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We apply a quark combination model to study yield densities and transverse momentum (pT ) spectra of strange
(anti)hadrons at midrapidity in central Au+Au collisions at

√
sNN = 7.7, 11.5, 19.6, 27, 39, and 200 GeV. We

show that the experimental data for pT spectra of (anti)hadrons in these collisions can be systematically described
by the equal velocity combination of constituent quarks and antiquarks at hadronization. We obtain the pT spectra
of quarks and antiquarks at hadronization and study their collision energy dependence. We also reproduce the
yield densities of hadrons and antihadrons. In particular, we demonstrate that the yield ratios of antihadrons to
hadrons K−/K+, p̄/p, �̄/�, �̄+/�−, and �̄+/�− simply correlate with each other and their experimental data
except �̄+/�− at

√
sNN = 7.7 GeV are systematically described by the model. These results suggest that the

equal velocity combination mechanism for quarks and antiquarks at hadronization plays an important role for
the production of these long-lived hadrons in Au+Au collisions at low RHIC energies (

√
sNN � 11.5 GeV).

DOI: 10.1103/PhysRevC.103.034907

I. INTRODUCTION

Hadron production from final state partons in high-energy
collisions is a complex quantum chromodynamics (QCD)
process. Due to the difficulty of nonperturbative QCD, phe-
nomenological mechanisms and models have to be applied
to describe the production of hadrons at hadronization [1–8].
In relativistic heavy-ion collisions at high RHIC and LHC
energies, quark-gluon plasma (QGP) is created in early stage
of collisions and the hadronization of QGP can be microscop-
ically described by the quark (re)combination/coalescence
mechanism [9–14]. The enhanced ratio of baryon to meson
and number of constituent quark scaling for elliptic flows
of hadrons at the intermediate transverse momentum (pT )
are typical experimental signals for quark combination mech-
anism at hadronization and have been widely observed in
relativistic heavy-ion collisions [15–22].

In our recent studies in high-multiplicity events in pp and
p-Pb collisions at LHC energies where the mini-QGP is pos-
sibly created and rescattering of hadrons is weak, we found
an interesting quark number scaling property for pT spectra
of hadrons at midrapidity [23,24]. This scaling property is
a direct consequence of equal velocity combination (EVC)
of constituent quarks and antiquarks at hadronization. Our
studies showed that the EVC of up/down, strange and charm
quarks can provide a good and systematic description on pT

spectra of light, strange and charm hadrons in ground-state
in pp and p-Pb collisions at LHC energies [23–27]. In latest
work [28], we further found that the experimental data for
pT spectra of � and φ at midrapidity in heavy-ion collisions
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in a broad collision energy range (
√

sNN = 11.5–2760 GeV)
also satisfy the quark number scaling property. This is a clear
signal of EVC at hadronization even in heavy-ion collisions.
Therefore, it is interesting to systematically test this mech-
anism by production of more hadron species in relativistic
heavy-ion collisions.

Recently, STAR collaboration reported their precise exper-
imental data for the production of strange hadrons in Au+Au
collisions at

√
sNN = 7.7–39 GeV [29]. This provides us a

good opportunity to systematically study the EVC mecha-
nism of hadron production in these collisions. In this paper,
we apply a quark combination model with EVC to carry
out a systematic study on yield densities and pT spectra of
strange hadrons in Au+Au collisions at

√
sNN = 7.7, 11.5,

19.6, 27, 39, and 200 GeV. We put particular emphasis on the
self-consistency of the model in explaining the experimen-
tal data for different kinds of hadrons and on the regularity
in multihadron production correlations which is sensitive to
hadronization mechanism. Taking advantage of precise data
for strange hadrons, we also study the strangeness neutraliza-
tion in the midrapidity region in these collisions. We extract
quark pT distributions at hadronization from data of hadrons
and study properties of the relative abundance for strange
quarks as the function of collision energy. Furthermore, we
discuss the key physics in current quark combination model
which are responsible for explaining successfully experimen-
tal data of hadronic pT spectra and yields, and discuss the
creation of QGP or the deconfinement at low RHIC energies.

The paper is organized as follows. In Sec. II, we introduce
a quark combination model with equal velocity combination
approximation. In Sec. III, we study the strangeness neutral-
ization in midrapidity region. In Sec. IV, we show results of
pT spectra for hadrons and compare them with experimental
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data. In Sec. V, we study the split in yield between hadrons
and their antiparticles. In Sec. VI, we study properties for the
obtained numbers and pT spectra of quarks at hadronization at
different collision energies. The summary and discussion are
given at last in Sec. VII.

II. A QUARK COMBINATION MODEL WITH EVC

The quark combination is one of phenomenological mech-
anisms for hadron production at hadronization. The basic
idea of quark combination was first proposed in 1970s [3–5]
and has many successful applications in high-energy reac-
tions [6,30–32]. In relativistic heavy-ion collisions, quark
combination mechanism is often used to describe the hadron
production at QGP hadronization [9–11,13,14,33,34]. Re-
cently, we found that quark combination can also well explain
experimental data of hadron production in high-multiplicity
pp and p-Pb collisions at LHC energies [23–25,35].

In this paper, inspired by the quark number scaling prop-
erty of hadronic pT spectra [23,24,28], we adopt a specific
version of quark combination model [23,25]. This model as-
sumes the combination of constituent quarks and antiquarks
with equal velocity to form baryons and mesons at hadroniza-
tion. The unknown nonperturbative dynamics at hadronization
are parameterized and their values are assumed to be sta-
ble in high-energy reactions and are fixed by experimental
data. This model is essentially a statistical model based on
the constituent quark degrees of freedom at hadronization
and the constituent quark structure of hadrons. It is different
from the popular recombination/coalescence models which
adopt the Wigner wave function method under instantaneous
hadronization approximation [9,10]. The brief description of
the model is as follows.

We start from the general formula for the production of the
baryon Bj composed of q1q2q3 and the production of the me-
son Mj composed of q1q̄2 in quark combination mechanism

fB j (pB) =
∫

d p1d p2d p3RBj (p1, p2, p3; pB)

× fq1q2q3 (p1, p2, p3), (1)

fMj (pM ) =
∫

d p1d p2RMj (p1, p2; pM ) fq1q̄2 (p1, p2). (2)

Here fq1q2q3 (p1, p2, p3) is the joint momentum distribu-
tion for q1, q2, and q3. The combination kernel function
RBj (p1, p2, p3; pB) denotes the probability density for a given
q1q2q3 with momenta p1, p2, and p3 to combine into a baryon
Bj with momentum pB. It is similar for mesons. We emphasize
that Eqs. (1) and (2) are generally suitable for hadron produc-
tion in momentum space of any dimension. In this paper, we
study the one-dimensional transverse momentum (pT ) distri-
bution of hadrons at midrapidity y = 0. In this case, pi simply
denotes pT,i and the distribution function fh(p) denotes the
dNh/d pT at midrapidity.

The combination functions RBj (p1, p2, p3; pB) and
RMj (p1, p2; pM ) contain the key information of combination
dynamics which is not clear at present due to the nonper-
turbative difficulty of hadronization. In our recent works
[23,24,28], we observed an interesting quark number scaling

property for the pT spectra of hadrons in high-multiplicity pp
and p-Pb collisions as well as in heavy-ion collisions.
This scaling property supports the combination of
constituent quarks and antiquarks with equal velocity.
This suggests an effective form for the combination kernel
functions, i.e.,

RBj (p1, p2, p3; pB) = κBj

3∏
i=1

δ(pi − xi pB), (3)

RMj (p1, p2; pM ) = κMj

2∏
i=1

δ(pi − xi pM ). (4)

Here, κBj and κMj are coefficients independent of momen-
tum. Momentum fraction xi is determined by the masses of
constituent quarks because pi = miγ β ∝ mi. Specifically, we
have xi = mi/(m1 + m2 + m3) for baryon Bj with x1 + x2 +
x3 = 1 and xi = mi/(m1 + m2) for meson Mj with x1 + x2 = 1.
mi is the constituent mass for quark of flavor i. Because the
mass of the formed hadron under Eqs. (3) and (4) is the
sum of these of constituent quarks, we take contituent masses
mu = md = 0.3 GeV and ms = 0.5 GeV to properly describe
the production of baryons and vector mesons studied in this
paper.

The joint momentum distributions fq1q2q3 (p1, p2, p3) and
fq1q̄2 (p1, p2) generally contain the correlation term caused by,
for example, the collective flow formed in system evolution
before hadronization in heavy-ion collisions. To obtain ana-
lytical and simple expressions for fB j (pB) and fMj (pM ), we
take the independent distribution approximation

fq1q2q3 (p1, p2, p3) = fq1 (p1) fq2 (p2) fq3 (p3), (5)

fq1q̄2 (p1, p2) = fq1 (p1) fq̄2 (p2). (6)

Substituting Eqs. (3)–(6) into Eqs. (1) and (2), we obtain

fB j (pB) = κBj fq1 (x1 pB) fq2 (x2 pB) fq3 (x3 pB), (7)

fMj (pM ) = κMj fq1 (x1 pM ) fq̄2 (x2 pM ). (8)

κBj and κMj carry the information of pT -independent com-
bination dynamics. To determine their forms, we express
momentum distributions of hadrons in another form:

fB j (pB) = NBj f (n)
Bj

(pB), (9)

fMj (pM ) = NMj f (n)
Mj

(pM ). (10)

NBj and NMj are numbers of Bj and Mj , respectively. f (n)
Bj

(pB)

and f (n)
Mj

(pM ) are distribution functions normalized to one
when integrating over momentum, which can be obtained by
those of quarks and antiquarks,

f (n)
Bj

(pB) = ABj f (n)
q1

(x1 pB) f (n)
q2

(x2 pB) f (n)
q3

(x3 pB), (11)

f (n)
Mj

(pM ) = AMj f (n)
q1

(x1 pM ) f (n)
q̄2

(x2 pM ). (12)
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Here, f (n)
qi

(p) = fqi (p)/Nqi is the normalized distribution func-
tion of quark qi. Normalization coefficients ABj and AMj are
defined as

A−1
Bj

=
∫

f (n)
q1

(x1 pB) f (n)
q2

(x2 pB) f (n)
q3

(x3 pB)d pB, (13)

A−1
Mj

=
∫

f (n)
q1

(x1 pM ) f (n)
q̄2

(x2 pM )d pM . (14)

Substituting Eqs. (11) and (12) into Eqs. (9) and (10) and
then comparing them with Eqs. (7) and (8), we obtain

NBj = Nq1 Nq2 Nq3

κBj

ABj

, (15)

NMj = Nq1 Nq̄2

κMj

AMj

. (16)

From Eqs. (15) and (16), we can read out the physical mean-
ing of κBj and κMj . It is obvious that κBj /ABj denotes the
momentum-integrated probability of q1q2q3 forming a baryon
Bj and κMj /AMj denotes that of q1q̄2 forming a meson Mj .
Two probabilities can be further decomposed as

κBj

ABj

≡ Pq1q2q3→Bj = CBj Niter
NB

N3
q

, (17)

κMj

AMj

≡ Pq1q̄2→Mj = CMj

NM

NqNq̄
. (18)

Taking meson, for example, NM/NqNq̄ is used to denote the
averaged probability of a qq̄ pair forming a meson. Here, NqNq̄

is the all possible number of qq̄ pair, where Nq = Nu + Nd +
Ns is the number of all quarks and Nq̄ = Nū + Nd̄ + Ns̄ is that
of all antiquarks. NM is the average number of mesons pro-
duced by the hadronization of quark system with given quark
number Nq and antiquark number Nq̄. The factor CMj denotes
further sophisticated tune for the production probability of Mj

on the basis of the averaged probability NM/NqNq̄. The baryon
formula is similar to meson except a factor Niter. This factor is
to assure

∑
q1q2q3

NiterNq1 Nq2 Nq3 = N3
q and equals to 1,3,6 for

q1q2q3 with three identical flavors, two identical flavors, and
three different flavors, respectively. Finally, we obtain yield
formulas of hadrons

NBj = CBj NiterNq1 Nq2 Nq3

NB

N3
q

, (19)

NMj = CMj Nq1 Nq̄2

NM

NqNq̄
. (20)

NB and NM are functions of Nq and Nq̄ [36],

NM = x

2

[
1 − z

(1 + z)a + (1 − z)a

(1 + z)a − (1 − z)a

]
, (21)

NB = xz

3

(1 + z)a

(1 + z)a − (1 − z)a , (22)

NB̄ = xz

3

(1 − z)a

(1 + z)a − (1 − z)a , (23)

where x = Nq + Nq̄ and z = (Nq − Nq̄ )/x. Parameter a = 1 +
(NM/NB)z=0/3 denotes the production competition of baryon

to meson and is tuned to be a ≈ 4.86 ± 0.1 according to our
recent work [35].

In this paper, we only consider the production of the ground
state JP = 0−, 1− mesons and JP = (1/2)+, (3/2)+ baryons
in flavor SU(3) group. In meson formation, we introduce a
parameter RV/P to describe the relative weight of a quark-
antiquark pair forming the state of spin 1 to that of spin 0.
Here, we take RV/P = 0.55 ± 0.05 to reproduce the measured
K∗/K and φ/K data in high-energy reactions [37,38]. Factor
CMj is then parameterized as

CMj =
{ 1

1+RV/P
for JP = 0− mesons,

RV/P

1+RV/P
for JP = 1− mesons.

(24)

In baryon formation, we introduce a parameter RD/O to de-
scribe the relative weight of spin 3/2 state to 1/2 state for
three quark combination. We take RD/O = 0.5 ± 0.04 by fit-
ting the experimental data of �∗/� and 
∗/� in high-energy
collisions [39]. Then we have for CBj

CBj =
{ 1

1+RD/O
for JP = (1/2)+ baryons,

RD/O

1+RD/O
for JP = (3/2)+ baryons,

(25)

except that C�=C
0= 1/(2 + RD/O),C
∗0= RD/O/(2 + RD/O),
C�++ = C�− = C�− = 1.

Taking fqi (p) as model inputs, we can calculate fh(p) and
Nh of hadrons directly produced at hadronization. Finally,
we take the decay contribution of short-life resonances into
account according to experimental measurements, and obtain
results of final-state hadrons

f (final)
h j

(p) = fh j (p) +
∑
i �= j

∫
d p′ fhi (p′)Di j (p′, p), (26)

where the decay function Di j (p′, p) is determined by the de-
cay kinematics and decay branch ratios [40].

III. STRANGENESS NEUTRALIZATION
IN HEAVY-ION COLLISIONS

In relativistic heavy-ion collisions, strange quark and an-
tiquark are always created in pair in collisions and therefore
strangeness is globally conserved. However, for a finite ki-
netic region such as the midrapidity region, the strangeness
neutralization is not so explicit, in particular, at low collision
energies. In this section, using the precise data for yield densi-
ties and pT spectra of identified hadrons [29,41–46], we study
the local strangeness in the midrapidity region in Au+Au
collisions at STAR BES energies.

A. Strangeness at midrapidity

In this subsection, we estimate strangeness density
dNs̄/dy − dNs/dy in the midrapidity region in relativistic
heavy-ion collisions. We write Ns̄ − Ns for short in the follow-
ing. Since experimental measurements are mainly for hadrons
in ground state in flavor SU(3), we estimate the strangeness
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by yield densities of the following hadrons:

Ns̄ − Ns = (K+ + K0 + K∗+ + K∗0)

− (K− + K̄0 + K∗− + K̄∗0)

− (�+
0,±+
∗0,∗±+2�−,0 + 2�∗−,0+3�−)

+ (�̄+
̄0,∓+
̄∗0,∗∓+2�̄+,0 + 2�̄∗+,0 + 3�̄+).
(27)

For convenience, we use h to denote dNh/dy. The contribution
of baryons with different charge states is also abbreviated,
e.g., 
0,± ≡ 
0 + 
− + 
+. We note that the contribution
of higher mass resonances can be effectively included if we
identify above ground state hadrons as the measured ones.

The strangeness in meson sector can be calculated as

K+ + K0 + K∗+ + K∗0 − K− − K̄0 − K∗− − K̄∗0

= (K+ − K−)final + (K0 − K̄0)final, (28)

where we use the subscript “final” to denote that K+ − K−
and K0 − K̄0 have received the decay contribution of K∗.
Since neutral kaons are not measured, we use the approxima-
tion

(K+ − K−)final ≈ (K0 − K̄0)final. (29)

For strangeness contained in hyperons with one strange
quark, we decompose them into two parts: experimentally
measured net-� and experimentally un-measured net-
±. Us-
ing the property of S&EM decays for hyperons [40], we have

(� + 
0,± + 
∗0,∗±) − (�̄ + 
̄0,∓ + 
̄∗0,∗∓)

= (� − �̄)final + (
± − 
̄∓)final, (30)

with

(� − �̄)final = (� − �̄) + (
0 − 
̄0) + 0.94(
∗± − 
̄∗∓)

+ 0.88(
∗0 − 
̄∗0) (31)

and

(
± − 
̄∓)final = (
± − 
̄∓) + 0.06(
∗± − 
̄∗∓)

+ 0.12(
∗0 − 
̄∗0). (32)

Applying our formula of hadronic yields in Sec. II, we obtain

(
± − 
̄∓)final

(� − �̄)final
= 1.1 + 0.68RD/O + 0.099R2

D/O

1.096 + 2.62RD/O + R2
D/O

≈ 0.55.

(33)
For strangeness contained in hyperons with two strange

quarks, after considering S&EM decays, we have

(�−,0 − �̄+,0) + (�∗−,0 − �̄∗+,0) = (�−,0 − �̄+,0)final,

(34)
and we use the approximation

(�− − �̄+)final ≈ (�0 − �̄0)final. (35)

By the sum over the strangeness in meson and baryon
sectors, we obtain the net-strangeness of the system

Ns̄ − Ns ≈ 2(K+ − K−)final − 1.57(� − �̄)final

− 4(�− − �̄+)final − 3(�− − �̄+), (36)

where subscript “final” denotes the yield including S&EM
decay contributions.

The total number of strange quarks and strange antiquarks
is

Ns̄ + Ns ≈ 2(K+ + K−)final + 1.57(� + �̄)final

+ 4(�− + �̄+)final + 3(�− + �̄+)

+ 2φ + 2
(

2
3η + 1

3η′). (37)

Because the strangeness Ns̄ − Ns is explicitly dependent
on collision energies and collision centralities, we define the
relative asymmetry factor

zS = Ns̄ − Ns

Ns̄ + Ns
, (38)

which is convenient to compare results in different situations.
In Table I, we show results for zS in most central Au+Au

collisions at different collisions energies.1 Experimental data
for yield densities of hadrons that are used in calculation
are also presented ([41–45], [29,47]). Because some data for
�− and φ are results in 0–10% centrality, we rescale them
by multiplying a factor N (0−5%)

part /N (0−10%)
part according to the

participant nucleon number Npart. We do the similar rescaling
for data of �− in 0–60% centrality at

√
sNN = 7.7 GeV. Be-

cause data of η and η′ mesons are usually absent, we neglect
them and therefore the calculated zS is overestimated. We see
that zS at seven collision energies are quite small. Therefore,
strangeness neutralization Ns = Ns̄ is well satisfied in midra-
pidity region in heavy-ion collisions at RHIC energies.

B. pT spectrum symmetry

In this subsection, we study the symmetry property be-
tween pT spectrum of strange quark fs(pT ) and that of strange
antiquark fs̄(pT ). For this purpose, we choose �− (�̄+) which
consists of only strange quarks (antiquarks). Using Eq. (7), we
have

f�(3pT ) = κ� f 3
s (pT ), (39)

f�̄(3pT ) = κ�̄ f 3
s̄ (pT ), (40)

from which we have

fs̄(pT )

fs(pT )
= κ�̄,�

[
f�̄(3pT )

f�(3pT )

]1/3

∝
[

f�̄(3pT )

f�(3pT )

]1/3

, (41)

1In calculations, we use the approximation of isospin symmetry
between up and down quarks in Eqs. (29) and (35). If we consider
the small asymmetry in number between up quarks and down quarks
coming from colliding nucleons, then we should modify Eq. (29)
by multiplying a factor Nu/Nd and Eq. (35) by multiplying a factor
(Nu/Nd )−1 in right-hand side of the equation and the corresponding
coefficients in Eqs. (36) and (37). According to the number of new-
born quarks extracted in next section and net-quarks from participant
nucleons, we obtain, for example, Nu/Nd ≈ 0.99 at

√
sNN = 200

GeV and Nu/Nd ≈ 0.93 at 7.7 GeV. The resulting zS are (−0.004,
−0.018, −0.0014, −0.005, 0.002, 0.003, −0.009) at

√
sNN = (200,

62.4, 39, 27, 19.6, 11.5, 7.7) GeV, respectively. They are very close
to those shown in Table I.
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TABLE I. Strangeness asymmetry factor zS calculated by yield data of strange hadrons and antihadrons in central Au+Au collisions
[29,41–45,47].

√
sNN (GeV) K+,− �(�̄) �−(�̄+) �−(�̄+) φ zS

200
48.9 ± 6.3
45.7 ± 5.2

16.7 ± 1.1
12.7 ± 0.9

2.17 ± 0.2
1.83 ± 0.2

0.53 ± 0.06 7.95 ± 0.11 −0.004 ± 0.06

62.4
37.6 ± 2.7
32.4 ± 2.3

15.7 ± 2.3
8.3 ± 1.1

1.63 ± 0.2
1.03 ± 0.11

0.212 ± 0.028
0.167 ± 0.027

3.52 ± 0.08 −0.019 ± 0.04

39
32.0 ± 2.9
25.0 ± 2.3

11.02 ± 0.03
3.82 ± 0.01

1.54 ± 0.01
0.78 ± 0.01

0.191 ± 0.006
0.139 ± 0.004

3.38 ± 0.03 −0.002 ± 0.05

27
31.1 ± 2.8
22.6 ± 2.0

11.67 ± 0.04
2.75 ± 0.01

1.57 ± 0.01
0.598 ± 0.006

0.154 ± 0.008
0.0972 ± 0.0049

3.01 ± 0.04 −0.006 ± 0.05

19.6
29.6 ± 2.9
18.8 ± 1.9

12.58 ± 0.04
1.858 ± 0.009

1.62 ± 0.02
0.421 ± 0.005

0.155 ± 0.01
0.0811 ± 0.0048

2.57 ± 0.04 −0.0002 ± 0.05

11.5
25.0 ± 2.5
12.3 ± 1.2

14.17 ± 0.08
0.659 ± 0.009

1.35 ± 0.02
0.169 ± 0.004

0.082 ± 0.012
0.0356 ± 0.0052

1.72 ± 0.04 −0.004 ± 0.05

7.7
20.8 ± 1.7

7.7 ± 0.6
15.3 ± 0.11

0.193 ± 0.006
1.19 ± 0.03

0.0667 ± 0.0044
0.0271 ± 0.0048
0.0075 ± 0.0013

1.21 ± 0.06 −0.021 ± 0.04

where κ�̄,� = (κ�̄/κ�)1/3 is independent of pT but is depen-
dent on quark numbers. We emphasize that κ�̄,� is not equal
to one at nonzero net quark number.

Using data of pT spectra for �− and �̄+ in central Au+Au
collisions [29,47], we calculate the ratio fs̄(pT )/ fs(pT ) at dif-
ferent collision energies and present results in Fig. 1. Since we
have shown Ns = Ns̄ in the previous subsection, we multiply a
proper constant before data of f 1/3

�̄
(3pT )/ f 1/3

� (3pT ) to satisfy
Ns = Ns̄ and therefore we can directly compare fs̄(pT )/ fs(pT )
in/at different collision centralities/energies. Because of finite
statistics of �− and �̄+, data points of fs̄(pT )/ fs(pT ) show
a certain fluctuations around one. On the whole, we can see
that fs̄(pT ) = fs(pT ) is a good approximation at the studied
collision energies.
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FIG. 1. Ratio fs̄(pT )/ fs(pT ) in Au+Au collisions at different
collision energies obtained from experimental data of �− and �̄+

in central and semi-central collisions [29,47] by Eq. (41).

IV. pT SPECTRA OF HADRONS

In this section, we use the quark combination model
(QCM) in Sec. II to study pT spectra of light-flavor hadrons in
Au+Au collisions at RHIC energies. The inputs of model are
pT spectra of quarks and antiquarks at hadronization. Here,
we take fs̄(pT ) = fs(pT ) based on the study of strangeness
neutralization in Sec. III. We take fū(pT ) = fd̄ (pT ) for the
newborn up and down antiquarks. Because a part of up and
down quarks comes from the colliding nucleons, pT spectrum
of up quarks is not exactly the same as that of down quarks.
As discussed in Ref. [47], the relative difference in number
between up and down quarks is only a few percentages. We
have checked that pT spectra of hadrons and yield ratios of
antihadron to hadron studied in this paper are not sensitive to
this small asymmetry. Therefore, in this paper, we take the
approximation fu(pT ) ≈ fd (pT ) in the midrapidity region.

In Table II, we list all inputs and parameters of the model
which are needed to calculate pT spectra of hadrons. As intro-
duced in model description in Sec. II, two parameters RV/P and
RD/O are taken as 0.55 and 0.5, respectively, at all the studied
collision energies. For three inputs, fs(pT ) is fixed by using
our model to fit experimental data of φ, and fu(pT ) ( fū(pT ))
is fixed by experimental data of (anti)baryons containing u(ū)
such as (anti)proton [44,46,47], respectively. The extracted
results for quark pT spectra in Au+Au collisions for 0-5%
centrality at six RHIC energies are shown in Fig. 2.

In Fig. 3, we show the calculated results for pT spectra
of hadrons in central Au+Au collisions at

√
sNN = 200 GeV

and compare them with experimental data [21,42,43]. We
see that the agreement between our model results and

TABLE II. Inputs and parameters of the model to calculation pT

spectra of hadrons.

Input Parameter

fu(pT ) fū(pT ) fs(pT ) RV/P RO/D
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FIG. 2. pT spectra of quarks at hadronization at midrapidity
in Au+Au collisions for 0–5% centrality. Spectra at

√
sNN = 7.7–

27 GeV are scaled for clarity as shown in the figure.

experimental data is satisfactory. Although there exists many
successful explanations on these experimental data in the
framework of quark combination mechanism in previous
works [9,10,13,14,34,48], here we would like to emphasize
that the current EVC model can systematically explain these
data in a simple way. Furthermore, the good agreement at top
RHIC energy provides important basis for the application of
our model to lower RHIC energies.

In Figs. 4–8, we show results for pT spectra of hadrons
in central Au+Au collisions at

√
sNN = 39, 27, 19.6, 11.5,

and 7.7 GeV and compare with experimental data [29,46,47].
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FIG. 3. pT spectra of hadrons at midrapidity in central Au+Au
collisions at

√
sNN = 200 GeV. Symbols are experimental data

[21,42,43] and lines are results of our model. Spectra of some
hadrons are scaled for clarity as shown in the figure.
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FIG. 4. Same as described in the caption of Fig. 3 but for central
Au+Au collisions at

√
sNN = 39 GeV. Experimental data are from

Refs. [29,46,47].

At
√

sNN = 39, 27, 19.6, 11.5 GeV, we see a good agreement
between our model results and experimental data [29,46,47].
In particular, we see that experimental data for baryons (p, �,
�, �) and meson φ can be explained by the model very well.
At

√
sNN = 7.7 GeV, we also see that model results are in

good agreement with available experimental data. However,
compared with data in Figs. , the available data at

√
sNN = 7.7

GeV cover smaller pT range and � data in the most central
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FIG. 5. Same as described in the caption of Fig. 3 but for central
Au+Au collisions at

√
sNN = 27 GeV. Experimental data are from

Refs. [29,46,47].
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FIG. 6. Same as described in the caption of Fig. 3 but for central
Au+Au collisions at

√
sNN = 19.6 GeV. Experimental data are from

Refs. [29,46,47].

collisions are absent. Therefore the comparison at
√

sNN =
7.7 GeV is not as conclusive as those at other five higher
energies. We should study this energy point further in the
future when more precise data are available.

Using these systematic calculations and comparisons, we
would like to emphasize the equal-velocity combination
of quarks and antiquarks as the effective description at
hadronization. This is manifested by the following two points.
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FIG. 7. Same as described in the caption of Fig. 3 but for central
Au+Au collisions at

√
sNN = 11.5 GeV. Experimental data are from

Refs. [29,46,47].
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FIG. 8. Same as described in the caption of Fig. 3 but for central
Au+Au collisions at

√
sNN = 7.7 GeV. Experimental data are from

Refs. [29,46,47].

First, from panel (d) in Figs. 3–7, we see that experimental
data of � and φ can be perfectly explained by the same fs(pT )
in a very simple way,

f�(pT ) = κ� f 3
s (pT /3), (42)

fφ (pT ) = κφ f 2
s (pT /2). (43)

We call this property as the quark number scaling for hadronic
pT spectra. We have shown that this property not only ex-
ists in relativistic heavy-ion collisions but also exists in
high-multiplicity pp and p-Pb collisions at LHC energies
[23,24,28]. Second, we see that data of � and �− can be
simultaneously explained by fs(pT ) from φ and fu(pT ) from
proton,

f�(pT ) = κ� f 2
u

(
1

2 + r
pT

)
fs

(
r

2 + r
pT

)
, (44)

f�(pT ) = κ� fu

(
1

1 + 2r
pT

)
f 2
s

(
r

1 + 2r
pT

)
, (45)

after further including the decay contribution of heavier
baryons. Here, r = ms/mu. This is a clear support for the
equal-velocity combination for quarks with different flavors.

V. HADRONIC YIELDS AND MULTIPARTICLE
CORRELATIONS

In this section, we study the pT -integrated yields of identi-
fied hadrons. In heavy-ion collisions at RHIC energies, the net
baryon numbers deposited in the midrapidity region will in-
fluence the production of hadrons and antihadrons to a certain
extent. One of the consequences for nonzero baryon number
density is the asymmetry in yield between hadrons and their
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FIG. 9. Hadronic yield densities divided by participant nucleon
number at midrapidity in Au+Au collisions at different collision
energies. Open symbols are experimental data [29,42,44–46,49,50]
and solid symbols are model results.

antiparticles. We study this yield asymmetry with our model
by focusing on multiparticle yield correlations.

In Fig. 9, we show yield densities of hadrons and anti-
hadrons2 divided by participant nucleon number at midrapid-
ity in central Au+Au collisions at different collision energies.
Open symbols are experimental data [29,42,44–46,49,50]
and solid symbols are model results. Experimental data show
that the yield split between K+ and K− in (a) is much smaller
than that between p and p̄ in (b). Yield split between � and �̄

in (c) and that between �− and �̄+ in (d) are larger than kaon
split in (a) but are smaller than proton split in (b). Comparing
with experimental data, we see that the model provides a
globally good description for yield densities of hadrons and
antihadrons.

To further study the split in yield between hadrons and
antihadrons, we calculate the ratio of yield for antihadron to
that for hadron. Yield ratio is not sensitive to the numbers
of quarks and antiquarks at hadronization and is also not
sensitive to some hadronization details such as parameters
RV/P and RD/O introduced in our model. Therefore, it can
be used to provide a more direct test for the quark combi-
nation mechanism at hadronization in relativistic heavy-ion
collisions. Experimentally measured protons and antiprotons
contain complex decay contributions of heavier baryons and

2Model results for yield densities of kaons are presented here. Be-
cause the direct combination u + s̄ → K in the current EVC model
has energy conservation issue, we have to introduce further treatment
to reconcile this such as we did in Ref. [25]. However, the strange
quantum number conservation ensures that the number of the formed
kaon can be correctly calculated in the current model.

antibaryons,

p(final) = p + �++ + 2
3�+ + 1

3�0 + 0.64� + 0.517
+

+ 0.64
0 + 0.633
∗+ + 0.594
∗0 + 0.602
∗−

+ 0.64(�0 + �− + �∗0 + �∗−) + 0.64�−, (46)

where we use the particle name with superscript “(final)” to
denote the yield density of final-state hadron receiving the
decay contributions and the particle name without superscript
in the right-hand side of the equation to denote yields of
directly-produced hadrons by hadronization. The ratio p̄/p
finally behaves as

p̄(final)

p(final)
≈

(
1 − z

1 + z

)0.99a

, (47)

where z is net-quark fraction and the factor a ≈ 4.86 is re-
lated to the baryon-meson production competition [35,36], see
Eq. (23) and texts below. For yields of kaons, we take the
decay contributions of K∗(892) and φ into account and have

K−(final)

K+(final)
= K− + 1

3 K∗− + 2
3 K∗0 + 0.489φ

K+ + 1
3 K∗+ + 2

3 K∗0 + 0.489φ

= 1 − z

1 + z

1 + 0.489Cφλs

1 + λs
(

z
1+z + 0.489Cφ

1−z
1+z

) , (48)

where λs = Ns/Nū.
For yields of �, �− and their antiparticles, we consider the

S&EM decay contributions,

�̄(final)

�(final)
= �̄ + 
̄0 + 0.94(
̄∗− + 
̄∗+) + 0.88
̄∗0

� + 
0 + 0.94(
∗+ + 
∗−) + 0.88
∗0

=
(

1 − z

1 + z

)a−1(
1 + λs

z

1 + z

)−2

, (49)

and

�̄+(final)

�−(final)
= �̄+ + 1

3 �̄∗+ + 2
3 �̄∗0

�− + 1
3�∗− + 2

3�∗0

=
(

1 − z

1 + z

)a−2(
1 + λs

z

1 + z

)−1

. (50)

For �−, we directly have

�̄+

�− =
(

1 − z

1 + z

)a−3

. (51)

In Eqs. (48)–(50), the power term [(1 − z)/(1 + z)]α domi-
nates the behavior of three ratios. Therefore, ratios K−/K+,
p̄/p, �̄/�, �̄+/�−, and �̄+/�− in our model are simply
correlated with each other by the net-quark fraction z.
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FIG. 10. antihadron to hadron yield ratios in Au+Au colli-
sions at different collision energies. Symbols are experimental
data in central and semi-central (centrality <60%) collisions
[29,42,44–46,49–51]. Dashed lines are model results.

Based on Eqs. (47)–(51), we can build several multihadron
correlations as more sensitive tests of quark combination
mechanism. In Fig. 10(a), we first show the correlation be-
tween K−/K+ and p̄/p. This correlation shows how the
production of baryon and that of meson in heavy-ion colli-
sions are simultaneously influenced by the baryon quantum
number density characterized by net-quark fraction z in our
model. Symbols are experimental data at midrapidity in cen-
tral and semicentral collisions [29,42,44–46,49–51]. Error
bars are the quadratic sum of statistical and systematic un-
certainties. The dashed line is the result of QCM by Eqs. (47)
and (48). Different from our previous work [36] and previous
experimental measurements [51], here we show the correla-
tion in double-logarithmic coordinates to provide a full and
clear presentation because ratio p̄/p changes much faster than
K−/K+. We see that experimental data in double-logarithmic
coordinates behave as almost a straight line and our model can
well reproduce this correlation.

In Fig. 10(b) we show the correlation between �̄/� and
p̄/p. We see that experimental data, symbols in the figure,
exhibit a linear behavior in double-logarithmic coordinates.
This behavior can be perfectly reproduced in our model by
Eqs. (47) and (49); see the dashed line. In addition, we note
that ratio �̄/� decreases slower than p̄/p by a factor (1 − z)/
(1 + z) = Nq̄/Nq. This is because that, compared with p̄/p,
ratio �̄/� involves a strangeness neutralization Ns̄/Ns = 1

In Fig. 10(c) we show the correlation between �̄+/�−
and p̄/p. Experimental data also exhibit a linear behavior in
double-logarithmic coordinates. Since �̄+/�− involves dou-
ble effect of strangeness neutralization (Ns̄/Ns)2 = 1, �̄+/�−
decreases slower than �̄/� as the function of p̄/p. Our model
result Eqs. (47) and (50), the dashed line in the figure, can

well describe data at
√

sNN � 11.5 GeV and slightly underes-
timates �̄+/�− at

√
sNN = 7.7 GeV.

In Fig. 10(d), we further show the correlation among
multistrangeness hadrons �̄+/�− and �̄+/�−. Experimental
data in double-logarithmic coordinates also exhibit a linear
behavior. Because �−( �̄+) completely consists of strange
(anti)quarks, ratio �̄+/�− involves triple effect of strangeness
neutralization and therefore it decreases slower than �̄+/�−.
The model result by Eqs. (50) and (51), the dashed line in
the figure, can roughly describe data at

√
sNN � 11.5 GeV

and underestimates �̄+/�− at
√

sNN = 7.7 GeV to a certain
extent.

Some discussions on the above results are necessary.
First, we emphasize the key physics in our model relating
to multihadron correlations shown in Fig. 10. As shown by
Eqs. (47)–(51), correlations among yield ratios of antihadron
to hadron are not sensitive to absolute numbers of quarks
and antiquarks at hadronization and nonperturbative param-
eters RV/P and RD/O introduced in the model. Therefore,
these yield correlations are only related to two basic features
of quark combination in our model. (1) free combination.
Newborn quarks and antiquarks, net-quarks are all treated as
individual (anti)quarks and freely take part in combination.
(2) flavor independent combination probability. We take
NB/N3

q as the averaged probability of q1q2q3 forming a baryon
and NM/(NqNq̄ ) as the averaged probability of q1q̄2 form-
ing a meson. No sophisticated flavor correction is made at
the moment. From Fig. 10, we see that such a global quark
combination model provides a systematic description on mul-
tihadron yield correlations in Au+Au collisions, at least at√

sNN � 11.5 GeV. Therefore, this is a clear signal of quark
combination mechanism at hadronization in these collisions.

Second, the comparison between our model calculation
and experimental data in Au+Au collisions at

√
sNN =

7.7 GeV may indicate some physics beyond the key features
of quark combination discussed above. As p̄/p and �̄/�

ratios are reproduced, we see that model results for K−/K+,
�̄+/�−, and �̄+/�− are smaller than experimental data to a
certain extent. This may be related to the point (1) discussed
above. In Au+Au collisions at low energy, the colliding nu-
cleons may not break completely. A part of nucleon fragments
may do not behave as the individual up/down quarks and
freely take part in the combination with newborn quarks and
antiquarks; instead, they behave as diquarks and can form
proton by combining with a up/down quark or form � by
combining with a strange quark. Because these net-quarks
only contribute to proton and � production, net-quark fraction
z used in Eqs. (48), (50), and (51) for K−/K+, �̄+/�−,
and �̄+/�− should be smaller than that in p̄/p and �̄/�.
This consideration can increase ratios K−/K+, �̄+/�−, and
�̄+/�− at the given p̄/p and �̄/� ratios and therefore can
qualitatively improve the description at

√
sNN = 7.7 GeV in

the current model. Such a sophisticated effect of net-quarks is
worthwhile to be studied in detail in the future works.

VI. PROPERTIES OF QUARK DISTRIBUTIONS

By studying experimental data of hadronic pT spectra, we
have obtained pT spectra of quarks at hadronization, which
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FIG. 11. Spectrum ratio fs(pT )/ fū(pT ) in central Au+Au colli-
sions at

√
sNN = 200, 39, 27, 19.6, and 11.5 GeV, and that in pp

collisions at
√

s = 13 TeV.

are shown in Fig. 2. In this section, we study properties of
these obtained quark distributions at hadronization.

We first calculate the ratio fs(pT )/ fū(pT ) and study its
pT dependence. Fig. 11 shows results in central Au+Au col-
lisions at

√
sNN = 200, 39, 27, 19.6, and 11.5 GeV. Result

of fs(pT )/ fū(pT ) in pp collisions at
√

s = 13 TeV [24] is
also presented. We see that ratios in Au+Au collisions are
obviously higher than that in pp collisions. This means that
the production of strange quarks in the studied pT range in
Au+Au collisions is significantly enhanced. In addition, we
see that ratios in Au+Au collisions at these collision energies
in the low pT range (pT � 1.3 GeV/c) all increase with pT . It
is similar to pp results. This property is related to the complex
(non)perturbative QCD evolution in connection with quark
masses in partonic phase.

We note that the increase of the ratio at low pT in heavy-
ion collisions can be qualitatively understood by thermal
statistics. In the case of thermal equilibrium such as the
Boltzmann distribution dN/(pT d pT ) ∝ exp(−

√
p2

T + m2/T )
in two-dimensional transverse momentum space, heavier
mass will lead to flatter shape of the pT distribution and
thus lead to the increase of the ratio. However, Boltzmann
distribution at hadronization temperature in the rest frame
can not directly describe the obtained quark distributions in
Fig. 2. We should further take into account the contribu-
tion of the collective radial flow in the prior partonic phase
evolution in heavy-ion collisions. As an illustration, we con-
sider a simple situation, that is, Boltzmann distribution in the
two-dimensional transverse momentum space boosted with a
radial flow velocity v⊥. In this case, the distribution is

dN

pT d pT
∝ 1

E
E∗(v⊥) exp[−E∗(v⊥)/T ], (52)

with E∗(v⊥) = γ⊥(E − v⊥ pT ) and E =
√

p2
T + m2. If we as-

sume that quarks of different flavors at hadronization are
thermalized and boosted with the same radial velocity, then
we can use the above formula to simultaneously describe

0 0.5 1 1.5 2
[GeV/c]

T
p

1−10

1

10

210

310

T
)/

p
T

(p qf

s
Bolt fit to s
BW fit to s

u
uBolt fit to 
uBW fit to 

(a)

0 0.5 1 1.5
[GeV/c]

T
p

0.2

0.4

0.6

0.8

1

ra
tio

us/
Bolt fit
BW fit

(b)

FIG. 12. (a) Fit results for quark pT spectra at hadronization
in central Au+Au collisions at

√
sNN = 19.6 GeV by Boltzmann

formula Eq. (52) and by blast-wave model at the same hadronization
temperature 0.161 GeV and radial flow velocity 0.25 c. (b) ratio
fs(pT )/ fū(pT ) by two fit methods. Symbols are quark pT spectra and
lines are fit results.

the extracted fū(pT ) and fs(pT ) in the low pT range (pT �
1.3 GeV/c) in Fig. 2. According to our previous work [28],
the hadronization temperature is taken as T = (0.164, 0.163,
0.162, 0.161, 0.156) GeV in central Au+Au collisions at√

sNN = (200, 39, 27, 19.6, 11.5) GeV, respectively. We obtain
radial flow velocity v⊥/c ≈ (0.39, 0.28, 0.27, 0.25, 0.23) at
these collision energies.

We find that these results for radial flow velocity are
consistent with our previous extraction by a hydrodynamics-
motivated blast-wave model [52] fit of fs(pT ) with the same
hadronization temperature [28]. We also find that fū(pT )
and fs(pT ) extracted in this work can also be consistently
described in blast-wave mode. Here, taking central Au+Au
collisions at

√
sNN = 19.6 GeV as an example, we show in

Fig. 12(a) the fit results of quark pT spectra by Eq. (52) and
those by blast-wave model at the same hadronization temper-
ature 0.161 GeV and radial flow velocity 0.25 c. We see that
two fit methods give the consistent description on quark pT

spectra. In addition, we see from Fig. 12(b) that the increase
part of the ratio fs(pT )/ fū(pT ) in the low pT range can be
reasonably described.

Figure 11 also shows the ratio fs(pT )/ fū(pT ) globally
increases with the decrease of collision energies. To study
this energy dependence of strangeness, we calculate the
strangeness factor

λs = Ns

Nū
(53)

and present results in Fig. 13. Here, results of λs in central
Au+Au collisions at

√
sNN = 62.4 and 130 GeV are also

shown. The uncertainty of λs is caused by that of experimental
data for yield ratios such as K/π , �/p, �̄/p̄. We note that
these new results of λs are consistent with our previous works
[48,53,54]. Compared with λs ≈ 0.3 in elementary collisions
such as e+e− and pp reactions, we see that λs � 0.42 in
heavy-ion collisions is obviously enhanced. We also see that
λs increases as the decrease of collision energy.

The dependence of λs on collision energy is related to
the varied baryon quantum number density. In this paper, we
study this energy dependence in the framework of thermo-
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FIG. 13. Strangeness factor λs = Ns/Nū in central Au+Au colli-
sions at different collision energies.

dynamics for quark system. We consider a thermal system
consisting of constituent quarks and antiquarks. In our quark
combination model, constituent quarks and antiquarks are
regarded as the effective degrees of freedom at hadroniza-
tion and they freely combine into baryons and/or mesons
at hadronization. Therefore, we can treat such a constituent
quark system as the classical gas.

Because we study the production of hadrons in midrapidity
range, we first discuss the case of grand-canonical ensem-
ble. The number of quark under Fermi-Dirac statistics in the
grand-canonical ensemble is

Nf = g
∫

d3xd3 p

(2π )3

1

exp [(E − μ f )/T ] + 1

= g
V m2T

2π2

∑
n=1

(−1)n+1

n
K2

(
n

m

T

)
exp

(
n
μ f

T

)
, (54)

where V is system volume and T is temperature. g = 6 is de-
generacy factor of quark, m is quark mass and μ f is chemical
potential of quark f . K2 is the modified Bessel function of the
second kind. As discussions of local strangeness conservation
in Sec. III, we set μs = μs̄ = 0 to get Ns = Ns̄. We assume
the isospin symmetry between up and down quarks, then we
have μu = μd = −μū = −μd̄ = μB/3. Then, the strangeness
factor in grand-canonical ensemble (GCE) of free quark gas is

λ(GCE)
s = m2

s

∑
n=1

(−1)n+1

n K2
(
n ms

T

)
m2

u

∑
n=1

(−1)n+1

n K2
(
n mu

T

)
exp

[−n μB

3T

]
≈ λ

(GCE)
s,μB=0 exp

[
μB

3T

]
. (55)

In the second line, we consider only the leading term n = 1,
which is corresponding to the Boltzmann statistics. As we
know, baryon chemical potential is increased as the decrease
of the collision energy. Therefore, the collision energy depen-
dence of λs is qualitatively understood.

For a demonstrative calculation for the collision energy
dependence of λ(GCE)

s , we first apply Eq. (55) with the re-

tuned mu = 0.3 GeV and ms = 0.54 GeV to give a proper
strangeness at vanishing baryon chemical potential λ

(GCE)
s,μB=0 ≈

0.42. Then, we apply Eq. (54) to fit the total quark number
x = Nq + Nq̄ and net-quark number xz = Nq − Nq̄ integrated
from Fig. 2 and obtain V and μB of quark system at hadroniza-
tion. Here, the hadronization temperature is taken as before.
Then we substitute μB and T into Eq. (55). The calculated
results for λ(GCE)

s at RHIC energies are shown as triangles with
the dashed line in Fig. 13. We see that the extracted λs in quark
combination model can be explained by grand-canonical en-
semble of quark gas system at

√
sNN � 20 GeV. At lower two

collision energies, GCE results are higher than our extraction.
Considering the longitudinal rapidity space of

heavy-ion collisions is finite, in particular, ybeam < 2.5 at√
sNN � 11.5 GeV, the studied midrapidity range |y| < 0.5 is

not a tiny fraction of the whole system, the hadron production
in the midrapidity range may be influenced by effects of
global charge conservation not only strangeness conservation
but also baryon quantum number conservation. Therefore,
grand-canonical treatment may be not perfectly suitable. We
now consider the result of canonical ensemble for free quark
system. We apply the method of canonical statistics [55] to
obtain the property of quark number distribution under the
constraint of finite baryon quantum number and strangeness.
We put the detailed derivation into the Appendix. The inputs
of canonical ensemble are volume V , temperature T , and
charges (B, Q, S). The temperature is set to the hadronization
temperature whose values at different collision energies are
taken as before. As discussions in Sec. III, we take S = 0. V ,
B, and Q can be determined by fitting the quark and antiquark
numbers integrated from Fig. 2. Results of λ(CE )

s for canonical
ensemble of quark system are shown as solid circles with the
dotted line in Fig. 13. We see that λ(CE )

s is also increased with
the decrease of collision energy and is smaller than λ(GCE)

s ,
in particular, at low collision energies. Our extracted λs is
roughly located in the middle of two ensembles.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have applied a quark combination model
with equal-velocity combination approximation to systemati-
cally study the production of hadrons in Au+Au collisions at
RHIC energies. The model applied in this work is motivated
by our recent findings for the constituent quark number scal-
ing property of hadronic pT spectra in high-energy pp, pA and
AA collisions [23,24,28]. After systematic study of pT spectra
and yields for hadrons, we found that our quark combination
model provides a good explanation on the experimental data
in Au+Au collisions at

√
sNN � 11.5 GeV. This suggests that

the constituent quark degrees of freedom still play important
role even at low RHIC energy, which is closely related to the
deconfinement at these collision energies.

By study of hadronic pT spectra and yields in these
collisions, we obtained pT spectra and numbers of con-
stituent quarks and antiquarks at hadronization. We calculated
the net strangeness Ns̄ − Ns at midrapidity and showed the
strangeness neutralization is well satisfied at midrapidity in
heavy-ion collisions at RHIC energies. We studied the spec-
trum ratio of strange quarks to newborn up/down quarks
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fs(pT )/ fū(pT ) and the pT integrated number ratio λs =
Ns/Nū at different collision energies. We applied the basic
thermal statistics for free constituent quark system to under-
stand these properties of strange quarks relative to up/down
quarks.

We emphasize the key physics in our model which are
responsible for successfully explaining experimental data
of hadronic pT spectra and yields. First, the model takes
the constituent quarks and antiquarks as the effective in-
terface connecting the strongly-interacting system before
hadronization and that after hadronization. We assume the
constituent quarks and antiquarks as effective degrees of
freedom for the strongly-interacting quark-gluon system just
before hadronization. We take the constituent quark model to
describe the static structure of hadrons in the ground state.
In this scenario, the equal-velocity combination of these con-
stituent quarks and antiquarks is a reasonable approximation
and is indeed supported by the quark number scaling property
for pT spectra of hadrons observed in experiments [23,24,28].
The study in this paper further showed that the equal-velocity
combination can systematically describe the production of
different kinds of hadrons in heavy-ion collisions at RHIC
energies. Second, the model includes reasonable considera-
tions for the unity of hadronization and the linear response
property, see detailed discussions in Ref. [36]. This is very im-
portant to reproduce the multihadron yield correlations shown
in Fig. 10. For example, in a naive inclusive view of combina-
tion, we have N� ∝ N3

s and N�̄ ∝ N3
s̄ and therefore �̄+/�− ∝

(Ns̄/Ns)3 ≈ 1 which is independent of collision energy. How-
ever, yield of �− in our model is not only dependent on N3

s
but also dependent on the global system information shown
as in Eq. (17); thus, we have �̄+/�− = [(1 − z)/(1 + z)]a−3

in Eq. (51) which decreases with the decrease of collision
energy.

To further test our EVC model, the following two as-
pects are deserved to study in depth in future works. The
first is the effect of momentum correlations among quarks
and antiquarks at hadronization. It is neglected in this pa-
per; see Eqs. (5) and (6). In general, quarks and antiquarks
at hadronization always have some momentum correlations.
In heavy-ion collisions, the collective flow formed in parton
phase will cause a certain correlation among momenta of
quarks and antiquarks. This correlation not only influences
the inclusive momentum spectra of hadrons to a certain ex-
tent but also influences multiparticle momentum correlations
more directly. In the future work, we will study this effect
by building sensitive physical observables in EVC model.
The second is the production of short-lived resonances. In
heavy-ion collisions, yield and momentum spectra of finally
observed resonances such as K∗(892) are strongly influenced
by rescatterings among hadrons. In the future work, we will
systematically consider this hadronic rescattering effect and
study the production mechanism of the short-lived resonances
at hadronization.
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APPENDIX: QUARK NUMBER DISTRIBUTION
IN CANONICAL ENSEMBLE

The probability of a single state in the canonical ensemble
is

Pstate = 1

Z (Q)
e−EstateβδQ,Qstate

, (A1)

where β = 1/T is the inverse temperature, Estate is the energy
of the state and Qstate are Abelian charges of the state

Qstate =
K∑

j=1

q jNj . (A2)

Here Nj is the number of particle j in the current state and
q j = (Bj, Qj, S j ) is the quantum number vector for the jth
particle. K is the number of particle species.

The multiplicity distribution of particles can be obtained
from the generating function associated to the canonical par-
tition function Z (Q) [55] and is expressed as

P({Nj})

= 1

Z (Q)

K∏
j=1

⎧⎨
⎩

∑
{hn j }

Nj∏
n j=1

⎡
⎣ [z j (n j )]

hn j

n
hn j

j hn j !

⎤
⎦

⎫⎬
⎭δQ,

∑
j q j Nj

, (A3)

where the summation takes different configurations for {hnj }
into account under the condition

∑∞
n j=1 n jhnj = Nj :

z j (n j ) = (∓)n j+1 gV

(2π )3

∫
d3 p e−nβE

= (∓)n j+1gV
m2

2π2n jβ
K2(n jβm). (A4)

Now, we consider the thermal system consisting of con-
stituent quarks and antiquarks. In our quark combination
model, constituent quarks and antiquarks are regarded as the
effective degrees of freedom at hadronization and they freely
combine to form baryons and/or mesons at hadronization.
Therefore, we can simply apply above formula to obtain the
number distribution of these “free” constituent quarks and
antiquarks under canonical statistics. Here, we consider up,
down, strange quarks and their antiparticles. Index j denotes
u, d, s, ū, d̄, s̄, and K = 6.

Equation (A3) can be further denoted as

P({Nj}) = 1

Z (Q)

[
K∏

j=1

Z(
SNj

)]
δQ,

∑
j Nj q j

, (A5)

where Z (SNj ) is cycle-index polynomial of symmetric group.
Z (SNj ) can be numerically evaluated using the recurrence
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relation

Z (SN ) = 1

N

N∑
l=1

z(l )Z (SN−l ), (A6)

with Z (S0) = 1 and Z (S1) = z(1).
As discussed in Sec. III, we take strangeness neutralization

S = 0 and therefore Ns = Ns̄. For constraints of baryon charge
B and electric charge Q, we denote them as Nu − Nū = B + Q
and Nd − Nd̄ = 2B − Q. Finally, the joint distribution func-
tion of quark numbers and antiquark numbers is

P(Nd , Nu, Ns, Nd̄ , Nū, Ns̄)

= 1

Z (Q)
Z(

SNd

)Z(
SNd̄

)
δNd ,Nd̄ +2B−Q

× Z(
SNu

)Z(
SNū

)
δNu,Nū+B+Q

× Z(
SNs

)Z(
SNs̄

)
δNs,Ns̄ . (A7)

We obtain the averaged number of quarks by

Ns =
∑
{Nqi }

NsP(Nd , Nu, Ns, Nd̄ , Nū, Ns̄), (A8)

Nū =
∑
{Nqi }

NūP(Nd , Nu, Ns, Nd̄ , Nū, Ns̄), (A9)

and calculate strangeness factor λ(CE )
s = Ns/Nū in canonical

ensemble of free quark system.
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