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Analysis of critical parameters for nonrelativistic models of symmetric nuclear matter
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In this work we have analyzed several features of symmetric nuclear matter (SNM) at finite temperature
described by different zero- and finite-range nonrelativistic families of models, namely, Skyrme, Gogny,
momentum-dependent interaction, Michigan three-range Yukawa, and simple effective interaction. We have
calculated the critical parameters (CPs) associated to the liquid-gas phase coexistence for nuclear matter from
these parametrizations and show that they are in agreement with their experimental and theoretical values
obtained in the literature. Our study also points to a strong evidence of universality presented by the hadronic
models, namely, model independence in the gaseous phase and distinguishability among different interactions
in the liquid phase. We have performed a correlation study among different CPs and SNM properties. Such
studies involving different finite-range interactions are scarce in literature. The analyzed models show an overall
increasing trend of the critical temperature as a function of critical pressure.
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I. INTRODUCTION

Hadronic models show very interesting features when they
are used to describe warm nuclear matter at nonvanishing
temperatures. Due to nucleon-nucleon interaction, thermo-
dynamical liquid and gas phases coexist below a certain
temperature, named the critical temperature, exhibiting a van
der Waals pattern. The different thermodynamical quantities
such as the pressure (Pc) or the density (ρc) at this junction
point along with the temperature Tc are denoted together
as critical parameters. The analysis of such phase structure
can lead to a deeper understanding of the nuclear interaction
in different environments such as heavy-ion collisions [1,2]
and finite nuclei [3–5], for instance. In nonaccreting neutron
stars, finite temperature calculations might also play some
crucial roles to determine the structure and composition of
their crusts [6,7]. Furthermore, a suitable knowledge of the
hadronic equations of state at T > 0 is crucial to describe
correctly different astrophysical phenomena such as core-
collapse supernovas or neutron star mergers [8,9]. Correlation
studies among the nuclear matter properties (at T = 0) and
critical parameters (T > 0) also carry vital information re-
garding the nuclear equation of state and in turn the basic
nature of the nucleon-nucleon interaction in medium [10].
In other words, if strong enough correlations are established
between Tc, Pc, and ρc with the bulk parameters of hadronic
models, any direct or indirect experimental constraints estab-
lished in a particular set of these quantities might be useful to
pin down the other ones.

*odilon.ita@gmail.com

Equations of state are obtained by using nuclear models
of different degrees of sophistication. Explaining nuclear phe-
nomena based on a theory starting from fundamental nucleon-
nucleon interaction is yet to be achieved. The nonperturbative
nature of the nuclear force makes it very difficult to be de-
scribed starting from the strong interaction between quarks
and gluons. Over the years, developing effective theories by
optimizing few parameters fitted to certain experimental data
has been a hallmark of the development of the nuclear theory.
As an example, the ground state energy of a nucleus, which
is defined as the negative of its binding energy B(A, Z ), was
proposed a long time ago by Weizsäcker [11] in a model
(semiempirical mass formula) that considers the nucleus as
a droplet of incompressible matter with B(A, Z ) containing
terms proportional to its volume, surface, etc. [12]. Many so-
phisticated models have been constructed since then, success-
fully describing different features of finite nuclei and infinite
nuclear matter. Some of them, not necessarily in the chrono-
logical order of appearing, are described in the following.

In chiral effective field theory (EFT) models (see Ref. [13]
and references therein), the most general Lagrangian density
is proposed with the basic symmetries of quantum chromo-
dynamics, in particular the chiral symmetry. The low-energy
regime of this theory is obtained with the quarks confined into
the colorless hadrons giving rise to the more suitable degrees
of freedom for this energy scale [13]. However, nuclear forces
based on chiral EFT also pose some major challenges to be
applied in nuclear structure [14] and reactions (see Ref. [15]
and references therein).

In its effective finite-range version, the relativistic mean-
field (RMF) models explicitly describe the attractive and
repulsive nuclear interactions by including in the Lagrangian
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density the fermion field ψ coupled to the scalar and vector
mesons fields σ and ωμ, respectively. The structure of the
model also generates scalar and vector potentials that largely
cancel each other at a particular density, giving rise to a
relativistic mechanism for the nuclear matter saturation. In
its point-coupling version, the RMF models consider a zero-
range interaction between the nucleons, and ψ is the only field
in this case. For the finite-, zero-range, and even improved ver-
sions of this model, see Refs. [16–18]. The density-dependent
meson exchange (DDME) version of the RMF models also
describes several ground state finite nuclear properties satis-
factorily [19].

The nonrelativistic Skyrme model considers nucleons
interacting with each other through two- and three-body point-
like interactions [20–24]. Its two-body potential is written as
a contact term times a low-momentum expansion function,
taken up to quadratic order in the momenta. The three-body
interaction is given by the product of two delta functions,
which can be also interpreted as a two-body density-
dependent interaction. Different thermodynamical quantities
in Skyrme models can be obtained in a relatively simple way
[25], as they can be expressed as functions of the nuclear den-
sity and the proton fraction (zero-temperature regime). Such
ease in implementation has made Skyrme models so popular
over the years. It has also been successfully applied to finite
nuclei reproducing with very good accuracy the ground state
energies, giant resonances, and other physical properties [26].

The standard Gogny models of the D1 family consist
of two finite-range terms of Gaussian type, which in-
clude all the possible spin-isospin exchange operators with
different weights, plus a zero-range density-dependent con-
tribution [27]. The main property of Gogny interaction is that
it can describe simultaneously the mean field and the pairing
field. The Gogny interactions correctly describe many features
of finite nuclei, in particular their pairing and deformation
properties, along the whole periodic table [28–30]. Although
Gogny forces of the D1 family do not describe properly the
properties of neutron stars [31,32], recent progress has been
made in this direction [33,34].

The momentum-dependent interaction (MDI) was primar-
ily designed to be used in heavy-ion collisions [35]. Similar
to the Gogny forces, the MDI can be written as a single
finite-range term of Yukawa type, along with two zero-
range contributions. Although the first versions of the MDIs
were adequate to describe collisions of symmetric nuclei,
more recent versions of this force are able to describe colli-
sions of neutron-rich nuclei at intermediate energies [18,36].
The MDI is constructed in such a way that it is possible to
obtain a family of forces with the same properties of sym-
metric matter but with variation in the isovector sector of the
force [18,36], which makes these interactions very appealing
to be used in the calculations of neutron star properties [37].

The so-called Michigan three-range Yukawa (M3Y) mod-
els [38] were derived from a bare nucleon-nucleon interaction
(Paris, Reid) by fitting the microscopic G-matrix to the sum
of three Yukawa form factors of different ranges acting on the
different spin-isospin states. It should be pointed out that the
original M3Y force was unable to reproduce the saturation and
spin-orbit splitting at mean-field level. To solve this problem,

zero-range terms were added and some strengths were modi-
fied [39]. The tensor force, which is important for describing
the shell structure in finite nuclei, has been included in the
different M3Y parametrizations [39–42]. To describe open-
shell nuclei, pairing correlations have been taken into account
using the M3Y force in the particle-particle channel together
with a cutoff in momentum space [40]. It is also important to
mention that the interactions of the M3Y type have been ap-
plied successfully to describe different nuclear reactions [43].

The simple effective interaction (SEI) was constructed in
1998 by Behera and collaborators [44] and aimed to describe
nuclear and neutron star matter at zero and finite temperatures.
The SEI consists of a single finite-range term with a form
factor of Gauss or Yukawa type, a pure contact term, and
a zero-range density-dependent contribution, which contains
an additional parameter to avoid the supraluminous behav-
ior at any temperature [44]. At variance with other effective
interactions like Skyrme, Gogny, or M3Y type, 9 out of
the 11 parameters of SEI are fitted to empirical constraints
and microscopic results obtained with realistic interactions
in nuclear matter. In this way SEI predicts the correct be-
havior of the momentum dependence of the mean field as
extracted from heavy-ion collisions at intermediate energies.
SEI also predicts trends of Dirac-Brueckner-Hartree-Fock and
variational calculations in nuclear and neutron matter. One of
the remaining two parameters is fixed from the microscopic
spin-up–spin-down splitting of the effective mass in polarized
neutron matter [45]. The last parameter, together with the
strength of the spin-orbit contribution, is determined from
Hartree-Fock calculations in finite nuclei [46,47]. It is worth-
while to point out that, in spite of the fact that almost all the
parameters of SEI are determined in nuclear matter, its finite
nuclei description has a quality similar to that found using
successful effective interactions like Skyrme, Gogny, or M3Y.

In a previous investigation, we used RMF models to
calculate different characteristics of nuclear matter at finite
temperature [10]. In the present work, we intend to com-
plement that study with calculations performed for different
nonrelativistic models. To this end, we study the nonrela-
tivistic Skyrme, Gogny, MDI, M3Y, and SEI models in the
finite temperature regime in order to compute different critical
parameters and compare them with experimental and theo-
retical results. We also investigate the connection between
these quantities with some bulk parameters, namely, incom-
pressibility and nucleon effective mass, both calculated for
symmetric nuclear matter at zero temperature. In Sec. II we
outline the main theoretical quantities regarding the nonrel-
ativistic models studied in this work (expressions at finite
temperature). The outcomes of the finite temperature calcu-
lations are shown in Sec. III, and in Sec. IV a short summary
and our concluding remarks are presented.

II. NONRELATIVISTIC MODELS AT FINITE
TEMPERATURE

A. Skyrme model

An advantage of the Skyrme model is that its point-
like nucleon-nucleon interaction implies a Hamiltonian as a
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function only of the nuclear density ρ for symmetric sys-
tems. In the mean-field approach, the single-particle state of
the nucleon in a uniform medium is written in terms of a
plane waves [48]. As a consequence, it is straightforward
to construct, at zero temperature, the energy density of the
system and therefore to derive all the other thermodynamical
quantities needed to describe nuclear matter (see, for instance,
Ref. [49] for such calculations).

In the finite temperature regime the Heaviside step function
(θ (kF − k) with kF being the Fermi momentum in units of
fm−1), present in all the momentum integrals at zero tem-
perature, is replaced by the Fermi-Dirac function (momentum
distribution), depending on momentum k, temperature T , and
an effective chemical potential μ, which is given by

nsky(k) = 1

e[ε∗(k)−μ]/T + 1
, (1)

where ε∗(k) = h̄2k2/2M∗ is the single-particle energy with
M∗ being the effective mass. As a consequence, for warm
nuclear matter the nuclear density becomes [50,51]

ρ = γ

(2π )3

∫
dk nsky(k), (2)

where γ is the degeneracy factor (γ = 4 for symmetric nu-
clear matter). For the Skyrme model, the nucleon effective
mass in the single-particle energy ε∗ is defined from the en-
ergy density as its variation with respect to the kinetic energy
density. It is given by

M∗ = M

[
1 + 1

8

M

h̄2 ρ(3t1 + 5t2 + 4t2x2)

]−1

, (3)

in which M = 939 MeV is the free nucleon mass. Notice that
in Eq. (2) the momentum distribution depends on M∗ instead
of M. For the numerical calculations, the van der Waals–like
isotherms are obtained for a fixed temperature and run over the
density. For a particular ρ, we invert Eq. (2) in order to find
the value of the chemical potential μ. Then, for each ρ we
can compute the momentum distribution, which enters in all
the other thermodynamical quantities, since the corresponding
value of μ is determined. As we are interested in the critical
parameters of the model, obtained through the following con-
ditions,

Pc = P(ρc, Tc),
∂P

∂ρ

∣∣∣∣
ρc,Tc

= 0,
∂2P

∂ρ2

∣∣∣∣
ρc,Tc

= 0, (4)

it is only needed to construct the pressure of the system,
since it is the most relevant thermodynamical quantity for this
purpose. For the Skyrme model it reads

Psky(ρ, T ) = 3t0
8

ρ2 + 1

16

3∑
i=1

t3i(σi + 1)ρσi+2

+ γ h̄2

6π2M∗

(
1− 3

2

ρ

M∗
dM∗

dρ

) ∫ ∞

0
dk k4nsky(k).

(5)

For the symmetric system, a particular parametrization of
the Skyrme model is defined by a specific set of the fol-
lowing free parameters: x2, t0 (MeV fm3), t1 (MeV fm5), t2
(MeV fm5), t3i (MeV fm3(σi+1)), and σi. Here, we mainly
focus on the consistent Skyrme parametrizations (CSkPs)

selected in Ref. [49]. In that work, the authors selected
16 Skyrme parametrizations that satisfy the 11 constraints
coming from nuclear matter, pure neutron matter, anal-
ysis of symmetry energy, and its derivatives. They are
GSkI [52], GSkII [52], KDE0v1 [53], LNS [54], MSL0 [55],
NRAPR [56], Ska25s20 [57], Ska35s20 [57], SKRA [58],
Skxs20 [59], SQMC650 [60], SQMC700 [60], SkT1 [61],
SkT2 [61], SkT3 [61], and SV-sym32 [62]. Among these
parametrizations, only two are “nonstandard,” namely, GSkI
and GSkII. The term nonstandard refers here to those
parametrizations for which i is not equal to 1 in Eq. (5). In
particular, GSkI and GSkII were shown to fit consistently
the masses of some spherical nuclei, namely, 16O, 24O, 14Ca,
48Ca, 48Ni, 56Ni, 68Ni, 78Ni, 88Sr, 90Zr, 100Sn, 132Sn, and
208Pb. The CSkP was also shown to be consistent [63] with the
constraints extracted from the LIGO and Virgo Collaboration
analysis, related to the detection of gravitational waves com-
ing from the neutron star merger GW170817 event [64–66].
For the sake of completeness, we also add to our analy-
sis four more Skyrme parametrizations. Three of them are
constrained by chiral effective field theory [67], namely,
Skχ414, Skχ450, and Skχ500, and another one is taken from
Ref. [68], Sk�267. For the last one, the dimensionless tidal
deformability of the 1.4M� neutron star is given by �1.4 =
267, with the corresponding radius of R1.4 = 11.6 km.

B. Finite-range interactions

The finite-range (FR) interactions that we study in this
work, namely, Gogny, MDI, M3Y, and SEI, have a similar
structure, which can be written as

V (r1, r2) =
N∑

i=1

(Wi + BiPσ − HiPτ − MiPσ Pτ ) f (r, μi )

+ t0(1 + x0Pσ )ρα0 (R)δ(r)

+ t3(1 + x3Pσ )ρα3 (R)δ(r), (6)

where r = r1 − r2 and R = (r1 + r2)/2 are the relative and
the center of mass coordinates. Wi, Bi, Hi, and Mi are the
strengths of all the possible combinations of the spin (Pσ )
and isospin exchange (Pτ ) operators, respectively. μi are the
ranges of the N form factor (Gaussian for Gogny, Yukawian
for MDI or M3Y, and can be both for SEI) that describe the
finite-range part of the force (N = 1 for MDI or SEI, N = 2
for Gogny, and N = 3 for M3Y). In Eq. (6) we have neglected
the spin-orbit and tensor parts of the interaction owing to
the fact that they do not contribute to the infinite nuclear
matter.

In the case of warm symmetric nuclear matter described by
a finite-range interaction given in Eq. (6), the single-particle
energy is given by (see, for instance, Ref. [69])

ε(k) = h̄2k2

2M
+ 3

8
t0α0t0ρ

α0−1 + 3

8
α3t3ρ

α3−1

+
N∑

i=1

g(0, μi )
[
Wi + Bi

2
− Hi

2
− Mi

4

]
ρ
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+
N∑

i=1

[
Mi + Hi

2
− Bi

2
− Wi

4

]

× γ

(2π )3

∫
dk′n(k′)g̃(k, k′, μi ), (7)

where g̃(k, k′, μi ) is the angular averaged Fourier transform
of the finite-range form factor f (r − r′, μi ) [69] (see the
Appendix for more details) and γ the degeneracy factor in-
troduced before. The momentum distribution n(k) in Eq. (7)
is given by

n(k) = 1

e[ε(k)−μ]/T + 1
. (8)

At difference with the case of zero-range forces in which
the integral of the momentum distribution n(k) in Eq. (2)
determines the effective chemical potential, in the case of
finite-range forces one needs to solve the coupled system of
Eqs. (7) and (8) with the constraint of Eq. (2), which for a
given density allows to obtain the chemical potential μ. Once
the Fermi-Dirac occupation number n(k) is determined by this
procedure, one can easily determine the energy density as

H = γ

(2π )3

∫
dk

h̄2k2

2M
+ 3

8
t0ρ

α0 + 3

8
t3ρ

α3

+1

2

N∑
i=1

g(0, μi )

[
Wi + Bi

2
− Hi

2
− Mi

4

]
ρ2

+
N∑

i=1

[
Mi + Hi

2
− Bi

2
− Wi

4

]

×γ 2

2

∫
dk

(2π )3
n(k)

∫
dk′

(2π )3
n(k′)g̃(k, k′, μi ), (9)

and the entropy density as

S = γ

∫
dk

(2π )3
{n(k) ln[n(k)] + [1 − n(k)] ln[1 − n(k)]}

= 1

T

∫
dk

(2π )3
n(k)

[
ε(k) + k

3

dε(k)

dk

]
. (10)

Finally, the pressure at a given temperature T is given by the
standard thermodynamical relation

PFR(ρ, T ) = μρ − F = μρ − H + ST, (11)

where F is the free energy density.
It is important to mention here that in the case of SEI,

the second density-dependent term in Eq. (9) is divided by a
factor (1 + bρ)α3−2 and the contribution to the corresponding
single-particle energy (7) is also modified accordingly. We
label the SEI parametrizations used in this work by G or Y to
indicate if the form factor is of the Gauss or Yukawa type and
by the value of the corresponding incompressibility modulus.
More details about these parametrizations can be found in
Refs. [45,70].

III. ANALYSIS OF THE FINITE TEMPERATURE
CALCULATIONS

Before discussing the results in detail, we make some
general remarks about the nuclear matter properties of the
models chosen for our study. The zero-range and finite-range
mean-field models used in this study, in general, reproduce
reasonably well binding energies and charge radii of finite
nuclei and predict nuclear matter properties usually within
the window of the empirical values, namely, energy per nu-
cleon e0 = −15.8 ± 0.5 MeV, saturation density ρ0 = 0.16 ±
0.01 fm−3, isoscalar effective mass ratio m∗ = M∗(ρ0)/M =
0.6–1.0, and incompressibility modulus K0 = 240 ± 30 MeV
(see, for instance, Ref. [68]). We emphasize here the im-
portance of the saturation density ρ0, since it is directly
related to the short-range nature of the nuclear force. Be-
cause of this feature, protons and neutrons only interact with
their near surrounding nucleons and this mechanism leads to
approximately constant value of ρ0. Regarding the Gogny in-
teractions considered in this work, we see that there are some
parametrization with incompressibility modulus outside the
window of the empirical values (see Table I). Among these the
D1S interaction was fabricated to build up an accurate mass
table [71]. The rest of the parametrizations with high K0 val-
ues were built up in Ref. [72] in order to study the correlation
between the incompressibility modulus in nuclear matter and
the energy of the monopole vibrations. The isoscalar effective
mass ratio m∗ of the finite-range models considered in this
work lie in the range of 0.6–0.7, which reproduce the excita-
tion energy of the isoscalar giant quadrupole resonance [73].
This value of the isoscalar effective mass is in agreement with
the value extracted from the optical model analysis of the
nucleon-nucleus scattering [74]. Some of the Skyrme models
which we have considered predict an effective mass close to
the bare mass. Models with an effective mass ratio equal to or
slightly larger than unity predict a single-particle level density
close to the Fermi surface, which is in good agreement with
the experiment without considering an additional particle-
vibration coupling [75]. However, these models with effective
mass close to the bare mass are prone to predict maximum
masses of neutron stars below the lower limit of the observed
value of (2.01 ± 0.04)M� [68].

Since the pressure as a function of ρ and T of zero- and
finite-range interactions is determined, as shown in Eqs. (5)
and (11), it is now possible to analyze the critical parameters
and the main features of the thermal symmetric nuclear matter
for the different nonrelativistic models introduced in the pre-
vious section. Nevertheless, before that, a comment regarding
the phase transition in nuclear systems is needed at this point.
Conjectures concerning the existence of a liquid-gas phase
transition in strongly interacting matter have been corrobo-
rated through indirect evidences, since the critical point itself
cannot be directly observed in nuclear experiments. One of
such evidences involves the distribution of the intermediate
mass fragments produced, for instance, in the following reac-
tions: 84Kr + 197Au [76], Au + C [77], Au + Al [77], Au +
Cu [77], 197Au + 197Au [78], p + Xe [79], and p + Kr [79].
Another possible signature of the nuclear phase transition is
identified from the analysis of the so-called caloric curve, or,
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TABLE I. Critical parameters Tc (MeV), ρc (fm−3), and Pc (MeV/fm3), along with the quantities, namely, ρc/ρ0, Zc = Pc/ρcTc, and the
bulk parameters K0 (MeV), m∗ = M∗(ρ0)/M, and ρ0 (fm−3) for different nonrelativistic parametrizations used in this work.

Model Tc ρc Pc
ρc
ρ0

Zc K0 m∗ ρ0

GSkI 15.09 0.052 0.223 0.328 0.284 230.21 0.776 0.159
GSkII 15.27 0.052 0.226 0.328 0.284 233.40 0.790 0.159
KDE0v1 14.86 0.054 0.225 0.330 0.279 227.54 0.744 0.165
LNS 14.93 0.057 0.235 0.328 0.275 210.78 0.826 0.175
MSL0 15.17 0.053 0.226 0.330 0.282 230.00 0.800 0.160
NRAPR 14.39 0.054 0.218 0.337 0.280 225.65 0.694 0.161
Ska25s20 16.27 0.053 0.239 0.329 0.278 220.75 0.980 0.161
Ska35s20 17.16 0.054 0.264 0.339 0.287 240.27 1.000 0.158
SKRA 14.36 0.052 0.208 0.329 0.276 216.98 0.748 0.159
SkT1 17.06 0.055 0.266 0.339 0.286 236.16 1.000 0.161
SkT2 17.04 0.055 0.265 0.339 0.286 235.73 1.000 0.161
SkT3 17.04 0.055 0.265 0.339 0.286 235.74 1.000 0.161
Skxs20 15.38 0.052 0.216 0.321 0.270 201.95 0.964 0.162
SQMC650 14.85 0.057 0.234 0.331 0.277 218.11 0.779 0.172
SQMC700 14.73 0.057 0.233 0.332 0.278 222.20 0.755 0.171
SV-sym32 16.03 0.053 0.242 0.332 0.285 233.81 0.900 0.159
Skχ414 18.33 0.059 0.311 0.349 0.286 243.18 1.075 0.170
Skχ450 17.08 0.053 0.261 0.341 0.287 239.54 1.006 0.156
Skχ500 18.20 0.059 0.305 0.349 0.285 238.16 1.087 0.168
Sk�267 14.63 0.054 0.224 0.337 0.281 230.08 0.702 0.162

D1S 15.89 0.060 0.281 0.368 0.295 202.88 0.697 0.163
D1M 15.95 0.058 0.272 0.352 0.294 224.98 0.746 0.165
D1N 15.76 0.056 0.261 0.348 0.296 225.65 0.747 0.161
D250 17.16 0.061 0.332 0.386 0.318 249.54 0.702 0.158
D260 15.48 0.059 0.273 0.369 0.299 259.49 0.615 0.160
D280 15.21 0.058 0.263 0.379 0.298 285.19 0.575 0.153
D300 16.80 0.058 0.310 0.372 0.318 299.14 0.681 0.156

MDI 15.62 0.058 0.268 0.363 0.296 210.98 0.673 0.160

M3Y-P1 15.78 0.062 0.294 0.367 0.301 225.70 0.641 0.169
M3Y-P2 15.66 0.059 0.277 0.363 0.300 220.40 0.652 0.163
M3Y-P3 16.12 0.060 0.290 0.369 0.300 245.80 0.658 0.163
M3Y-P4 16.08 0.060 0.294 0.369 0.304 235.30 0.665 0.163
M3Y-P5 15.78 0.060 0.289 0.369 0.305 235.60 0.629 0.163
M3Y-P4′ 15.91 0.060 0.290 0.369 0.304 230.40 0.653 0.163
M3Y-P5′ 15.88 0.060 0.291 0.369 0.306 239.10 0.637 0.163
M3Y-P6 15.97 0.061 0.306 0.375 0.314 239.70 0.596 0.163
M3Y-P7 16.33 0.062 0.326 0.381 0.322 254.70 0.589 0.163

SEIG263 16.30 0.056 0.278 0.361 0.305 262.52 0.712 0.155
SEIG245 15.79 0.055 0.260 0.350 0.300 245.62 0.711 0.157
SEIG227 15.23 0.055 0.242 0.344 0.289 227.64 0.710 0.160
SEIG207 14.55 0.054 0.221 0.333 0.281 207.69 0.709 0.162
SEIY282 17.35 0.061 0.340 0.379 0.321 282.30 0.686 0.161
SEIY254 16.43 0.058 0.298 0.360 0.313 253.68 0.686 0.161
SEIY238 15.88 0.058 0.275 0.360 0.298 237.52 0.686 0.161
SEIY220 15.26 0.055 0.250 0.342 0.298 219.87 0.686 0.161

in other words, the dependence of temperature on the excita-
tion energy per particle in finite nuclei. It was first predicted
theoretically in Ref. [80] and later discovered by the ALADIN
Collaboration [81], from a fragment distributions study pro-
duced in Au + Au collisions at incident energy of 600 MeV
per nucleon. The plateau exhibited by this curve is character-
istic of systems presenting phase transitions, thus supporting
the existence of such thermodynamical phenomenology in
nuclear systems [82].

We start by showing in Table I the critical parameters Pc,
ρc, and Tc along with ρc/ρ0, the compressibility factor Zc =
Pc/ρcTc, and some bulk parameters, namely, incompressibility
K0, isoscalar effective mass ratio m∗ (at ρ = ρ0), and the
saturation density itself (ρ0). Concerning the ratio Zc, one can
verify that all parametrizations present Zc smaller than the
respective value related to the van der Waals model, namely,
0.375. This is a feature also observed for relativistic models,
as pointed out, for instance, in Refs. [10,83]. Notice that
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FIG. 1. P/Pc as a function of ρ/ρc for the nonrelativistic
parametrizations. All isotherms are calculated at T = Tc.

Table I enlists, for the first time, to the best of our knowledge,
the critical parameters Tc, Pc, and ρc for almost all the non-
relativistic finite-range effective nucleon-nucleon interactions
available in the literature.

In Fig. 1 we present the critical isotherms, i.e., pressure
as a function of density scaled by their critical values at
T = Tc for different types of parametrizations considered in
this work. It is clear that such scaled curves are indistinguish-
able in the gaseous phase (ρ < ρc), and model dependent
for the liquid phase (ρ > ρc), where the interactions become
more important due to the closer proximity between the nu-
cleons. Previously, this finding was observed only for those
parametrizations of the relativistic mean-field models which
contain self-interactions in the scalar field σ (Boguta-Bodmer
model) [83]. Later on, in Ref. [10], it was investigated in a
more sophisticated version of the RMF model including quar-
tic self-interaction in the vector field ωμ, interactions between
scalar and vector fields (σ and ωμ), and interactions between
scalar and isovector fields (σ and �ρμ). The same pattern was
observed also for those parametrizations. Here we observe
similar findings once again for the nonrelativistic models. This
strongly suggests towards a universality in the isotherms of
symmetric nuclear matter for hadronic models, i.e., model
independence in the gaseous region and distinguishability
among the different interactions in the liquid phase.

Concerning the critical parameters calculated for the
different nonrelativistic parametrizations explored here, we
compare our results with experimental and theoretical pre-
dictions available in the literature. An experimental study
given in Ref. [84] provides values for all three quantities,
namely, Tc = 17.9 ± 0.4 MeV, Pc = 0.31 ± 0.07 MeV/fm3,
and ρc = 0.06 ± 0.01 fm−3. For this purpose, the authors
analyzed data from compound-nucleus and nuclear multifrag-
mentation [85,86]. In Fig. 2 we display the outcomes related to
Pc and ρc obtained for all nonrelativistic parametrizations used
in this work. As one can see, all the finite-range parametriza-
tions of the Gogny, MDI, M3Y, and SEI types are in full
agreement with the experimental ranges of Ref. [84] for Pc

and ρc. However, the Skyrme parametrizations are also inside

FIG. 2. Values of (a) Pc and (b) ρc for the parametrizations of the
Skyrme, Gogny, MDI, M3Y, and SEI models in comparison with the
corresponding experimental values extracted from Ref. [84] (ranges
limited by the horizontal dashed lines).

the range of ρc but not all of them are compatible with the
Pc values. Ten out of 20, namely, GSkI, GSkII, KDE0v1,
MSL0, NRAPR, SKRA, Skxs20, SQMC650, SQMC700, and
Sk�267, lie below the lower experimental limit for this quan-
tity. It is important to mention that the effective mass seems to
play an important role in this case. Notice that with the excep-
tion of Skxs20, all the remaining parametrizations mentioned
just above present m∗ � 0.80.

In Fig. 3 we display the values of Tc calculated from the
models analyzed in this work along with their different experi-
mental values for comparison. As one can see from this figure,
the nonrelativistic parametrizations predict Tc compatible with
experimental values of Refs. [4,84,87–91]. Furthermore, we
also observe agreement between the results obtained with dif-
ferent nonrelativistic parametrizations and the ones obtained
with different theoretical models in Refs. [10,92]. Actually,

FIG. 3. Values of Tc for the nonrelativistic parametrizations com-
pared with experimental and theoretical data (circles) collected from
Karnaukhov, 1997 [87]; Natowitz et al., 2002 [4]; Karnaukhov
et al., 2003 [88]; Karnaukhov et al., 2004 [89]; Karnaukhov et al.,
2006 [90]. Karnaukhov, 2008 [91]. Elliott et al. 2013, [84]. Lourenço
et al., 2017 [10]. and Carbone et al., 2018 [92].
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FIG. 4. Tc as a function of (a) K0 and (b) m∗ for the nonrelativistic
models used in this work. Solid lines in the insets: fitting curves
related to the Skyrme parametrizations, with correlation coefficients
given by (a) c = 0.67 and (b) c = 0.95 (see text for more details).

the critical temperatures provided by the nonrelativistic inter-
actions analyzed in this work agree better with experimental
values than in those of some RMF models (see Fig. 2 of
Ref. [10]). In Ref. [10], the authors calculated Tc for a class
of RMF models [93] containing nonlinear σ and ωμ terms
and crossing terms involving these fields (30 parametriza-
tions), and for RMF models in which couplings are density
dependent (4 parametrizations); all of them are consistent
with nuclear matter constraints. In Ref. [92], calculations were
performed by using two- and three-body nuclear interactions
consistently derived through chiral effective field theory. A
van der Waals pattern was also observed in such models [92].

Another interesting investigation on the warm nuclear
matter is the search for possible correlations between bulk
parameters of symmetric nuclear matter (SNM), evaluated at
ρ = ρ0, and the critical parameters. This feature can be useful
in order to consolidate the constraints on Tc, Pc, and ρc. In
Ref. [10], for instance, it was shown that the consistent RMF
models exhibit a general trend of correlation between the
critical parameters and the incompressibility coefficient K0.
For the nonrelativistic parametrizations used here, we present
Tc as a function of K0 and m∗ in Fig. 4. One can notice
an increasing trend of Tc as a function of both K0 and m∗
for the Skyrme parametrizations. The correlation coefficients
are 0.67 and 0.95 for K0 and m∗, respectively. The results
observed for the Skyrme models are in line with other studies
performed with different hadronic models. For instance, in
Ref. [94] the same correlation of Fig. 4(a) is found for a class
of real gas models used to describe symmetric nuclear mat-
ter at finite temperature, after a suitable conversion of these
classical models into quantum ones through the incorporation
of the Fermi-Dirac distribution function in the momentum
integrals. Furthermore, we also observe qualitative agreement
with other theoretical calculations that provide analytical ex-
pressions of Tc as a function of K0, as in Refs. [4,95–97].
With regard to the Tc as a function of m∗, we remark that a

TABLE II. Correlation coefficients (c) among different pairs of
critical parameters and nuclear matter properties are listed for four
families of nonrelativistic interactions considered in this work along
with combining them together in “All.”

c Skyrme Gogny M3Y SEI All

Tc × K0 0.67 0.13 0.89 0.98 0.44
Tc × m∗ 0.95 0.45 −0.37 −0.43 0.51
Pc × K0 0.68 0.26 0.78 0.93 0.58
Pc × m∗ 0.83 0.16 −0.81 −0.56 −0.20
ρc × K0 0.17 −0.11 0.42 0.80 0.33
ρc × m∗ 0.26 −0.16 −0.64 −0.67 0.49
Tc × Pc 0.95 0.94 0.79 0.98 0.72

systematic study was performed with parametrizations of the
RMF model with third- and fourth-order self-interactions in
the scalar field σ [98]. For these models, we remind the reader
that m∗ is the Dirac effective mass, which is slightly different
from the quantity defined in the nonrelativistic approach used
in the present paper. In Ref. [98], in which it was also observed
that Tc depends on K0, the authors verified a clear relation-
ship between Tc and m∗. However, in these models only the
variation of m∗ was taken into account; i.e., saturation den-
sity, binding energy, and incompressibility were kept fixed.
Regarding the finite-range models, we can see that the SEI
family of parametrizations, which have very similar nuclear
matter properties except incompressibility, show a very clear
correlation between Tc and K0 with a correlation coefficient
of 0.98 (see Table II). This correlation is also observed in the
M3Y parametrizations where a correlation coefficient of 0.89
was found. Concerning the relation between the Tc and m∗,
the predictions of the finite-range interactions, in particular
SEI and M3Y, and the ones of the Skyrme forces are clearly
different. The SEI interactions, and to some extent the M3Y
ones, have almost the same effective mass and there is no
correlation between Tc and m∗. This situation is different from
the one found with the Skyrme forces, where a clear linear
correlation is observed [see the inset of Fig. 4(b)]. However,
Gogny forces, which have properties in symmetric nuclear
matter quite different among them, do not show any clear
correlation between Tc and K0 or m∗ (see also Ref. [97] in
this respect).

One needs to be careful in a correlation study like the
present one. Some of the finite-range interactions used in the
present work were obtained in a systematic way to satisfy cer-
tain constraints. Their merits should not be tested only with a
correlation study. However, most of the Skyrme parametriza-
tions used in the present work satisfy several independent
constraints imposed by experiments and astronomical obser-
vations (see Ref. [49]). An independent correlation study is
quite justified using only these Skyrme interactions. In the
inset of Fig. 4(b) one can see a positive linear correlation
between Tc and m∗. If we take a conservative estimate of m∗
of 0.7–0.9, it translates into a variation of Tc from 14.225 to
16.066 MeV, as Tc and m∗ show a high positive correlation
between them. These are indicated by the red parallel lines to
the axes in the inset of Fig. 4(b).
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FIG. 5. Critical (a) pressure and (b) density as a function of K0

for the different Skyrme, Gogny, MDI, M3Y, and SEI parametriza-
tions considered in this work (see text for details).

The influence of K0 on Pc and ρc is analyzed in Fig. 5. The
behavior of Pc and ρc as increasing functions of K0 was also
observed for the RMF models investigated in Refs. [10,98].
From Fig. 5 we can still appreciate the correlations between
Pc and K0, in particular for the SEI and M3Y forces and less
clearly for the Skyrme interactions. This is confirmed by the
correlation coefficients reported in Table II. From Fig. 5(a)
and Table II it is again clear that Gogny forces do not show
Pc-K0 correlation. The results reported in Table II also show
that there is no correlation between K0 or m∗ and ρc.

Finally, we display in Fig. 6 the relationship between Tc

and Pc. For the classical van der Waals model, one has Tc =
8bPc with b being the excluded volume parameter (strength
of the repulsive interaction), indicating a clear linear relation.
For the nonrelativistic models studied here, an increment of
Tc as a function of Pc is observed with some deviation from
the exact linear pattern. A much more clear linear behavior
was observed, for instance, with the RMF parametrizations

FIG. 6. Tc as a function of Pc for the different Skyrme, Gogny,
MDI, M3Y, and SEI parametrizations considered in this work (see
text for more details).

and density-dependent RMF Hartree-Fock models used in
Ref. [99]. All the finite-range models follow the Tc-Pc cor-
relation quite precisely as it can be seen from Fig. 6 and
from the correlation coefficients given in Table II. Regarding
the Skyrme results, we see that the models which predict a
critical pressure below 0.24 MeV fm−3 and at the same time
have a small effective mass m∗ below 0.8 are well aligned
with the finite-range ones. We also see that the remaining
Skyrme parametrizations, which have an effective mass close
to the bare mass, lie on top with another parallel line shifted
to higher critical temperature. As a consequence, our study
predicts that the Tc-Pc correlation is reinforced for models
with similar effective mass. One can notice that the Skyrme
models just mentioned above with m∗ greater than 0.8 repro-
duce better the experimental constraint on the critical pressure
Pc (see Fig. 2 and corresponding discussion). However, they
follow a different Tc-Pc correlation line compared to the rest
of models considered in this work, including the ones of the
Skyrme family (see Fig. 6).

IV. SUMMARY AND CONCLUSIONS

In this work we have analyzed symmetric nuclear matter at
finite temperature for a set of parametrizations of the Skyrme,
Gogny, MDI, M3Y, and SEI nonrelativistic models. For the
first one, we have chosen the so-called consistent Skyrme
parametrizations (CSkPs), namely, GSkI, GSkII, KDE0v1,
LNS, MSL0, NRAPR, Ska25s20, Ska35s20, SKRA, Skxs20,
SQMC650, SQMC700, SkT1, SkT2, SkT3, and SV-sym32.
They satisfy a set of constraints related to the nuclear mat-
ter and pure neutron matter [49]. Furthermore, they are also
consistent with the boundaries of the tidal deformabilities
determined by the LIGO and Virgo Collaboration studies,
all of them related to the detection of gravitational waves
coming from the neutron star merger event GW170817 [63].
For the finite-range models, we have chosen some represen-
tative parametrizations. We also furnished the expressions for
the pressure as a function of temperature and density for the
considered models [see Eqs. (5) and (11)]. Once this thermo-
dynamical quantity was determined, it was possible to find the
critical parameters (CPs) of the models, namely, Tc, Pc, and ρc,
by imposing the conditions given in Eq. (4). The respective
values of these quantities are listed in Table I. To the best
of our knowledge, assemblies of critical properties of nuclear
matter at finite temperature of this sort are quite scarce in the
literature for finite-range interactions.

One of the results found in our investigation is the pattern
exhibited in Fig. 1, namely, all isotherms collapse in the
low-density region (gaseous phase), and nuclear interactions
become important for densities greater than ρc (liquid phase).
Such a feature was also observed in Ref. [83] in which the cal-
culations were restricted to the relativistic mean-field (RMF)
model presenting third- and fourth-order self-interactions in
the scalar field. In Ref. [10], the same phenomenology was
observed for more sophisticated versions of the RMF models
including quartic self-interaction in the vector field and other
mesonic interactions. Our finding strongly suggests a kind of
universality for the isotherms of the hadronic models (rela-
tivistic and nonrelativistic) for symmetric nuclear matter.
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With regard to the values of the CPs of the studied
nonrelativistic parametrizations, we found very good agree-
ment of all the models with the experimental value of ρc =
0.06 ± 0.01 fm−3 [84]. All the finite-range models considered
here, as well as 10 out of 20 Skyrme parametrizations ana-
lyzed, lie within the experimental limit of Pc = 0.31 ± 0.07
MeV/fm3 [84]. Finally, concerning Tc, we have compared our
results with both theoretical and experimental data collected
from the literature. Figure 3 shows that all the models ana-
lyzed here are compatible with the experimental values. We
have also verified that the critical parameters obtained here
are also compatible with previous theoretical results reported
in Refs. [10,92], in which the authors have used a class of
RMF models [10], and with the nuclear models derived from
chiral effective field theory [92].

Another investigation performed in this work was the
search for possible correlations between bulk parameters,
evaluated at the saturation density, and the CPs. In Table II
we have shown the correlation coefficients obtained for some
possible relationships. The general trend of Tc as an increasing
function of K0 was found for all families of models indi-
vidually with the exception of the Gogny parametrizations.
This finding is compatible with studies using other hadronic
models [4,94–98]. In Fig. 5(a) and in Table II, where the corre-
lation coefficient for the Pc × K0 relationship was presented,
we observed the same pattern, namely, Pc and K0 are corre-
lated to each other for all models except for the Gogny ones.
This particular correlation was also exhibited for relativistic
parametrizations explored in Refs. [10,98]. With regard to ρc

as a function of K0, we find a good correlation coefficient only
for the parametrizations of the SEI model, namely, c = 0.80.
Concerning the critical parameters as a function of m∗, we
found hints of correlation for Skyrme (Tc and Pc), M3Y (Pc

and ρc), and SEI (ρc) models. Finally, in Fig. 6 we verified
correlation between Tc and Pc in agreement with other find-
ings [99]. Also our results seem to point out that this specific
correlation is better fulfilled for models with similar effective
mass independently of the type of interaction considered.
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APPENDIX

In momentum space, the finite-range interaction is given by
the Fourier transform of the form factor in coordinate space,
f (s, μ), where s = |r − r′| and μ is the range of the force,
and, therefore,

g(|k − k′|, μ) =
∫

dsei(k−k′ )s f (s, μ). (A1)

The interaction in momentum space depends on the modulus
of the relative momentum and therefore on the angle between
k and k′. We can finally write the interaction with spherical
symmetry in momentum space by performing the angular
average:

g̃(k, k′, μ) = 1

4π

∫
d�g(

√
k2 + k′2 − 2kk′ cos θ ). (A2)

In this work we use Gaussian fG(s) = e−s2/μ2
and Yukaw-

ian fY (s) = e−μs/μs form factors. The corresponding Fourier
transforms are

gG(|k − k′|, μ) = (
√

πμ)3e− μ2 (k−k′ )2

4 (A3)

and

gY (|k − k′|, μ) = 4π

μ

1

μ2 + (k − k′)2
. (A4)

After the angular average they become

g̃G(k, k′, μ) = 2π3/2μ

kk′ e− μ2 (k2+k′2 )
4 sinh

μkk′

2
(A5)

and

g̃Y (k, k′, μ) = π

μkk′ ln
μ2 + (k + k′)2

μ2 + (k − k′)2
, (A6)

which enter in Eqs. (7) and (9).
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