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Background: The chiral magnetic effect (CME) is extensively studied in heavy-ion collisions at the BNL
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). An azimuthal correlator called
R�m was proposed to measure the CME. By observing the same R�2 and R�3 (convex) distributions from A
Multi-Phase Transport (AMPT) model, by contrasting data and model as well as large and small systems and
by event shape engineering (ESE), a recent preprint (arXiv:2006.04251v1) from STAR suggests that the R�m

observable is sensitive to the CME signal and relatively insensitive to backgrounds, and their Au + Au data are
inconsistent with known background contributions.
Purpose: We examine those claims by studying the robustness of the R�m observable using AMPT as well as
toy model simulations. We compare R�m to the more widely used �γ azimuthal correlator to identify their
commonalities and differences.
Methods: We use AMPT to simulate Au + Au, p + Au, and d + Au collisions at

√
sNN = 200 GeV, and study the

responses of R�m to anisotropic flow backgrounds in the model. We also use a toy model to simulate resonance
flow background and input CME signal to investigate their effects in R�2 . Additionally we use the toy model to
perform an ESE analysis to compare with STAR data as well as predict the degree of sensitivity of R�2 to isobar
collisions with the event statistics taken at RHIC.
Results: Our AMPT results show that the R�2 in Au + Au collisions is concave and apparently different from R�3 ,
in contradiction to the findings in STAR’s preprint, while the R�2 in p + Au and d + Au collisions are slightly
concave. Our toy model ESE analysis indicates that the R�2 is sensitive to the event-by-event anisotropy q2 as
well as the elliptic flow parameter v2. The toy model results further show that R�2 depends on both the CME
signal and the flow backgrounds, similar to the �γ observable. It is found that the R�2 and �γ observables show
similar sensitivities and centrality dependencies in isobar collisions.
Conclusions: Our AMPT results contradict those from a recent preprint by STAR. Our toy model simulations
demonstrate that R�2 is sensitive to both the CME signal and physics backgrounds. Toy model simulations of
isobar collisions show similar centrality dependence and magnitudes for the relative R�2 strengths as well as the
relative �γ strengths. We conclude that R�2 and the inclusive �γ are essentially the same.

DOI: 10.1103/PhysRevC.103.034912

I. INTRODUCTION

In quantum chromodynamics (QCD), topological charge
fluctuations in vacuum can cause a chiral anomaly in lo-
cal domains [1–4]. Such domains violate the parity (P) and
charge-parity (CP) symmetry. If a strong enough external
magnetic field is also present, quark spins would be locked
depending on their charge, either parallel or antiparallel to
the magnetic field. As a result, charge separation along the
magnetic field would emerge in those chirality imbalanced
domains, which has observational consequences in the final
state. This is called the chiral magnetic effect (CME) [3,4].

*feng216@purdue.edu
†zhao656@purdue.edu
‡haojiexu@zjhu.edu.cn
§fqwang@purdue.edu

In noncentral heavy ion collisions, excited QCD vacuum
is formed in the central collision zone, whereas the spectator
protons can provide an intense, transient magnetic field [4].
Thus, the CME is expected to emerge in those collisions,
which, if observed, would be strong evidence for local P and
CP violation in the strong interaction.

The magnetic field created in heavy-ion collisions is, on av-
erage, perpendicular to the reaction plane (RP, spanned by the
impact parameter and the beam direction). A RP-dependent
charge correlation observable �γ has been proposed [5] and
widely studied at the BNL Relativistic Heavy Ion Collider
(RHIC) [6–11] and the Large Hadron Collider (LHC) [12–16].
An alternate correlator, called R�m (m = 2 or 3 is the az-
imuthal harmonic order), was also proposed [17,18]. The
premise was that the physics backgrounds should result in
a convex R�2 distribution and the CME signal should give
a concave one. This was contradicted by other background
studies [19], including one by us [20].
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Recently, the STAR collaboration released results [21] us-
ing a modified R�2 variable (see Sec. II A). Their AMPT (a
multiphase transport [22]) and AVFD (Anomalous Viscous
Fluid Dynamics [23,24]) model studies, suggest that R�2 is
sensitive to the CME signal and relatively insensitive to back-
grounds. It is found that the AMPT R�m results are convex
and equal between R�2 and R�3 ; that R�2 in Au + Au col-
lisions is concave and in p + Au and d + Au collisions are
flat or convex; and that the R�2 distribution in an event shape
engineering (ESE) [25] analysis is insensitive to the event-
by-event anisotropy parameter, which is in turn sensitive to
the flow anisotropy. These findings led to the conclusion that
the Au + Au data indicate a strong signal consistent with the
CME that cannot be explained by known backgrounds.

Since the qualitative features of the AMPT results by STAR
[21] contradict the other similar background studies [19,20],
further investigations are warranted. In this paper, we first
revisit our earlier AMPT study using the modified R�m variable
[18] that was employed by STAR [21]. We also investigate
small system collisions simulated by AMPT. We then perform
an ESE analysis using a toy model simulation in order to have
sufficient statistics. We further examine the R�2 variable with
the toy model, investigating its effectiveness to identify the
input CME signal and its vulnerability to physics backgrounds
in an attempt to decipher the R�m variable. We discuss our
findings in the context of the STAR results [21].

The rest of the article is organized as follows: In Sec. II,
the definitions of R�m and �γ are provided. In Sec. III, AMPT

simulation results on R�m are presented in Au + Au, p + Au,
and d + Au collisions. In Sec. IV, an ESE study is conducted
using toy model simulations. In Sec. V, the toy model is used
to study the elliptic flow (v2) background and the CME signal
(a1) dependencies for both R�2 and �γ in Au + Au and isobar
collisions. In Sec. VI, a summary is given. Appendix A gives
an analytical derivation for the event-plane resolution correc-
tion and discusses further complications. In Appendix B, we
extend our analytical analysis in Ref. [20] to the modified R�2

variable for the pure background case and derive an analytical
form for the CME signal dependence of the R�2 variable. In
Appendix C, we also provide an analytical form for the signal
and background dependence of �γ .

II. METHODOLOGY

A. The R�m correlator

Phenomenologically, the azimuthal distribution of the pri-
mordial particles in each event can be expressed into Fourier
expansion,

dN±

dφ
∝ 1 ± 2a1 sin (φ − �RP)

+ 2v2 cos 2(φ − �RP) + · · · , (1)

where �RP denotes the RP azimuthal angle. The N± is the
number of particles with charge sign indicated by its su-
perscript. The coefficient ±a1 is the charge-dependent CME
signal, and v2 is the elliptic flow coefficient. In real data
analysis, the RP is often surrogated by the second-order event
plane (EP). The azimuthal angle of the EP of the order m is

calculated by

�m = 1

m
arctan

( ∑
i wi sin (mφi )∑
i wi cos (mφi )

)
, (2)

where φi and wi are the azimuthal angle and weight of
particle i.

To avoid autocorrelations, the particles of interests (POIs,
whose azimuth is φ) to measure the CME (or the a1 param-
eter) must be excluded from the particles used to reconstruct
the EP. To realize that, the subevent method is used to define
the R�m correlator. Each event is divided into two subevents
with a pseudorapidity gap—one subevent (referred to as the
“east” subevent) with −1.0 < η < −0.1 and the other (re-
ferred to as the “west” subevent) with 0.1 < η < 1.0. We
take the west subevent as an example to calculate the charge
separation perpendicular to the east subevent EP (�SW ) and
parallel to it (�S⊥,W ), according to the real charge sign.
Namely,
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]
. (3)

To combine the two subevents, we take the average

�Sm = (
�SW

m + �SE
m

)/
2,

�S⊥
m = (

�S⊥,W
m + �S⊥,E

m

)/
2.

(4)

The widths of the distributions in �Sm characterize the
magnitude of charge separation with respect to the plane with
which the �Sm is defined. The widths depend on the multi-
plicity of particles used to compute the �Sm. To normalize
out the multiplicity dependence, reference variables �Sm,sh

and �S⊥
m,sh are constructed by randomly shuffling the particle

charge signs (according to relative abundances of positive and
negative particles). Denoting by σm,sh and σ⊥

m,sh the rms widths
of the shuffled distributions, the �Sm variables are scaled as
follows [21]:

�S′
m = �Sm/σm,sh, �S′

m
⊥ = �S⊥

m /σ⊥
m,sh. (5)

Because of finite multiplicity fluctuations, the reconstructed
EP is smeared from the RP, broadening the �Sm distributions.
A multiplicative factor is applied to correct for the effect of
the imperfect EP reconstruction,

�S′′
m = �S′

mδrm , �S′′
m

⊥ = �S′
m

⊥
δrm . (6)

The correction factor is given by

δrm = √
rm, (7)
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where rm is the EP resolution of subevents,

rm = 〈
cos m

(
�E/W

m − �RP
)〉 =

√〈
cos m

(
�W

m − �E
m

)〉
. (8)

The derivation of Eq. (7) is given in Appendix A 1.
The normalized distributions of �S′′

m are

C�m = event probability distribution in �S′′
m

event probability distribution in �S′′
m,sh

,

C⊥
�m

= event probability distribution in �S′′
m

⊥

event probability distribution in �S′′
m,sh

⊥ . (9)

The R�m observable is defined by the double ratio

R�m = C�m

C⊥
�m

. (10)

We characterize the shape of R�m by

ξ = − 1

δ2
rm

(
σ 2

m,sh

σ 2
m

− σ⊥
m,sh

2

σ⊥
m

2

)
. (11)

The variable ξ can also be obtained by fitting the R�m distri-
butions to Ceξx2/2. The distribution of R�m is concave when
ξ > 0, convex when ξ < 0, and flat when ξ = 0. The width
of R�m is σ = 1/

√|ξ |, so we will refer to ξ as the squared
inverse width of R�m .

As discussed in Sec. V A, the averaging of Eq. (4) intro-
duces autocorrelations and is thus not a good way to define
�Sm and �S⊥

m . We propose not to average the two subevents
but to treat them separately. See Sec. V A and Appendix A
for more details. Nonetheless, for comparisons to the previous
works, we study both cases where the subevents are averaged
as well as treated independently and use the same correction
factor given by Eq. (7).

B. The �γ observable

The two-particle azimuthal correlator �γ observable [5]
is widely used in CME studies at RHIC [6–11] and the LHC
[12–16]. For completeness, we give a brief description of the
�γ observable. To keep consistency with the R�m , we define
�γ also by subevents,

γOS = 〈
cos

(
φ±

a∈E/W + φ∓
b∈E/W − 2�

W/E
2

)〉/
r2,

γSS = 〈
cos

(
φ±

a∈E/W + φ±
b∈E/W − 2�

W/E
2

)〉/
r2,

�γ = γOS − γSS,

(12)

where a and b are two particles in the same subevent and r2 is
the second-order EP resolution of the subevents, as in Eq. (8).
To compare with R�2 , the same POI cuts and EP particle cuts
as in R�2 are used in �γ .

For the CME signal parametrized by the a1 parameter in
Eq. (1), the �γ correlator can be obtained as

�γ = 2a2
1. (13)

It is well known that �γ is strongly contaminated by physics
backgrounds caused by two-particle correlations and the
anisotropy of those correlated pairs [5,26–29]. For instance,

FIG. 1. The R�2 and R�3 distributions in centrality 30%–50%
Au + Au collisions at

√
sNN = 200 GeV simulated by AMPT. A

total of 25.8 million 30%–50% centrality events are generated
and analyzed. The POIs are required to have 0.35 GeV/c < pT <

2.0 GeV/c and 0.1 < |η| < 1.0, whereas particles used for EP re-
construction are required to have 0.2 GeV/c < pT < 2.0 GeV/c and
0.1 < |η| < 1.0. The R�m distributions are symmetrized. With the
azimuth range φ ∈ [−π, π ), the R�2 (red square) and R�3 (blue
circle) curves are both concave and apparently different. With the
range φ ∈ [0, 2π ), R�3 (magenta triangle) is relatively flat and R�2

is unchanged. The curves are fits to function f (x) = Ceξx2/2.

resonance decays present a major background:

�γ = Nreso

Npair
〈cos (φa + φb − 2φreso)〉v2,reso. (14)

Since the number of resonances Nreso ∝ N , the number of
pairs Npair ∝ N2, and the resonance elliptic flow v2,reso ∝ v2,
the background contamination in �γ is generally proportional
to the final-state particle v2 and inversely proportional to the
multiplicity (N).

III. RESULTS OF A MULTI-PHASE TRANSPORT MODEL

The AMPT model [22] is widely used to simulate relativistic
heavy ion collisions, without CME signal. In this study, we
use the AMPT version v2.25t4cu2 where charge conservation is
ensured. We set the model parameter NTMAX = 150, which
means that the hadronic cascade is turned on. For particles
used for EP reconstruction, a cut is applied to their transverse
momentum 0.2 GeV/c < pT < 2.0 GeV/c, while for POI, a
tighter pT cut is applied 0.35 GeV/c < pT < 2.0 GeV/c, as
in the STAR analysis [21]. All particles used in our analysis
are required to be inside the η range −1 < η < 1.

A. Au + Au collisions

For Au + Au collisions at
√

sNN = 200 GeV, the minimal
bias (MB) AMPT events are generated first to define centrality
by cutting on MB multiplicity distribution. Then, a total of
25.8 million 30%–50% centrality events are simulated and
used for this analysis. Figure 1 shows the R�2 (red square) and
R�3 (blue circle) distributions. The distributions are concave
and different from each other in width. This is in stark contrast
with the STAR results in Ref. [21], where convex, nearly
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identical R�2 and R�3 curves were obtained. The “identical”
R�2 and R�3 curves from AMPT (where only backgrounds
are present, with no CME singal) was critical for the claim
in Ref. [21] that the Au + Au data, where different R�2 and
R�3 distributions are observed, are consistent with CME and
inconsistent with known backgrounds. Since the v2 and v3

physics mechanisms are the same in the hydrodynamic pic-
ture, it may be satisfactory to find identical R�2 and R�3

curves. However, our AMPT results in Fig. 1 demonstrate that
the R�2 and R�3 are not necessarily the same when only pure
background is present. We speculate that the difference roots
in the R�m definitions: the “harmonic” multiplier m/2 in front
of the azimuthal angle φ − �m [see Eq. (3)] renders actually
two distinctly different variables of R�2 and R�3 .

Moreover, as pointed out in Ref. [20], the R�3 variable is
ill-defined because it breaks the natural azimuthal periodicity
of 2π . The R�3 in blue circles in Fig. 1 uses the azimuthal
range of φ ∈ [−π, π ). If it is switched to φ ∈ [0, 2π ) by
adding 2π to those in the range [−π, 0), with no change in
physics, minus signs appear to the corresponding terms in
Eq. (3), and the R�3 distribution changes completely to the
magenta triangles in Fig. 1. R�2 is of course unchanged by the
choice of the φ range. Since R�3 is ill-defined [20], we only
focus on R�2 in the rest of this paper.

We note that a recent publication [30] appeared with
similar AMPT results as those in the STAR work [21]. An
examination of the statistical errors suggests [31] that those
AMPT results in Ref. [30] are highly improbable to be real,
calling into question the validity of those AMPT results.
Moreover, concave R�m distributions were observed by sev-
eral other model studies for Au + Au collisions at

√
sNN =

200 GeV. Those include hydrodynamic simulations [19] and
toy model studies [20].

B. p + Au and d + Au collisions

For the small systems, p + Au and d + Au collisions at√
sNN = 200 GeV, total 300 million MB AMPT events each

are simulated. Since the centrality is not well defined in those
small systems, we cut on the reference multiplicity 18 �
dN/dη � 22 (the number of charged particles in the range
−0.5 < η < 0.5), a range similar to the STAR data analy-
sis [21]. These correspond to 7.3 and 33.2 million analyzed
events for p + Au and d + Au collisions, respectively. As in
Ref. [21], the event plane is reconstructed from the particles
in the Au-going direction in the range of −1.0 < η < −0.1,
and the POIs are from the p/d-going direction in the range
of 0.1 < η < 1.0. The η gap between the EP particles and the
POIs suppresses short-range correlations.

Figure 2 shows the R�2 distributions in the small system
collisions by AMPT. The distributions are slightly concave,
and appear qualitatively different from the STAR data [21],
where the R�2 curve in p + Au collisions is flat and that in
d + Au collisions is flat or even convex. Since the CME signal
is either absent or uncorrelated with the reconstructed EP in
those small systems, the flat R�2 curves were important for the
conclusion in Ref. [21] that the R�2 is sensitive to CME and
relatively insensitive to backgrounds which do have strong
effects on the �γ observable [10,11]. Our AMPT results in

FIG. 2. R�2 distributions in 18 � dN/dη � 22 from AMPT sim-
ulations for p + Au collisions (upper pad) and d + Au collisions
(lower pad) at

√
sNN = 200 GeV. Each dataset has 300 million MB

events; 7.3 and 33.2 million analyzed p + Au and d + Au events
in the dN/dη range, respectively. The POIs are required to have
0.35 GeV/c < pT < 2.0 GeV/c and come from the p/d-going range
0.1 < η < 1.0, whereas the particles used for EP reconstruction
are required to have 0.2 GeV/c < pT < 2.0 GeV/c and come from
the Au-going range −1.0 < η < −0.1. The R�2 distributions are
symmetrized. The R�2 from both p + Au and d + Au are slightly
concave. The curves are fits to function f (x) = Ceξx2/2.

p + Au and d + Au collisions suggest that this may not be
the case.

IV. STUDY OF EVENT SHAPE ENGINEERING
IN A TOY MODEL

STAR performed an ESE analysis of their Au + Au data
[21]. Each event is divided into three subevents: east (−1 <

η < −0.3), middle (−0.3 < η < 0.3), and west (0.3 < η <

1.0) subevents. The middle subevent is used to calculate the
q2 quantity,

q2 =
√( ∑M

i cos 2φi
)2 + ( ∑M

i sin 2φi
)2

M
, (15)

where M is the number of particles in the middle subevent.
This quantity is related to the elliptical shape of the corre-
sponding subevent in momentum space. The events are then
divided according to the q2 value and are analyzed separately
in each q2 class. In each event, the east and west subevents are
used to calculate the elliptic flow v2 and the R�2 correlator by
the subevent method [Eqs. (3)–(10)]. It was found that the v2

increases with increasing q2 but the R�2 width is independent
of q2 within uncertainties. This would imply that the width
of R�2 is independent from the event-by-event v2 in each q2

class. This supports the claim in Ref. [21] that the R�2 is
relatively insensitive to the flow background.

However, our previous toy model study [20] shows that R�2

has dependence on event-wise v2. This seems to contradict
the claim from the ESE study in Ref. [21]. To investigate this
further, we carry out an ESE analysis using the toy model
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[20,32]. The toy model is used instead of a physics model
such as AMPT because the ESE analysis typically requires
large statistics that is difficult to achieve by the latter. The
toy model includes primordial pions and ρ meson decay
daughters [20,32]. The inputs to the toy model are taken
from real data of Au + Au collisions at 200 GeV for each
of the 10%-size centrality bins. These include the pion and
ρ meson pT distributions and v2(pT ) [32–42]. The pT spec-
tra measurements of the ρ mesons are limited to 40%–80%
centrality; the pT spectra shapes are assumed to be centrality
independent in our simulation. The v2,ρ (pT ) are parametrized
according to the number of constituent quark (NCQ) scal-
ing. Fluctuations are added for v2 by a Gaussian distribution
with a relative width of 40% from event to event. The ρ/π

multiplicity ratio is approximately nρ/nπ = 0.085, assumed
to be centrality independent, and their multiplicities are such
that the total final multiplicity matches midrapidity data for
each given centrality bin [32]. Particles are generated with
|η| < 1.5 assuming multiplicity density is uniform in η. For a
given centrality bin of 10% size, we take its mean multiplicity
from data and use a corresponding Poisson distribution to
sample the multiplicity of each event. In this ESE analysis,
only middle centrality events are used; the average multiplic-
ity is dN/dη ≈ 179 in the range −0.5 < η < 0.5. In short,
the default setting of this toy model mimics the Au + Au
collisions at

√
sNN = 200 GeV. A total of 10.9 billion events

are simulated for centrality 20%–50%.
We followed the STAR analysis by dividing the |η| < 1

particles in the toy model into three (east, west, and middle)
subevents. The q2 distribution from the middle subevents is
shown in Fig. 3. For the q2 binning, equal q2 size (except the
last q2 bin) is taken [21], which is indicated by the vertical
lines in Fig. 3. The five bins are labeled as bin#1, bin#2, bin#3,
bin#4, and bin#5, respectively, corresponding to the notations
0%–20%, 20%–40%, 40%–60%, 60%–80%, and 80%–100%
in Ref. [21]. We calculate the average q2 values for each ESE
q2 bin of Fig. 3(a). The elliptic flow of the east and west
subevent are obtained from the two-particle cumulant method,

v2 =
√

〈cos 2(φa∈E − φb∈W )〉, (16)

where a is a particle from east subevent and b from west
subevent. Figure 3(b) shows v2 as a function of the q2. The
v2 is found to increase with q2, indicating some level of
selectivity of v2 by q2.

Figure 4 shows ξ as functions of q2 and v2. The fits show
that ξ increases with q2 and v2, with the slope parameters de-
viating from zero by approximately two standard deviations,
with the current 10.9 billion events simulated for 20%–50%
centrality. We can make two observations from our ESE study:
(1) the ξ depends on v2; and (2) such ESE studies require
humongous statistics in order to draw clear conclusions. The
latter is probably the primary reason why STAR did not ob-
serve a q2 dependence of ξ with their limited statistics of
≈200 million events for 20%–50% centrality Au + Au col-
lisions [21]. With the large uncertainties in Ref. [21], it is
premature to draw the conclusion “R�2 is relatively insensitive
to v2” [21].

FIG. 3. (a) The q2 distribution for 20%–50% Au + Au collisions
simulated by the toy model using STAR data as input parameters.
This is used in ESE analysis where q2 bins are divided by q2 values
of equal spacing (except the last bin). (b) The v2 vs q2 of each ESE q2

bin. Total 10.9 billion events are simulated for centrality 20%–50%.
The q2 is calculated from particles in |η| < 0.3 with 0.2 GeV/c <

pT < 2.0 GeV/c, whereas v2 is calculated from particles in |η| > 0.3
with 0.2 GeV/c < pT < 2.0 GeV/c.

V. TOY MODEL STUDY TO DECIPHER R�2

We use the toy model of Sec. IV to further study the
sensitivity of R�2 to background v2 and signal a1 in Au + Au
and isobar collisions. We simulate all centrality bins measured
in data, namely, 0%–80%. To investigate the middle central
collisions in greater details, each 10%-size bin in 20%–50%
(20%–60%) centrality range has twice as many events as other
10%-size centrality bins in Au + Au (isobar) collisions.

A. Sensitivity to v2 background

The toy model datasets are simulated with various input
v2(pT ), including the default v2 and variations with 10%,
20%, and 30% increase from the default v2. For each dataset
of a given input v2, the ξ and v2 of final-state particles are
calculated. Figure 5(a) maps those two variables for the 30%–
50% centrality and a linear dependence is observed between
them. A previous toy model study also observed a R�2 depen-
dence on v2 (and transverse momentum pT ) [20].

Similarly, �γ is also calculated from those datasets with
the same cuts and is shown in Fig. 5(b). A linear dependence
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FIG. 4. (a) The ξ vs q2 of each ESE q2 bin for centrality 20%–
50% Au + Au collisions simulated by the toy model using STAR
data as input parameters. Total 10.9 billion events are simulated for
centrality 20%–50%. The POIs are required to have 0.35 GeV/c <

pT < 2.0 GeV/c and 0.3 < ±η < 1.0, whereas particles for EP re-
construction are required to have 0.2 GeV/c < pT < 2.0 GeV/c and
0.3 < ∓η < 1.0. (b) The mapping of ξ as a function of v2 in each
ESE q2 bin.

on v2 is also observed, as one expects for the background
behavior in �γ as discussed in Sec. II B [cf. Eq. (14)]. First-
order polynomial fit yields an intercept consistent with zero
for �γ (v2). This is expected because the �γ will go to zero
where there is no elliptic flow.

However, first-order polynomial fit to ξ (v2) yields a
nonzero intercept. This is shown in Fig. 5(a). The fit param-
eters are consistent with those from the ESE study shown in
Fig. 4(b), modulo the large errors for the latter. The nonzero
intercept arises because of the additional correlation between
POI and EP brought by averaging the two subevents in Eq. (4),

Var[�S] = 〈�S2〉
= 1

4 〈(�SE )2〉 + 1
4 〈(�SW )2〉 + 1

2 〈�SE�SW 〉. (17)

This autocorrelation comes about because the POI for �SE

are used for EP reconstruction for �SW , and vice versa. To
circumvent this, we count the two subevents separately instead
of combining them. The squared inverse width of R�2 (�S′′)
obtained from this method is referred to as ξ ∗. The ξ ∗(v2) is
shown in Fig. 5(a). A linear dependence is observed, with an

intercept consistent with zero. In fact, the difference between
ξ and ξ ∗ at any given setting (i.e., not just the intercept as
we noted above) is caused by the autocorrelation. This will be
discussed further in Appendix A 2 and A 3

We repeat the fit for each narrow centrality bin. In Fig. 6(a),
the fit intercept parameter is shown as a function of centrality
for ξ (v2), which seems roughly a constant in the centrality
range 10%–50%. In Fig. 6(b), the fit slope parameter is shown
as functions of centrality for ξ (v2), ξ ∗(v2). The ξ (v2) [ξ ∗(v2)]
slope is roughly constant in the centrality range 10%–50%
with a value of approximately 0.105 (0.098). See Appendix
B 1 for an analytical derivation.

Figure 6(c) shows the slope of �γ (v2) multiplied
by Nch, where Nch is average POI multiplicity of each
subevent in −1.0 < η < −0.1 (or 0.1 < η < 1.0) with pT >

0.35 GeV/c. It is found that the slope parameter of �γ (v2)
is inversely proportional to multiplicity, with a dependence
approximately 0.125/Nch. This is consistent with previous
findings that the �γ is diluted by multiplicity, as discussed
in Sec. II B [cf. Eq. (14)]. See further details in Appendix C.

To summarize, the ξ , ξ ∗, and �γ can be parametrized,
empirically for the given toy model simulation in this study
without CME signal input, as

ξbkgd ≈ (0.105 ± 0.011)v2 + (0.0052 ± 0.0007), (18a)

ξ ∗
bkgd ≈ (0.098 ± 0.007)v2, (18b)

�γbkgd ≈ (0.125 ± 0.006)v2/Nch. (18c)

B. Responses to chiral magnetic effect signal

To study the sensitivity to the CME signal, we input an a1

parameter into particle distribution in the toy model, keeping
the default setting for the v2 background. We set a1 to 0, 0.005,
0.008, and 0.010. For each case, we generate two billion
events over 0%–80% centrality, where 0.73 billion events are
in 30%–50% centrality.

ξ , ξ ∗, and �γ are calculated from centrality range 30%–
50%. Figures 7(a) and 7(b) show ξ , ξ ∗, and �γ as functions
of a2

1. Linear dependence on a2
1 is observed for all observables.

Linear fits are superimposed in Figs. 7(a) and 7(b). All show
nonzero intercepts, corresponding to the backgrounds caused
by the nonzero v2 in the underlying events.

The similar procedure above is then repeated for each nar-
row centrality bin. Figure 8(a) shows the fit slope parameters
as functions of centrality for ξ (a2

1) and ξ ∗(a2
1). The ξ (a2

1) slope
is found to decrease with centrality percentile (or increase
with centrality); it is found to be proportional to multiplicity
[Fig. 8(b)]. See Appendix B 2 for an analytical derivation.

Figure 8(c) shows the fit slope parameters as a function of
centrality for �γ (a2

1). The �γ (a2
1) slope parameter is found

to be independent of centrality, and the intercept is always
consistent with zero. Ideally, one expects �γ to vary as 2a2

1
[Eq. (13)]. The slope parameter from our toy model is found to
be ≈1.252, smaller than 2; this is because the CME signal a1

is applied only to primordial pions, not to the secondary pions
from resonance decays. See further details in Appendix C. If
parameter a1 characterizes the coefficient in Eq. (1) which in-
cludes all final-state particles, then we would have �γ = 2a2

1.
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FIG. 5. The (a) ξ and ξ ∗ and (b) �γ as functions of the input v2 from Au + Au collisions at
√

sNN = 200 GeV with no CME signal. The
leftmost data point uses the default v2 distributions; other points use v2 distributions that are scaled up accordingly. Each data point has total
two billion toy model events in the 0%–80% centrality range (or 0.73 billion events in the 30%–50% centrality range). The POIs are required
to have 0.35 GeV/c < pT < 2.0 GeV/c and 0.1 < ±η < 1.0, whereas particles for EP reconstruction are required to have 0.2 GeV/c < pT <

2.0 GeV/c and 0.1 < ∓η < 1.0. For each dataset, the ξ , ξ ∗, �γ , and v2 are calculated from the centrality range 30%–50% (average multiplicity
dN/dη ≈ 140, average subevent POI multiplicity Nch ≈ 64). The dashed lines are two-parameter linear fits.

To summarize, the CME signal dependence of ξ , ξ ∗, and
�γ can be parametrized empirically for the given toy model
simulation in this study as

ξCME ≈ (3.013 ± 0.015)a2
1Nch, (19a)

ξ ∗
CME ≈ (1.297 ± 0.010)a2

1Nch, (19b)

�γCME ≈ (1.252 ± 0.008)a2
1. (19c)

C. Relative merits of R�2 and �γ

To summarize the findings in Secs. V A and V B, we can
parametrize ξ , ξ ∗, and �γ in terms of the v2 background
and the CME signal, in our toy model simulation of Au + Au
10%–50% centrality, by

ξ/Nch ≈ (0.105 ± 0.011)v2/Nch + (3.013 ± 0.015)a2
1

+ (0.0052 ± 0.0007)/Nch, (20a)

ξ ∗/Nch ≈ (0.098 ± 0.007)v2/Nch + (1.297 ± 0.010)a2
1,

(20b)

�γ ≈ (0.125 ± 0.006)v2/Nch + (1.252 ± 0.008)a2
1.

(20c)

It is worthwhile to note that ξ/Nch, and specially ξ ∗/Nch,
is rather similar to �γ . This may not be surprising be-
cause ξ is related to the combination of the �S and
�S⊥ variances, roughly 〈cos(φa − �RP) cos(φb − �RP) −
sin(φa − �RP) sin(φb − �RP)〉, which is the �γ [43]. In Ap-
pendix B, we provide an analytical derivation of ξ ∗ without
considering correlations arising from pT dependence of v2

and decay kinematics, etc. Our toy model results above and
the analytical estimates are qualitatively consistent. Our an-
alytical results are also qualitatively in line with findings by
others [44].

We may estimate the signal/background ratio (S/B) of the
two observables from Eq. (20), within our toy model simula-
tion, as

ξ : S/B ≈ (28.7 ± 3.0)a2
1Nch

v2 + (0.050 ± 0.008)
, (21a)

ξ ∗: S/B ≈ (13.2 ± 1.0)a2
1Nch/v2, (21b)

�γ : S/B ≈ (10.0 ± 0.5)a2
1Nch/v2. (21c)

Thus, in terms of the S/B value, ξ ∗ is more (less) sensitive
to signal (background) than �γ with this toy model in this
centrality range.

We can map the observables ξ vs �γ and ξ ∗ vs �γ against
each other using the data in Secs. V A and V B, as shown

FIG. 6. The fit parameters from linear fits to ξ (v2), ξ ∗(v2), and �γ (v2) are plotted as functions of centrality. The ξ , ξ ∗, �γ are similar
to those in Fig. 5 but are calculated for each narrow centrality bin of 10% size. (a) The ξ (v2) intercept, which is roughly constant in the
centrality range 10%–50%. The ξ ∗(v2) and �γ (v2) intercepts are all consistent with zero. (b) The slopes of ξ (v2) and ξ ∗(v2), which seem to
be independent of centrality. (c) The �γ (v2) slope multiplied by Nch. The slope is inversely proportional to Nch.
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FIG. 7. The (a) ξ and ξ ∗ and (b) �γ as functions of the input CME signal (a2
1) from the toy model simulations for Au + Au collisions at√

sNN = 200 GeV with default v2 distribution. Each data point has total two billion toy model events in the 0%–80% centrality range (or 0.73
billion events in the 30%–50% centrality range). The POIs are required to have 0.35 GeV/c < pT < 2.0 GeV/c and 0.1 < ±η < 1.0, whereas
particles for EP reconstruction are required to have 0.2 GeV/c < pT < 2.0 GeV/c and 0.1 < ∓η < 1.0. For each dataset, the ξ , ξ ∗, �γ , and
v2 are calculated from the centrality range 30%–50% (average multiplicity dN/dη ≈ 140, average subevent POI multiplicity Nch ≈ 64). The
dashed lines are two-parameter linear fits.

in Fig. 9. There is a monotonic, one-to-one correspondence
between ξ ∗ and �γ , indicating that they are essentially equiv-
alent in searching for the CME. A recent AMPT simulation
study also shows that the R�2 and �γ observables are essen-
tially equivalent [45]. For ξ and �γ , there are two groups
of data points with different slopes, one from background
variation and the other from signal variation. This is likely
caused by the autocorrelations arising from averaging �S
between subevents discussed in Sec. V A and Appendix A.
Our toy model study only includes ρ decays, while the real
collisions have also other resonances whose decay kinematics
are different from the ρs. This can render possible quantitative
changes in the relative merits of �γ and ξ , ξ ∗.

It is worthwhile to note, however, that the �γ observable is
relatively straightforward to interpret whereas the R�m observ-
able is complex. The �γ variable is computed per particle pair
and the ξ (ξ ∗) variable is computed per event. The former of-
fers a wider versatility in ways to isolate the CME signal from
backgrounds, for example, a differential study in pair invariant
mass [10,46–48]. Although ξ (ξ ∗) may have a slightly larger
S/B value than �γ according to our toy model study, both
are strongly affected by physics backgrounds which dominate
over the CME. Both observables have to seek innovative ways
to isolate the CME signal and physics backgrounds. One of the
promising ways is to leverage on the different harmonic planes

in the same collision event for �γ measurements [49–51]. It
would be interesting to study the benefit of applying such a
method to ξ (ξ ∗).

D. Isobar background expectations

Recently, 96Ru44 + 96Ru44 and 96Zr40 + 96Zr40 collisions
have been conducted at RHIC to potentially resolve the back-
ground issue in the search for the CME. Those two species
are isobars of each other, with the same number of nucleons
(A = 96) but different number of protons (Z = 44, 40). The
backgrounds are expected to be similar in those two collision
systems due to the same nucleon number. The CME signals
should be quite different due to the different magnetic fields
created by the spectator protons whose numbers are different
in those isobars. There may be complications to these simple
expectations when considering modern nuclear structure cal-
culations [50,52].

Both the R�m and the inclusive �γ correlators are em-
ployed to search for the CME using the isobar data [53]. To
examine the relative merits of the two observables in search-
ing for the CME, we simulate Ru + Ru and Zr + Zr collisions
using the toy model. The multiplicity is scaled from Au + Au
by the number of participant nucleons. We use the following

FIG. 8. The fit parameters from linear fits to ξ (a2
1 ), ξ ∗(a2

1 ), and �γ (a2
1 ) are plotted as functions of centrality. The ξ , ξ ∗, �γ are similar

to those in Fig. 7 but are calculated for each narrow centrality bin of 10% size. (a) The ξ (a2
1 ) and ξ ∗(a2

1 ) slopes, which are decreasing with
increasing centrality percentile (or decreasing centrality). (b) The ξ (a2

1 ) and ξ ∗(a2
1 ) slopes divided by Nch. The slopes are proportional to Nch.

(c) The �γ (a2
1 ) slope, which seems to be independent from centrality.
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FIG. 9. The ξ (ξ ∗) and �γ are mapped for each toy model simu-
lation for Au + Au collisions at

√
sNN = 200 GeV in Fig. 5 (various

input v2 distributions with no CME signal, first four data points) and
Fig. 7 (various input a1 values with default v2 distribution, last three
data points). The lines are one-parameter linear fits to the data points,
mainly to guide the eye.

inputs for the Zr + Zr and Ru + Ru collision systems, respec-
tively:

(i) Zr + Zr: default v2,π (pT ) and v2,ρ (pT ) (the same as
those used in the default Au + Au toy model simula-
tion), and the CME signal a1 = 0.50%.

(ii) Ru + Ru: 2% larger v2,π and v2,ρ , and a 10% larger
CME signal than in Zr + Zr. The 2% larger v2 is
guided by the expected v2 difference from modern
nuclear structure calculations [50,52]. The 10% larger
CME signal comes from the 10% more protons in the
Ru nucleus than in the Zr nucleus.

Figure 10 shows the Ru + Ru over Zr + Zr ratio of ξ in
the two isobar systems, along with that of �γ . The centrality
dependence of the ratios can be understood by Eq. (20). For
�γ , the ratio is

�γ (Ru+Ru)

�γ (Zr+Zr)
= 1.252a2

1 × 1.12 + 0.125v2/Nch × 1.02

1.252a2
1 + 0.125v2/Nch

= 1.21 − 0.19 × 0.125v2

1.252a2
1Nch + 0.125v2

= 1.02 + 0.19 × 1.252a2
1Nch

1.252a2
1Nch + 0.125v2

, (22)

and the double ratio is

�γ (Ru+Ru)/v2(Ru+Ru)

�γ (Zr+Zr)/v2(Zr+Zr)
= �γ (Ru+Ru)

�γ (Zr+Zr)
× 1

1.02

= 1.186 − 0.186 × 0.125v2

1.252a2
1Nch + 0.125v2

= 1 + 0.186 × 1.252a2
1Nch

1.252a2
1Nch + 0.125v2

.

(23)

FIG. 10. The ratio between the observable X in the two collision
systems as functions of the centrality, where X is ξ or �γ . For Zr +
Zr, the default vdef

2 and CME signal a1 = 0.005 are input, whereas
for Ru + Ru, 1.02vdef

2 and a1 = 0.0055 are input. Each dataset has
three billion toy model events in the 0%–80% centrality range, where
two billion events are in 20%–60% centrality range. The POI are
required to have 0.35 GeV/c < pT < 2.0 GeV/c and 0.1 < ±η <

1.0, whereas particles for EP reconstruction are required to have
0.2 GeV/c < pT < 2.0 GeV/c and 0.1 < ∓η < 1.0. The curves are
given by Eqs. (22) and (24).

For ξ , the ratio is

ξ (Ru+Ru)

ξ (Zr+Zr)

= 3.013a2
1 × 1.12 + 0.105v2/Nch × 1.02 + 0.0052/Nch

3.013a2
1 + 0.105v2/Nch + 0.0052/Nch

= 1.21 − 0.19 × 0.105v2 + 0.21 × 0.0052

3.013a2
1Nch + 0.105v2 + 0.0052

= 1.02 + 0.19 × 3.013a2
1Nch − 0.02 × 0.0052

3.013a2
1Nch + 0.105v2 + 0.0052

. (24)

The last two lines of Eqs. (22)–(24) are different ways to
express the ratios to illustrate the limits. In the limit of high
multiplicity Nch → ∞ (centrality → 0%), the ratios go to
1.21, and the double ratio goes to 1.186. In the limit of low
multiplicity Nch → 0 (centrality → 80%), the ratios go to
1.02 (�γ ) or ≈1.01 (ξ ), and the double ratio goes to 1. We
superimpose in Fig. 10 the parametrizations of Eqs. (22) and
(24). Since the trends and statistic errors are similar for ξ and
the inclusive �γ , as evident from Fig. 10, the two observables
would serve the same functionality in searching for the CME
in isobar collisions; neither seems superior to the other. The
conclusion is the same if ξ ∗ is used instead of ξ .

It is worthwhile to note that our toy model simulation is
useful and informative to reveal the relative merits of the R�2

and �γ observables within the same simulated data. One,
however, should not take the magnitudes and error bars of
the points in Fig. 10 to infer those of the real isobar data.
Even though we simulated the similar number of events as in
data, the physics included in our toy model is overly simplified
(e.g., only the ρ resonance is included) and the CME signal is,
of course, an arbitrary input.
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VI. SUMMARY

We have studied the R�m correlators using the AMPT model,
which does not include any CME signal. With Au + Au
collisions at

√
sNN = 200 GeV simulated by AMPT, the R�2

distribution is concave. The R�3 distribution, with the choice
of the azimuthal angle range of φ ∈ [−π, π ), is concave and
differs from that of R�2 , but with the choice φ ∈ [0, 2π ), it is
approximately flat indicating the illness of the R�3 definition
[20]. The same AMPT model is also used to simulate small-
system p + Au and d + Au collisions at

√
sNN = 200 GeV.

The R�2 distributions are found to be slightly concave in those
small-system collisions.

We have used a toy model to generate primordial and res-
onance decay pions, according to kinematic distributions and
elliptic flow measured in 200 GeV Au + Au collision data. It
is found that the R�m distribution squared inverse width (ξ ∗)
is proportional to v2. We verified the approximate linearity
with algebraic derivation. In addition, we find that the usual
implementation of R�2 by averaging subevents introduces an
autocorrelation that causes an intercept in the ξ (v2) linear de-
pendence. We have also input CME signal into the toy model
via the a1 parameter. It is found that the ξ and ξ ∗ increase
linearly with Ncha2

1, where Nch is the multiplicity of the par-
ticles of interests. We have also calculated the �γ correlator
and found the expected linear dependence on v2/Nch and on
a2

1. Except the multiplicative factor of Nch, the dependencies
on v2 and a2

1 are rather similar between ξ ∗ and �γ , and also
between ξ and �γ .

The toy model simulation, with only v2 background, is also
used for an event shape engineering study. It is found that ξ

does depend on the event-by-event q2 and v2 at two sigma
significance with 10.9 billion events corresponding to 20%–
50% centrality Au + Au collisions.

The toy model is also used to simulate the isobar systems
at

√
sNN = 200 GeV. With the anticipated 10% CME signal

(a1) and 2% flow background (v2) differences, the ξ and the
inclusive �γ relative strengths between the isobar collision
systems have rather similar trends on centrality, with similar
magnitudes and statistical uncertainties. It appears that the two
observables are essentially the same; neither observable has an
advantage over the other.

It has been argued [21] that (i) the R�2 and R�3 distributions
were identical for pure background scenarios, (ii) the small-
system collisions yield flat R�2 distributions, and (iii) the R�2

distribution does not depend on q2 with event shape engineer-
ing where variation in v2 is observed. These corroborative
features led to the conclusion that the concave R�2 distribution
observed in Au + Au collisions, more strongly concave than
the R�3 distribution, is inconsistent with known backgrounds
and thus may suggest the presence of the CME signal [21].
Our studies indicate that none of the three features seems to
hold and there appears to be no qualitative difference between
the R�2 observable and the inclusive �γ correlator.
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APPENDIX A: EVENT-PLANE RESOLUTION
CORRECTIONS

In this Appendix, we first derive the analytical form of
the EP resolution correction factor [Eq. (7)] for the squared
inverse width of the R�m correlator, ξ ∗. We then discuss the
empirical correction factor used by STAR [21]. Finally we
investigate the effect of autocorrelations on ξ .

1. Event-plane resolution correction for ξ∗

Ideally, one likes to use the RP �RP in Eq. (3) instead
of subevent EP �m. In this section, we derive the correction
factor on �S to take into account the inaccuracy of the re-
constructed EP in representing the RP. To lighten notations,
we do not explicitly specify the subevent by the superscript
E/W , but rather implicitly refer to a given subevent for the
�Sm and �m quantities.

The terms in �Sm can be written, taking one representative
term as an example, into

sin

[
m

2
(φ+ − �m)

]

= sin

[
m

2
(φ+ − �RP)

]
cos

[
m

2
(�m − �RP)

]

− cos

[
m

2
(φ+ − �RP)

]
sin

[
m

2
(�m − �RP)

]
. (A1)

Thus, the relationships between the �Sm variables with re-
spect to �RP and �m are

�Sm(�m) = �Sm(�RP) cos

[
m

2
(�m − �RP)

]

− �S⊥
m (�RP) sin

[
m

2
(�m − �RP)

]
,

�S⊥
m (�m) = �S⊥

m (�RP) cos

[
m

2
(�m − �RP)

]

+ �Sm(�RP) sin

[
m

2
(�m − �RP)

]
. (A2)

The relationship among the variances (corresponding to the
squared widths of the �S distributions) are then

σ 2[�Sm(�m)] = σ 2[�Sm(�RP)]
1 + rm

2

+ σ 2[�S⊥
m (�RP)]

1 − rm

2
,

σ 2[�S⊥
m (�m)] = σ 2[�S⊥

m (�RP)]
1 + rm

2

+ σ 2[�Sm(�RP)]
1 − rm

2
, (A3)

where rm is the resolution of the subevent EP [Eq. (8)]. For
convenience, we denote the variances with respect to the
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RP by

σ↑ = σ [�Sm(�RP)], σ⊥↑ = σ [�S⊥
m (�RP)],

σ↓ = σ [�Sm,sh(�RP)], σ⊥↓ = σ [�S⊥
m,sh(�RP)]. (A4)

Then Eq. (A3) becomes

σ 2[�Sm(�m)] = σ 2
↑ + σ 2

⊥↑
2

+ σ 2
↑ − σ 2

⊥↑
2

rm,

σ 2[�S⊥
m (�m)] = σ 2

↑ + σ 2
⊥↑

2
− σ 2

↑ − σ 2
⊥↑

2
rm. (A5)

For convenience of presentation, we write in the following
the distributions in �Sm, �Sm,sh, �S⊥

m , and �S⊥
m,sh all as Gaus-

sians, with vanishing means, and variances σm, σm,sh, σ⊥
m , and

σ⊥
m,sh. However, our end conclusion is general, independent

of whether those distributions are Gaussians. Take the �Sm

distribution as

dNevent

Nevent
= 1√

2πσ 2
m

e
− �S2

m
2σ2

m d (�Sm). (A6)

The scaled �S′′ distribution is

dNevent

Nevent
= σm,sh

δrm

√
2πσ 2

m

e
− �S′′

m
2

2δ2
rm

σ2
m,sh
σ2

m d (�S′′
m). (A7)

The shape of the scaled C�m distribution is then

C�m (�S′′
m) = σm,sh

σm
e
− �S′′

m
2

2δ2
rm

(
σ2

m,sh
σ2

m
−1)

. (A8)

Similarly, we get

C⊥
�m

(�S′′
m) = σ⊥

m,sh

σ⊥
m

e
− �S′′

m
2

2δ2
rm

(
σ⊥2

m,sh

σ⊥
m

2 −1)
. (A9)

Finally the shape of the scaled R�m correlator can be written
as

R�m (�S′′
m) = C�m (�S′′

m)

C⊥
�m

(�S′′
m)

= σm,shσ
⊥
m

σ⊥
m,shσm

e
− �S′′

m
2

2δ2
rm

(
σ2

m,sh
σ2

m
− σ⊥2

m,sh

σ⊥
m

2 )
. (A10)

The observable ξ ∗ is therefore defined as

ξ ∗ = − 1

δ2
rm

(
σ 2

m,sh

σ 2
m

− σ⊥2

m,sh

σ⊥
m

2

)
, (A11)

so the effective width of R�2 (�S′′) is σ = 1/
√|ξ ∗|. The pos-

itive (negative) ξ ∗ indicates concave (convex) shape of R�2 ,
and zero ξ ∗ indicates a flat distribution.

The measured quantity is of course

ξ ∗
0 ≡ −

(
σ 2

m,sh

σ 2
m

− σ⊥2

m,sh

σ⊥
m

2

)
. (A12)

Plugging Eq. (A5) into Eq. (A12), we have

ξ ∗
0 = σ 2

⊥↓(1 + rm) + σ 2
↓ (1 − rm)

σ 2
⊥↑(1 + rm) + σ 2

↑ (1 − rm)

− σ 2
↓ (1 + rm) + σ 2

⊥↓(1 − rm)

σ 2
↑ (1 + rm) + σ 2

⊥↑(1 − rm)

= σ 2
↑σ 2

⊥↓ − σ 2
↓σ 2

⊥↑
(σ 2

↑ + σ 2
⊥↑)2 − (σ 2

↑ − σ 2
⊥↑)2r2

m

× 4rm

≈ σ 2
↑σ 2

⊥↓ − σ 2
↓σ 2

⊥↑
(σ 2

↑ + σ 2
⊥↑)2

× 4rm ≈ −
(

σ 2
↓

σ 2
↑

− σ 2
⊥↓

σ 2
⊥↑

)
rm, (A13)

where the approximations use (σ 2
↑ + σ 2

⊥↑)2 � (σ 2
↑ − σ 2

⊥↑)2.
This measured quantity is ξ ∗

0 = δ2
rm

ξ ∗ where δrm is the correc-
tion factor for the resolution effect. This correction factor must
be equal to unity when rm is unity, so we have

δrm = √
rm. (A14)

To check Eqs. (A13) and (A14) numerically, a resolu-
tion scan is conducted using our toy model by randomly
throwing away particles since the EP resolution is approxi-
mately proportional to the square root of the used multiplicity.
Specifically, particles for EP reconstruction are randomly
kept by various probabilities (100%, 90%, . . . , 10%, and
9%, 8%, . . . , 1%), while the POIs are intact. For each case,
we use the measured widths (σ2, σ2,sh, σ⊥

2 , σ⊥
2,sh) to calculate

the quantity ξ ∗
0 by the right-hand side (r.h.s.) of Eq. (A12).

To get the true ξ ∗, we replace EP by RP since the latter is
the true plane in the toy model (fixed at �RP = 0). The ratio
of the two, ξ ∗

0 /ξ ∗
RP, is the square of the correction factor, δ2

r2
.

Figure 11 shows ξ ∗
0 /ξ ∗

RP as a function of the EP resolution r2

of subevents in Au + Au collisions at
√

sNN = 200 GeV (no
input CME signal). ξ ∗

0 /ξ ∗
RP has linear dependence on r2, and

the first polynomial fit gives an intercept consistent with zero
and a slope consistent with one, as predicted by Eq. (A13).

2. The empirical event-plane resolution correction by STAR

In the derivation in Appendix A 1, we have treated the
subevent �SE/W separately. If the two subevents from the
same event are combined, as done in the STAR analysis and
also studied in this work, where the squared inverse width
of R�2 (�S′′) is referred to as ξ , the situation is not clear. If
the autocorrelation in Eq. (17) was not considered, then the
derivation would also hold for ξ by the same math. In the
presence of autocorrelations, however, derivation of a general
correction factor may not be possible because it must depend
on the nature of those autocorrelations. In the context of our
toy model with the RP known, we can use the same resolution
scan method described above for ξ0 and obtain the proper
resolution correction factor by ξ0/ξRP. This is shown in Fig. 11
as a function of the EP resolution r2 of subevents. A linear
dependence on r2 is observed, but the intercept is nonzero. The
ξ0/ξRP is always larger than ξ ∗

0 /ξ ∗
RP, and the difference comes

from those autocorrelations. See discussion in Sec. V A [cf.
Eq. (17)] and further discussion in Appendix A 3.
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FIG. 11. ξ ∗
0 /ξ ∗

RP and ξ0/ξRP as functions of the EP resolution
r2 of subevents in Au + Au collisions at

√
sNN = 200 GeV (no

input CME signal). A total of four billion toy model events in
the 0%–80% centrality range are used (or 1.46 billion events in
the 30%–50% centrality range). The POIs are required to have
0.35 GeV/c < pT < 2.0 GeV/c and 0.1 < ±η < 1.0, whereas par-
ticles for EP reconstruction are required to have 0.2 GeV/c < pT <

2.0 GeV/c and 0.1 < ∓η < 1.0. To scan the resolution, particles
for EP reconstruction are randomly kept by various probabilities
(100%, 90%, . . . , 10%, and 9%, 8%, . . . , 1%), while the POI are
intact.

The STAR paper [21] uses an empirical resolution cor-
rection factor δrm = rfull

m e(1−rfull
m )2

, different from our analytical
result of Eq. (A14). This empirical factor uses the EP resolu-
tion of the full event, rfull

m , which is a monotonic function of the
EP resolution rm of subevents [54]. At small rm, rfull

m ≈ √
2rm.

The comparison between them is made in Fig. 12, both plotted
as a function of rm. It is observed that the empirical correction
factor is similar to our analytical result of

√
rm. The ratio of

the two is shown by the solid curve in Fig. 12, indicating that

FIG. 12. The analytical and empirical EP resolution correction
factors plotted as functions of rm, the EP resolution of subevents
[Eq. (8)]. The empirical correction factor, used in the STAR paper
[21], is calculated from the EP resolution of full events (rfull

m ), which
is a monotonic function of rm [54]. The ratio of the empirical to
analytical correction factors is also shown.

FIG. 13. The correlation factors c as functions of the subevent
EP resolution r2 from the same toy model simulation as Fig. 11.
For shuffled charges, the autocorrelations (c2,sh, c⊥

2,sh) vanish. For real
charges, the autocorrelations (c2, c⊥

2 ) are negative, linearly dependent
on r2, and different between the two directions (parallel or perpendic-
ular to EP). If fit by straight lines, c2 and c⊥

2 have different intercepts,
which accounts for the nonzero intercept of ξ0/ξRP in Fig. 11.

the difference is less than 10% in a wide range of resolution
(0.1 < rm < 1.0) relevant for our study.

Is the STAR empirical EP resolution correction factor cor-
rect? Figure 11 suggests it is not. The correction factors for
ξ and ξ ∗ are clearly different. The difference arises from the
autocorrelations of Eq. (17). The STAR empirical correction
factor, which is similar to our analytical one, would be approx-
imately correct for ξ ∗, but it is incorrect for ξ . To compare
with the STAR data, we have used our analytical formula to
also correct for ξ , which is close to the empirical factor by
STAR. The slight difference between the two does not affect
our qualitative comparisons with the STAR results.

3. Autocorrelation effect in ξ

As shown in Eq. (17), ξ contains autocorrelations, whereas
ξ ∗ is free of it. In this section, we investigate the effect of auto-
correlations on ξ . Because the �S distributions are even, we
have 〈�SE 〉 = 〈�SW 〉 = 0. The variances of �SE and �SW

are equal to their second moments Var[�SE ] = 〈(�SE )2〉,
Var[�SW ] = 〈(�SW )2〉, and the covariance between them is
Cov[�SE ,�SW ] = 〈�SW �SE 〉. Because the two subevents
are symmetric, �SE and �SW should have the same distribu-
tion with the same variance σ 2 ≡ Var[�SE ] = Var[�SW ]. For
convenience, we call ρ2 the variance of full-event �S defined
in Eq. (4). Then, Eq. (17) can be written as

ρ2 = 1
2σ 2(1 + c), (A15)

where c is the correlation factor c ≡ Cov[�SE , �SW ]/σ 2.
This applies to all four cases (real or shuffled charges, parallel
or perpendicular directions).

Figure 13 shows the correlation factors c as functions of the
subevent EP resolution r2 from the same toy model simulation
as Fig. 11. For shuffled charges, the autocorrelations (c2,sh,
c⊥

2,sh) vanish. For real charges, the autocorrelations (c2, c⊥
2 ) are

negative and linearly dependent on r2, but they are different
between the two directions (parallel or perpendicular to EP).
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The autocorrelation factors are quite small, but they have a
significant effect on ξ as can be easily seen as follows:

Similar to Eq. (A12), we can express ξ0 by using full-event
�S width ρ and Eq. (A15):

ξ0 ≡ −
(

ρ2
m,sh

ρ2
m

− ρ⊥
m,sh

2

ρ⊥
m

2

)

≈ −
(

σ 2
m,sh

σ 2
m

(1 − cm) − σ⊥2

m,sh

σ⊥
m

2 (1 − c⊥
m )

)

≈ −
(

σ 2
m,sh

σ 2
m

− σ⊥2

m,sh

σ⊥
m

2

)
+

(
σ 2

m,sh

σ 2
m

+ σ⊥2

m,sh

σ⊥
m

2

)
cm − c⊥

m

2
,

(A16)

where m = 2, and we have used c2,sh = c⊥
2,sh = 0 and

|c2|, |c⊥
2 | � 1. If we plug Eq. (A5) into the last line, the

first term has already been calculated in Eq. (A13), which is
ξ ∗

0 ∝ rm. The quantity in the second pair of parentheses is

σ 2
m,sh

σ 2
m

+ σ⊥2

m,sh

σ⊥2

m

= 2
(σ 2

↓ + σ 2
⊥↓)(σ 2

↑ + σ 2
⊥↑) − (σ 2

↓ − σ 2
⊥↓)(σ 2

↑ − σ 2
⊥↑)r2

m

(σ 2
↑ + σ 2

⊥↑)2 − (σ 2
↑ − σ 2

⊥↑)2r2
m

≈ 2
σ 2

↓ + σ 2
⊥↓

σ 2
↑ + σ 2

⊥↑
. (A17)

Thus, Eq. (A16) can be written as

ξ0 ≈ ξ ∗
0 + σ 2

↓ + σ 2
⊥↓

σ 2
↑ + σ 2

⊥↑
(cm − c⊥

m ). (A18)

The second term is the effect from autocorrelations. Although
(c2 − c⊥

2 ) is small, the coefficient in front of it is O(1), so it
has a significant effect on the also-small quantity ξ0. It gener-
ally also depends on the EP resolution. As shown in Fig. 13,
(c2 − c⊥

2 ) is a first-polynomial function of r2 with a nonzero
intercept in our toy model simulation. Were the intercept equal
to zero, we would have ξ0 ∝ r2 as well; otherwise ξ0 linearly
depends on r2 with a finite intercept, as shown in Fig. 11.

In general, autocorrelations should depend on the physics
of the particle events. Therefore, there may not be universal
resolution correction for ξ . In this work, we have used the
same resolution correction factor for both ξ and ξ ∗ (δr2 =√

r2), as stated previously, because we want to make the
comparison between ξ and ξ ∗, and between our analysis and
Ref. [21].

APPENDIX B: ANALYTICAL FORM FOR ξ∗

In this Appendix, we derive analytical forms of ξ ∗ in the
presence of v2 background and CME signal.

1. Background v2 dependence

In our previous work [20], we derived the v2 dependence
of R�2 (�S) where �S was not scaled. In this section, we
derive the v2 dependence of ξ ∗, the squared inverse width

of the scaled R�2 (�S′′) distribution, where the subevents are
treated separately without being averaged. As we mentioned
in Sec. V A, the averaging introduces autocorrelations which
make the analytical derivation inexplicable.

We only focus on the primordial pions (nπ ) and the daugh-
ter pions from ρ resonance decays (nρ). The CME signal is
fixed to be zero (i.e., a1 = 0). We assume that the number of
π+ and π− are the same (nπ+ = nπ− = nπ/2), and denote the
elliptic flow coefficients as v2,π for primordial pions and v2,ρ

for ρ mesons.
The analysis based on the central limit theorem (CLT)

[20] tells us that the widths for �S2(�RP), �S⊥
2 (�RP),

�S2,sh(�RP), �S⊥
2,sh(�RP) are

σ 2
↑ = nρK (1 + v2,ρ ) + nπ (1 − v2,π )

2(nρ + 0.5nπ )2 ,

σ 2
⊥↑ = nρK (1 − v2,ρ ) + nπ (1 + v2,π )

2(nρ + 0.5nπ )2 ,

σ 2
↓ = 2nρ (1 − v2,ρ ) + nρv2,ρK + nπ (1 − v2,π )

2(nρ + 0.5nπ )2 ,

σ 2
⊥↓ = 2nρ (1 + v2,ρ ) − nρv2,ρK + nπ (1 + v2,π )

2(nρ + 0.5nπ )2 , (B1)

where K = Var[2 sin(δφ/2)] is the variance of the sine value
of the half decay opening angle (δφ = φ+ − φ−, with φ+ and
φ− being the azimuths of the π+ and π− from the same ρ

decay). Similar to Eq. (A11), the observable ξ ∗, in which only
background is present in the current case, is

ξ ∗
bkgd = −σ 2

↓
σ 2

↑
+ σ 2

⊥↓
σ 2

⊥↑

= αβK (4 − K ) + (K + 2β − 2)

(αK + 1)2 − (αKβ − 1)2v2
2,π

× 2αv2,π , (B2)

where α = nρ/nπ and β = v2,ρ/v2,π . Since v2,π � 1, the
second term in the denominator of Eq. (B2) can be safely
neglected. We thus have

ξ ∗
bkgd ≈ αβK (4 − K ) + (K + 2β − 2)

(αK + 1)2 × 2αv2,π . (B3)

We can see that, for pure background, ξ ∗ is approximately
proportional to the background v2.

In our toy model simulations, the multiplicity ratio of ρ to
primordial pions is 0.085. To have a rough estimate, we can
take α = 0.085. The v2,ρ is parametrized taking into account
the NCQ scaling at high pT and the hydrodynamics mass
ordering of v2 at low pT ; we find β ≈ 1.1. From our previous
study, we found the rms of 2 sin(δφ/2) is 1.36 [20], thus
K = 1.362 = 1.85. With these estimates of α, β, K , we have

ξ ∗
bkgd ≈ 0.31v2,π . (B4)

This is about a factor of three larger compared with our toy
model simulation in Sec. V A [cf. Eq. (18b)]. In our derivation
here, we have simply assumed that all ρ decay daughters
are included in the POI’s. In the toy model using subevents,
only a fraction of the ρ resonances have both daughters in
the subevent acceptance. This would significantly reduce the
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coefficient in the toy model compared with the derivation in
Eq. (B3). Other simplifying assumptions, such as neglecting
correlations arising from pT dependence of v2 and decay
kinematics, may also contribute to the numerical difference.
However, the qualitative features in the results from the ana-
lytical derivation, namely the proportionality to v2 and the Nch

independence, are robust and provide useful insights.

2. Signal a1 dependence

In this section, we derive analytically the dependence of ξ ∗
on the CME signal strength, a1. The primordial particle a1 in
Eq. (1) is nonzero for each event, but it can be either positive
or negative for different events, so the event average of a1 is
still zero. On the one hand, the positive and negative charges
in the same event always have opposite a1, so shuffling the
charges removes the signal contribution. On the other hand,
the signal only contributes to the charge separation in the y
direction, so the x projection is not affected. Thus, only the
distribution of �Sm has dependence on a1. In this section,
we only focus on the second-order �S2 with respect to RP,
namely,

�S = 1

n+

n+∑
i

sin (φ+
i − �RP) − 1

n−

n−∑
i

sin (φ−
i − �RP),

(B5)
where we assume n+ = n− = 0.5nπ + nρ as mentioned in
Appendix B 1.

We first fix a1 and get the conditional expectation and
variance of �S. It is straightforward that the average of
± sin(φ± − �RP) over all primordial particles among all
events is

E[± sin (φ± − �RP)|a1] = a1, (B6)

and the conditional variance is

Var[± sin (φ± − �RP)|a1]

= 〈sin2 (φ± − �RP)〉 − 〈± sin (φ± − �RP)〉2

= 1 − v2,π − 2a2
1

2
. (B7)

Thus, we can get the conditional variance of �S by substi-
tuting v2,π by v2,π + 2a2

1 for σ 2
↑ in the first line of Eq. (B1),

namely

Var[�S|a1] = nρK (1 + v2,ρ ) + nπ

(
1 − v2,π − 2a2

1

)
2(nρ + 0.5nπ )2 . (B8)

We can also get the conditional expectation of �S:

E[�S|a1] = nπ

0.5nπ + nρ

a1. (B9)

Now with varying a1 from event to event, since the topo-
logic charge fluctuation is totally random among events, a1 is
a symmetric distribution about 0, so Var[a1] = 〈a2

1〉. Thus, the

total variance can be calculated

σ 2
↑
(〈

a2
1

〉) = Var[�S]

= E[Var[�S|a1]] + Var[E[�S|a1]]

≈ nρK (1 + v2,ρ ) + nπ

(
1 − v2,π − 2

〈
a2

1

〉)
2(nρ + 0.5nπ )2

+
(

nπ

0.5nπ + nρ

)2〈
a2

1

〉

≈ σ 2
↑ (0) +

(
nπ

0.5nπ + nρ

)2〈
a2

1

〉
, (B10)

where we have assumed v2,π � a2
1 so the latter is dropped

from the first term, which is then simply given by Eq. (B1)
without the a1 signal.

Again, for convenience, we write all �S distributions as
Gaussians, Eq. (B2) would be modified, with finite a1, into

ξ ∗(〈a2
1

〉)
= − σ 2

↓
σ 2

↑
(〈

a2
1

〉) + σ 2
⊥↓

σ 2
⊥↑

= − σ 2
↓

σ 2
↑ (0)

[
1 +

(
nπ

0.5nπ + nρ

)2 〈
a2

1

〉
σ 2

↑ (0)

]−1

+ σ 2
⊥↓

σ 2
⊥↑

≈ − σ 2
↓

σ 2
↑ (0)

+ σ 2
⊥↓

σ 2
⊥↑

+
(

nπ

0.5nπ + nρ

)2 σ 2
↓

σ 4
↑ (0)

〈
a2

1

〉
≈ ξ ∗

bkgd + 2Nch(1 + v2,π − 2αK )
〈
a2

1

〉
, (B11)

where the first term, ξ ∗
bkgd, is that given by Eq. (B3) without

a1 signal. The first approximation comes from the fact that
σ 2

↑ (0) � 〈a2
1〉, as σ 2

↑ (0) ∼ 1/nπ ≈ 10−2 and 〈a2
1〉 ≈ 10−4. We

simply take the number of POIs as Nch ≈ nπ + 2nρ . We can
see from Eq. (B11) that the background and the CME are
approximately decoupled in ξ ∗, and the CME signal ξ ∗(〈a2

1〉)
has linear dependence on 〈a2

1〉.
With the aforementioned values for α and K , we can esti-

mate the signal contribution to be

ξ ∗
CME ≈ 1.49

〈
a2

1

〉
Nch. (B12)

This is close to the toy model simulation result in Eq. (20b).
The S/B of ξ ∗(〈a2

1〉) can be estimated as

S/B = 1.49
〈
a2

1

〉
Nch

0.34v2,π

= 4.8
〈
a2

1

〉
Nch/v2,π , (B13)

which is about a factor of three smaller than the toy model
result of Eq. (21b), mainly inherited from the discrepancy in
ξ ∗

bkgd estimation in Appendix B 1.

APPENDIX C: ANALYTICAL FORM FOR �γ

For completeness, we can easily obtain �γ from
Eqs. (12)–(14).

�γ ≈ nρ

(nπ/2 + nρ )2 v2,ρD + 2

(
nπ/2

nρ + nπ/2

)2〈
a2

1

〉

= 4αDβ

1 + 2α

v2,π

Nch
+ 2

(1 + 2α)2

〈
a2

1

〉
, (C1)
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where D = 〈cos(φa + φb − 2φreso)〉, as shown in Eq. (14).
Taking D ≈ 0.65 [32] and the aforementioned α and β values,
we obtain �γ for our toy model setting in this work as

�γ ≈ 0.21v2,π /Nch + 1.46
〈
a2

1

〉
. (C2)

The S/B for �γ is then

n2
π

2nρ

〈
a2

1

〉
v2,ρD

= 1

2α(1 + 2α)βD
Nch

〈
a2

1

〉
/v2,π

≈ 7.0Nch
〈
a2

1

〉
/v2,π . (C3)

The proportionality coefficient on a2
1 is close to that ob-

tained from our toy model simulation in Eq. (20c). The
coefficient on the v2 background is about a factor of two
larger than that from the toy model simulation. This arises
from similar reasons responsible for the discrepancy in ξ ∗

bkgd
between the analytical estimate and the toy model simulation.
Namely, not all ρ resonances have both decay daughters in
the subevent acceptance, and correlations exist among various
quantities because of their dependencies on pT . Note that
those effects appear to yield a larger discrepancy in ξ ∗ than
in �γ . As a result, the S/B seems better for ξ ∗ than �γ in
our toy model simulation, and it is reversed in the analytical
results. This quantitative feature likely depends on the details
of the model implementation, such as the types of resonances
included and their abundances.
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