricted to light nuclear systems [54–56], its

domain of applicability has recently been extended to study
electron-nucleus interactions of medium-mass nuclei [57–59].
Similarly the Gaussian kernel has been found to be applicable
in quantum algorithms with near-optimal computational cost
to study the problem of spectral density estimation [60]. We
plan on generalizing the Phys-NN method to accommodate
the inversion of both the Lorentz and Gaussian kernels, with
the goal of improving existing techniques.
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