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In high-energy heavy-ion collisions, structures in the initial collision zone are a matter of intense investigation,
both from theory and experimental points of views. A large number of models have been developed to represent
the initial state of the collision including the Glauber model and color glass condensate (CGC), among others.
Another important aspect of the study is to investigate proper observables that will be sensitive to the initial
collision zone. In this work, we discuss a formalism to implement the spatial clusters at the partonic level in
the string melting version of the AMPT model for PbPb collisions at

√
sNN = 200 GeV. These clusters are then

propagated through the AMPT hadronization scheme. Principal component analysis (PCA) has been used on the
η, φ, and pT distributions of the produced charged particles and the eigenvalues have been compared before
and after the implementation of the clustering. It is found that for all these three different distributions, all the
prominent PCA modes show sensitivity to the clustering. A centrality dependent study has also been performed
on those eigenvalues.
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I. INTRODUCTION

In heavy-ion collisions at ultrarelativistic energies at the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC), corresponding to a medium of high temper-
ature, a state of strongly interacting medium is formed in
which partons are deconfined from the incoming hadrons. A
range of observables that are measured to characterize the
properties of the medium include thermodynamic properties
such as temperature and entropy, collective properties given
by flow parameters, and gluon density of the medium mea-
sured by jet quenching, among others. It is a usual practice
that the experimental observables are theoretically evaluated
by folding the space-time evolution of the colliding medium
to find the sensitivity to the different stages of the evolution
[1,2]. The prominent stages that are modeled include initial
state of the collision, formation of the medium, evolution and
cooling of the medium, hadronization, rescatterings, chemi-
cal and kinetic freeze-out, and finally the free streaming of
particles. In the initial stage of the collision, when nucleons
overlap, the geometry of the collision zone plays a crucial
role in determining the final state observables [3]. It has been
observed that the final state collectivity parameters commonly
known as flow parameters are correlated with the initial state
geometry or corresponding fluctuations. These initial state
geometry parameters, such as various orders of eccentrici-
ties from coordinate space (εn), leave their imprints on the
azimuthal distributions of the momentum of the produced
particles. The decompositions of the azimuthal distributions
are represented by parameters of various orders such as v1, v2,
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etc. as obtained by the Fourier decomposition of the azimuthal
distributions with respect to the reaction plane angle [4,5]. The
degree of conversion of the initial spatial asymmetry to the
final state momentum asymmetry is represented by the cor-
relation between the eccentricities of the flow parameters. To
study such an effect, one needs to evaluate the event-by-event
eccentricities and hadronic flow parameters. It is, however,
important to investigate in detail the effect of these initial
state geometry parameters or their fluctuations on the distribu-
tions of the final-state observables such as pseudorapidity or
transverse momentum distributions of the produced particles.
In the literature, a range of models describing high-energy
heavy-ion collisions have been discussed that include specific
structures of the initial state geometry due to nucleonic over-
lap or formation of new structures at the partonic or hadronic
levels in the form of clusters. Prominent examples include
the parton cascade model (PCM) [6], color glass condensate
(CGC) [7], and Zhang’s parton cascade (ZPC) [8], among
others. It is a usual practice to implement different initial
state scenarios before evolution of the medium using ideal
or viscous hydrodynamics, and a conclusion is made about
the suitable description of the initial state that matches the
data best. Efforts are also made to study the sensitivity to
the fluctuations in the initial state using various methods such
as sensitivity to the final state observables [9–11]. In the
present study, we have implemented a clustering algorithm on
partons formed by the AMPT model [12] in PbPb collisions
at RHIC energy. The clustering algorithm has been motivated
by the formation of spatial domains consisting of thermal par-
tons. These partons are then processed via the hadronization
scheme in the string-melting version of AMPT, which is based
on the recombination mechanism. The final state particles are
then studied in detail.
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In the literature, distributions of the produced particles
are analyzed using various decomposition methods, such as
Fourier analysis applied on the azimuthal distributions in
order to extract the flow parameters. Recently, principal com-
ponent analysis (PCA) has been used extensively, primarily
to study various orders of flow variables and their correlation
with the initial geometry parameters and their fluctuations
[13]. There are two main approaches applied in the field of
high-energy heavy-ion collisions for the PCA decomposition.
The first one is the decomposition of the covariance of the
azimuthal distributions weighted with a Fourier series and
then making connection of the PCA components with the flow
parameters [14]. Another approach is to decompose the inclu-
sive distributions using PCA and connect the components with
the physical observables such as flow parameters in the case
of decomposition of the azimuthal distributions. Nowadays
PCA is being used extensively in automated machine learning
procedures for finding structures in object spaces. The fea-
tures primarily detected using PCA are then analyzed using
sophisticated cluster finding algorithm to obtain the features
in detail. In our study, we have adopted the latter approach,
i.e. decomposing the inclusive distributions and studying the
components. The initial clustering might introduce features
in η, φ, pT space such as flow coefficients in the azimuthal
distribution. As the eigenvalues are sensitive to these features,
we can choose a region of eigenvalues that will select the
events considered.

We discuss the AMPT model and the PCA procedure as
applied in our study in Secs. II and III respectively. We
then discuss the procedure of implementation of clustering in
Sec. IV, results in Sec. V, and the summary in Sec. VI.

II. AMPT

A Multi-Phase Transport (AMPT) [12] is a Monte Carlo
partonic transport model being used widely for simulating
NN , NA, and AA collisions at high energy. The model imple-
ments all major stages of the collision starting from the initial
state through the partonic scattering followed by hadroniza-
tion and hadronic rescattering. The initial stage of the collision
has been implemented by HIJING [15] through Monte Carlo–
Glauber model calculations in NA and AA collisions. In the
initial state of the collisions, either partonic strings and mini-
jets are taken together from HIJING or all strings are melted
into partons. There are two versions of AMPT: in the default
version, only the minijets are transported using Zhang’s parton
cascade (ZPC), and, in the string melting version, all melted
partons go through ZPC for scattering. The scattering is gov-
erned by a parameter to be tuned to match the particle spectra.
The hadronization is implemented in two modes known as
hadronic mode and partonic mode. In hadronic mode, mini-
jets, after scattering, are recombined with the strings and then
get fragmented using Lund’s string fragmentation model. On
the other hand, in the partonic mode, all the partons combine
to form hadrons (mesons or baryons) based on the spatial
distance, spin structures, and the invariant mass of the quarks
(quark-antiquark in the case of mesons and three quarks in
case of baryons). The hadrons formed by any of these two
mechanisms then undergo scattering among themselves and

then scattered hadrons reach the detector. AMPT has been used
extensively in high-energy heavy-ion collisions and has been
able to explain most of the observables such as spectra and
flow, among others. One extremely prominent finding of the
model is the ability to explain the number of constituent quark
(NCQ) scaling of elliptic flow parameter v2 at RHIC. The
NCQ scaling refers to the scaling behavior observed when
the v2 and pT of different identified hadrons are divided by
the number of constituent quarks (nq). The v2/nq vs pT /nq

for identified hadrons follow a universal curve suggesting the
dominance of quark degrees of freedom at the early stages
of collisions. In our study, we have used only the partonic
version of the model involving partons at the initial stage
and in hadronization. At the initial stage, a separate partonic
clustering was implemented, as discussed in Sec. IV.

III. PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA is a method of decomposing a correlated distribution
in various components known as principal components that
reflect the independent variables characterizing the features of
the distributions. PCA is essentially a procedure of dimension
reduction from correlated matrix with the eigenvalues repre-
senting the variance.

Mathematically, a matrix (N × m) can be decomposed as

M = X�Z = V Z, (1)

where X, Z are orthogonal matrices of dimensions N × N and
m × m respectively, and � is a diagonal matrix of dimensions
N × m with diagonal elements arranged in strictly decreasing
order. These elements carry physical meaning. In our case, the
distribution of a variable in an event can be expressed as

f =
m∑

j=1

x(i)
j σ j z j =

(i)∑

j=1

v
(i)
j z j, (2)

where z j is an orthogonal vector such that ZT
i xZ j = δi j , σ j are

the diagonal elements of matrix �, index i represents the event
number (1, 2, . . . , N), and m is the number of bins of the input
variable. v

(i)
j is the corresponding coefficient of z j for the ith

event. In PCA, σ j are obtained in decreasing order and only
the top few values are enough to describe the distribution, say
up to k, then we can rewrite the equation above as

f =
k∑

j=1

v
(i)
j z j, (3)

where j are PCA modes describing the fluctuations in the
distribution.

PCA has been used so far mostly for analyzing the covari-
ance of the azimuthal distributions of the produced particles
as weighted by a Fourier series, primarily to extract the flow
coefficients [16–18]. The PCA components represent flow
fluctuations in different orders and nonlinear couplings among
the flow coefficients. In another approach, however, the inclu-
sive azimuthal distributions are decomposed by PCA and it
is found that the eigenvectors of at least up to fourth order
are similar to the distributions of the Fourier components.
The eigenvectors have been found to be of shapes similar to
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those of the Fourier components, as used in the conventional
method of extraction of the flow coefficients. The eigenvalues
have been found to correspond to the flow coefficients. If
applied at the partonic level, the eigenvalues of PCA corre-
spond to the eccentricities (εn) of various orders. The flow
coefficients of various orders have been interpreted as being
connected to the initial spatial geometry and their fluctuations
as being transferred to the momentum-space anisotropy. Flow
coefficients (vn) follow a linear relationship with their cor-
responding initial state eccentricities (εn) [14,19]. In earlier
studies using PCA for the azimuthal distributions, event-by-
event vn’s have been extracted and then correlated with εn.
In the present study, event-by-event distributions for η, φ, pT

have been divided into n bins separately. The exercise is then
undertaken for a large number (N) of events. Such binned
distributions per event along with the number of events form
a matrix to be diagonalized. The eigenvalues are obtained in a
strictly decreasing order.

In our study, η, φ, and pT distributions of the produced
charged particles are decomposed separately for events having
initial geometry with and without inclusion of additional clus-
tering. The main aim of this study is to investigate the behavior
of the eigenvalues with the changes in the initial conditions.
It has been argued elsewhere that the eigenvalues of PCA
correspond to the fluctuations in various orders [20]. With
the modified initial conditions, the fluctuations are expected to
change and the PCA eigenvalues should be sensitive to these
changes. In conventional approaches, events with high PCA
eigenvalues could be extracted and those events could be fur-
ther investigated using sophisticated cluster-finding methods
to find the substructures in the set of events. This approach
is used in machine learning techniques quite extensively. The
PCA method in its current form uses the covariance among the
data to obtain the results; however, the approach is not limited
to the second-order cumulant only. A multivariate cumulant
study via their principal components was first proposed by
[21], analogous to the usual principal components of a covari-
ance matrix. This cumulant method of principal component
analysis has been used in various fields of research such as
mathematics, economics, and computer science.

IV. IMPLEMENTATION OF CLUSTERING

In the literature, there is a series of models which have
implemented the initial states of high-energy heavy-ion col-
lisions; a few prominent models that include different initial
conditions are NUXUS [22], EPOS [23], MC-KLEIN [24], and
IP-GLASMA [25], among others. In the present work, we have
implemented clusters at the partonic level, which is basically
inspired by the discussions on formation of spatial domains at
the partonic level.

We started with the partons from the AMPT string melting
version and implemented the clustering in the following way.
A parton, selected as a seed at random, is taken as the center of
a cluster. All partons whose interparton distance with respect
to the seed parton lie within a certain cluster radius (parameter
R) are assigned as members of that cluster.

The cluster is then formed by bringing the partons closer
to the center by reducing the radial distances of the partons
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FIG. 1. X -Y distribution of the partons before (top) and after
(bottom) clustering.

by a certain factor (parameter df ). Once the formation of one
cluster is completed, another unassigned parton is taken as a
seed and the process continues till all partons are exhausted.

The next step is to implement a momentum distribution
of the members of the partonic cluster. Motivated by the
thermally distributed partons, the cluster partons have been
assigned momenta according to the distribution

f (pT ) = e−pT /T (4)

where, T is a parameter analogous to the temperature of the
cluster. In our study, we have used T values of 200 and
400 MeV. Figure 1 shows the X -Y distribution of the partons
on the transverse plane before (top) and after (bottom) clus-
tering. The clustering parameters for the plot are R = 5 fm,
df = 0.1, T = 200 MeV. As seen in the figure, while before
clustering (top) the position distributions of the partons are
uniform, clear domain structures are seen in Fig. 1 (bottom),
which could be said to correspond to the partonic domains in
the position space. Please note that with these parameters, the
clusters correspond to maximum radii of 0.5 fm (R × df ).

Figure 2 shows the η, φ, and pT distributions of the initial
partons before and after the clustering with two different
temperature parameters and different spatial cluster
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FIG. 2. η, φ, and pT distributions of the partons before and after
clustering for minimum-bias PbPb collisions at

√
sNN = 200 GeV.

parameters. Three cases of clustering were considered in
the figure: The legends where only T values (200 or 400
MeV) are mentioned are cases where the parton momentum
was distributed according to Eq. (4) and no position clustering
was implemented. Legends where T , R, and df values are
mentioned are the ones where both position clustering was
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FIG. 3. η, φ, and pT distributions of the produced particles
before and after clustering for minimum bias PbPb collisions at√

sNN = 200 GeV.

implemented and parton momentum was assigned according
to Eq. (4). Finally, the ones with only R and df values and no
temperature values are cases where only position clustering
was applied and momentum was not changed. The η, φ and
pT distributions obtained after applying the aforementioned
changes were compared with the case where no changes
in position and momentum were made. The η distribution
of partons changes from a uniform to a peaking shape at
η = 0, which represents the formation of the clusters. The
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FIG. 4. pT distributions of v2 for two scenarios, i.e., before and
after clustering (upper panel) and the ratio of v2 vs pT distributions
after clustering with respect to the one before.

η distributions for similar temperature parameters overlap,
e.g., the no-clustering and only position clustering overlap, as
the momentum has not been changed, while the two curves
with T = 200 MeV overlap. For better visibility of the plots
some of the overlapping curves have been scaled as shown in
the legends. The azimuthal distributions are mostly uniform
except for a few hints of azimuthal asymmetry/structure in the
clusters which have undergone momentum modification and,
as expected, pT distributions depict the modified distribution
according to the value of the input T parameter. Similar to
the η distributions in the pT distributions, curves with similar
temperature and similar transverse momentum distributions
overlap. The partons then undergo scattering using ZPC
and hadronization as implemented in the partonic version
of AMPT, i.e., the coalescence of quarks and antiquarks. We
have shown the corresponding distributions of the produced
charged particles in Fig. 3. It is seen that all characteristic
structures seen at the partonic level are smoothed out. The
azimuthal distributions of the produced particles on the other

hand show the characteristic asymmetric shape due to elliptic
flow. The pT range of the produced particles increases as
compared to that of partons due to the production of hadrons
consisting of more than one parton.

V. RESULTS

In this study, we have performed simulations using AMPT

string-melting version for PbPb collisions at
√

s = 200 GeV.
We generated up to 2×105 minimum bias events and ensured
that the statistical errors on the event averaged eigenvalues
are not significantly large. We used only the results from the
produced charged particles in this study. As discussed earlier
in Sec. III, we divided each eventwise distribution into 20 bins
for the η and pT distributions in the regions of −1 to +1
for η and 0 to 5 GeV/c for pT , and 50 bins in the region
−π to +π for φ. Before discussing the PCA results, we first
obtained the elliptic flow parameter v2 using the event plane
method [26] for two cases, i.e., with and without clustering.
The cluster parameters have been varied to represent different
possibilities. In Fig. 4 and the subsequent figures, we have
opted for two values of the cluster radius parameter (R), i.e., 2
and 5 fm associated with parameter values df = 0.05 and 0.1
respectively. For cases without any mention of the temperature
parameters T , parton momenta remain unmodified compared
to those from AMPT. For clusters having thermal partons, the
T parameters chosen are 200 and 400 MeV. Note that, for
partons with no clustering, the fitted slope of the pT spectra
gives an inverse slope of about 400 MeV. The clusters with
T = 200 MeV therefore represent significantly softer partons.

Figure 4 (top) shows the variation of v2 with pT for two
scenarios. As seen in Fig. 4 (top), v2 increases with pT except
for T = 200 MeV, in which v2 decreases at higher pT . We
have also shown the ratio of v2 in Fig. 4 (bottom) taking the
no-clustering scenario as reference and, as discussed earlier,
the ratio remains constant at unity is thereby insensitive to the
clustering except in the T = 200 MeV case.

As mentioned earlier, the eigenvalues of PCA are related to
the eccentricities at the partonic level and various flow com-
ponents and their fluctuations as obtained from the azimuthal
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FIG. 5. Eigenvalues as obtained for η distribution before and
after clustering.
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distributions at the particle level. We have investigated the
eigenvalues for different distributions of the charged particles
with different cluster parameters. Figures 5, 6, and 7 show the
distributions of the eigenvalues as obtained for η, φ, and pT

distributions for two different scenarios, i.e., with and without
clustering. The nodes (α) in the x axis represent the PCA
components. It is clear in all cases that the most prominent
eigenvalue is that of the first component, differing from the
next one by varying degrees. It can therefore be mentioned
that the first eigenvalue, representing the variance of the dis-
tribution of the reduced dimension, can be used further for
investigating the structures in the initial state of the collision
zone.

According to the PCA method, eigenvalues are arranged
in decreasing order, sometimes with a wide difference be-
tween the eigenvalue of a component and that of the next
node. Before discussing PCA results, we reexamine Figs. 2
and 3 showing the inclusive distributions of partons and
of the produced charged particles respectively. It is clearly
seen that, among partonic η and φ distributions, struc-
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FIG. 8. Eigenvalues as obtained for η distribution before and
after clustering.

tures are more prominent for the η distributions, presumably
due to the inclusion of clustering at the partonic level.
However, at the particle level, no such structures are promi-
nently visible. In view of this, it is important to study
the PCA eigenvalues at the particle level with and without
clustering.

For the pT distribution, the position clustering lowers the
eigenvalues compared to the no-clustering case while the
clusters including thermal partons tend to increase the eigen-
values for all nodes. The same pattern is also seen in the
η distributions, with the exception of the first node (α = 1),
where cases involving clustering with R = 5 fm have a higher
eigenvalue than the no-clustering scenario. In case of the φ

distributions, eigenvalues are seen closer in pairs presumably
representing the real and imaginary components of the flow
parameters [14]. We have not made any detailed investiga-
tion of extraction of flow parameters from these eigenvalues.
We only point out that the eigenvalues differ clearly for
the two cases, i.e., with and without clustering. We have
also observed a clearer effect of the position clustering in
the case of φ as eigenvalues for R = 5 fm lie considerably
higher compared to the no-clustering values. The eigenvalues
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FIG. 9. Eigenvalues as obtained for φ distribution before and
after clustering.

of the φ distributions look more sensitive to the position
clustering.

We have also performed studies for various event centrali-
ties. Figures 8 to 10 show the variation of the eigenvalues of
two different modes (1 and 2) with event centralities. We have
only taken two cases that showed maximum effect in earlier
eigenvalue studies, i.e., (i) R = 5 fm, df = 0.1, and no mo-
mentum modifications and (ii) T = 200 MeV, R = 5 fm, and
df = 0.1. It is seen that the eigenvalues of the first component
for the φ and pT distributions have a decreasing trend for the
events where clustering is implemented as compared to the
events without clustering.

The observed decreasing trend of the first eigenvalues
might be due to higher fluctuations for lower multiplicities
in peripheral events. No significant structures are seen for the
η distributions of the produced particles in both the cases. It
is also seen that the eigenvalues are considerably lower in the
case of minimum-bias events as shown in the Figs. 5–7 and
discussed earlier. This might be due to dilution of fluctuations
for minimum-bias events due to the admixture of events with
different multiplicities.
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FIG. 10. Eigenvalues as obtained for pT distribution before and
after clustering.

VI. SUMMARY AND CONCLUSIONS

In an effort to find a method to investigate the initial
partonic structure in high-energy heavy-ion collisions, we
have implemented the formation of partonic clusters using
the partons obtained from the string-melting version of the
AMPT model. The clusters are formed in two steps: first by
bringing partons closer in positions to an extent defined by
two parameters, i.e., the radius of the partonic zone (R) and
the scaling factor on the interpartonic distance. In our work,
we have used the values R = 2 and 5 fm and df = 0.05 and
0.1. Additionally, we have introduced a thermal distribution
to the cluster partons by tuning the temperature parameters;
we have used two temperature values, i.e., T = 200 MeV and
T = 400 MeV. The latter one is close to the inverse slope of
the pT distribution from the AMPT partons. These partons then
undergo hadronization by the AMPT string-melting hadroniza-
tion scheme, i.e, by coalescence of partons according to their
distance, spin, and mass. We then investigated the distribu-
tions of the produced particles from AMPT in order to find
the sensitivity of the particle-level observables to the partonic
structures. Even though the structures are reflected in basic
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distributions of the partons, there is no clue of these structures
in the inclusive distributions of the produced particles. For
this investigation, we have used principal component anal-
ysis (PCA) to analyze the η, φ, and pT distributions of the
produced particles. It may be mentioned that the square root
of the sum of the squares of the paired eigenvalues from the
azimuthal distribution of a particular order has been shown
to be related to the coefficients of flow up to v6 [14]. In
our work we have taken the eigenvalues as our candidate
for probing the initial state at different clustering conditions.
For our study, we have looked into the eigenvalues obtained
from PCA decomposition of η, φ, and pT distributions as our
observables and looked at them for various conditions such
as no clustering, only position clustering, and inclusion of
thermal partons with T = 200 and 400 MeV. It is found that
the first few prominent eigenvalues for all three distributions
are sensitive to the inclusion of clustering. For η and pT

distributions, two clear groups are seen lying above and below
the no-clustering scenario. For T = 200 MeV, all eigenvalues
lie above the no-clustering reference. For position clustering,
the eigenvalues are grouped below the reference. It is seen
that the difference with the no-clustering reference is more
for higher values of the R parameter. For the azimuthal dis-
tributions, the eigenvalues of which are related to the flow

parameters, it appears that the sensitivity higher towards the
position clustering. We have also studied the centrality depen-
dence of the first two eigenvalues. Even though the η values
do not show appreciable sensitivity, for φ and pT , they a
show clearly different trend as compared to the no-clustering
reference, which is mostly flat. We therefore conclude that
the first few eigenvalues are sensitive to the inclusion of do-
mains at the partonic level. The events with domains might be
identified on an event-by-event basis by discriminating based
on the eigenvalues. It is already known that the eigenvalues
of the azimuthal distributions represent the flow parameters.
In general the PCA eigenvalues represent fluctuations in the
distributions of different orders, which are not visible in
the inclusive distributions; however, further analysis using
the PCA might be performed to extract the physical interpre-
tations of the eigenvalues and eigenvectors from the η and pT

distributions.
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