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Impact of different extended components of mean-field models on transport coefficients
of quark matter and their causal aspects
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The role of different extensions of the Nambu-Jona-Lasinio (NJL) model-like addition of vector interaction,
Polyakov loop extended version (PNJL), and the entangled PNJL (EPNJL) models on transport coefficients,
such as shear viscosity, bulk viscosity, electrical conductivity, and thermal conductivity are critically analyzed.
We have considered the standard expressions of transport coefficients, obtained in relaxation time approximation
of kinetic theory. Influence of temperature-dependent order parameters on the temperature profile of transport
coefficients are analyzed. The causal aspect of the massless case to these different extended components of mean-
field models are also picturized where an approximated lower and upper bound are drawn for shear relaxation
time.
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I. INTRODUCTION

Microscopic calculations of transport coefficients for
highly dense quark matter, which may be seen in astrophysical
objects, such as compact stars, are an important input in mod-
eling an array of astrophysical phenomena. References [1–4]
have gone through these microscopic estimations. Future ex-
perimental facilities, such as Facility for Antiproton and Ion
Research at GSI, Germany [5] and the Nuclotron-based Ion
Collider Facility at JINR, Russia [6] aim to probe similar
kinds of high density zones in their laboratories. Transport
coefficients of highly dense matter, produced there, may have
influence on different phenomenological quantities, such as
spectra, flow, which can be constructed from experimental
data, measured by their detector setup.

On the other hand, a baryon-free hot system can also be
a matter of interest to know its transport coefficients values.
It is believed that our early universe went through this state,
just after few microseconds from the big bang. Relativis-
tic Heavy Ion Collider (RHIC) experiments at Brookhaven
National Laboratory, USA and the Large Hadron Collider
(LHC) experiments at CERN, Switzerland had reached this
high temperature and baryon free zone, and their experimental
data [7–12] indicate that the matter almost behave, such as
a nearly perfect fluid. A very small value of shear viscosity
to entropy density ratio η/s corresponds to this nature, and
this small value of η/s has been searched as input guess
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values in the viscous hydrodynamic model analysis during
the matching experimental data of elliptic flow [13–15]. This
small value of η/s from the experimental side throws a chal-
lenge to the theoretical side where microscopic calculations
of η/s for quark matter can be performed. Estimated val-
ues of η/s from perturbative quantum chromodynamics at
leading order [16,17] are found to be quite larger than their
experimental value. However, Ref. [18] has recently found
a significant drop in this value in the next-to-leading order
calculation, but at the end of the article, the possibility of
nonperturbative components in η/s has not been ruled out.
The nonperturbative temperature domain of QCD can be well
mimicked by effective QCD model calculations, such as the
Nambu-Jona-Lasinio (NJL) model and quark-meson models.
In Refs. [19–31], this type microscopic calculation of shear
viscosity via different effective QCD models has been per-
formed. Among them, Refs. [19–28] have adopted the NJL
model, Ref. [31] has further incorporated the background
gauge field through its Polyakov extended version. There are
many possible additional sources by which the NJL model can
be modified into different versions. For example, addition of
the vector interaction and Polyakov loop extension, entangled
Polyakov loop extensions can modify the NJL model struc-
ture. In the present article, we have tried to investigate the
impact of the different additional sources of the NJL model
on η/s calculations as well as for other transport coefficients,
such as bulk viscosity, electrical conductivity, and thermal
conductivity.

The article is organized as follows. In Sec. II, the formalism
part of different versions of the NJL model has been briefly
addressed and in Sec. III, the expressions of different transport
coefficients are derived in the kinetic theory framework along
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with their causal extensions. Then, Sec. IV has provided the
detail numerical discussion, which has explored the impact
of different extensions of the NJL model on the transport
coefficient and at last, we have summarized our studies.

II. FORMALISM OF THE NJL MODEL
WITH DIFFERENT EXTENSIONS

In this section we briefly discuss the mean-field models that
we have employed in our paper. First we talk about the NJL
model for two flavor cases and introduce vector interaction in
the picture. Then we extend it by introducing the Polyakov
loop field known as the PNJL model, through which the de-
confinement dynamics can be mimicked. In the PNJL model
the correlation between the chiral and the deconfinement dy-
namics is weak. We impose a strong correlation between these
two through Polyakov loop-dependent coupling constants—
this is known as the entangled PNJL (EPNJL) model.

A. NJL

Let us start with the NJL model first. Here we are interested
in two light quark flavors, and we include the isoscalar vector
interaction which plays a crucial role specially for the system
with finite density. The Lagrangian is [32–35] as follows:

LNJL = ψ̄ (iγμ∂μ − m0 + γ0μ)ψ

+ GS

2
[(ψ̄ψ )2 + (ψ̄ iγ5�τψ )2] − GV

2
(ψ̄γμψ )2, (1)

where, m0 = m0 × 1, with 1 being the identity matrix and
mu = md = m0; μ is the chemical potential; �τ is the Pauli ma-
trix; GS and GV are the four-scalar- and isoscalar-vector-type
coupling constants, respectively. The value of GV is not fixed
through parameter fitting, rather it is used as a free parameter
which can take values within the range of 0 � GV /GS � 1.
With the inclusion of the vector interaction, we now have
another condensate as quark number density n = 〈ψ̄γ 0ψ〉
[35,36] along with the usual chiral condensate � = 〈ψ̄ψ〉.
Chiral condensate will build the link between current quark
mass m0 and constituent quark mass M via the relation,

M = m0 + 2GSNcNf

∫
d3 p

(2π )3

M

E
(1 − fQ − fQ̄), (2)

where

fQ,Q̄ = 1

e(E∓μ̃)/T + 1
, (3)

and quark number density make the quark chemical potential
μ shift to an effective chemical potential,

μ̃ = μ − GV n. (4)

Since, NJL is not renormalizable, we regularize the diverging
vacuum integral by introducing a sharp three-momentum cut-
off 	. The energy of the quasiquark (both up and down) of
constituent mass M is given as E =

√
p2 + M2. The chiral

condensate � at finite temperature depends on the Fermi-
Dirac (FD) distribution function, which is the function of
the effective chemical potential, given in Eq. (4). Hence, GV

FIG. 1. Temperature dependence of constituent quark masses
for GV

GS
= 0 (solid line), 0.5 (dotted line), 1 (dashed line) at μ =

0.1 GeV.

dependence enters in the gap equation through this thermo-
dynamical phase space. This gap Eq. (2) is plotted in Fig. 1
for different values of GV , and we find a mild noticeable
enhancement of M with GV in the intermediate tempera-
ture range. Decreasing in the quark chemical potential with
GV make thermal parts shrink. Therefore, the contribution
of the [vacuum-thermal] term on the left-hand side of (self-
consistent) Eq. (2) is increased for which we are getting an
increasing trend of M with GV . We can get back to the usual
NJL Lagrangian by switching the vector interaction off.

With all these in hand, we can now write the thermody-
namic potential using the mean-field approximation as


NJL = GS

2
�2 − GV

2
n2 − 2Nf Nc

∫
	

d3 p
(2π )3

E

−2Nf NcT
∫

d3 p
(2π )3

[ln(1 + e−(E−μ̃)/T )

+ln(1 + e−(E+μ̃)/T )]. (5)

The thermodynamic potential depends on both constituent
quark mass (M) and the effective chemical potential (μ̃).

B. PNJL

So far we have considered only the chiral dynamics by
which quark to hadron phase transition can be realized as
restored to broken phases of chiral symmetry. Now we also
incorporate the deconfinement dynamics by including the
Polyakov loop. It will give us another view where we can
see the quark to hadron phase transition as a confinement
to deconfinement phase transition. This is formally known
as the PNJL model [37–42]. Here along with the � and n
fields we have two more mean fields—expectation value of
Polyakov loop � and its conjugate �̄. � works as the order
parameter for deconfinement dynamics. For two flavors the
PNJL Lagrangian with vector interaction is written as

LPNJL = ψ̄ (iD/ − m0 + γ0μ)ψ + GS

2
[(ψ̄ψ )2 + (ψ̄ iγ5�τψ )2]

−GV

2
(ψ̄γμψ )2 − U (�[A], �̄[A], T ), (6)
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where D/ = γμDμ and the covariant derivative Dμ = ∂μ −
igAμ

a λa/2, Aμ
a = δμ0Aa

0 being the SU(3) background fields;
λa’s are the Gell-Mann matrices. One should note that here
only two components of the gauge field, corresponding to λ3

and λ8, will contribute. The effective Polyakov loop gauge
potential is parameterized as

U (�, �̄, T )

T 4
= −b2(T )

2
��̄ − b3

6
(�3 + �̄3) + b4

4
(�̄�)2,

(7)
with

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (8)

Values of different coefficients and parameters
a0, a1, a2, a3, b3, b4, T0, and κ are the same as those
given in Refs. [40,43]. We should note an important point
here that in the NJL model the color trace gives us a factor of
Nc. In the presence of a background gauge field the color trace
is not straightforward. After some mathematical manipulation
the color trace in the PNJL model also splits out a factor of

Nc along with a modified thermal distribution function for
particle and antiparticle which read as [43,44]

fQ = �e−β(E−μ̃) + 2�̄e−2β(E−μ̃) + e−3β(E−μ̃)

1 + 3�e−β(E−μ̃) + 3�̄e−2β(E−μ̃) + e−3β(E−μ̃)
,

fQ̄ = �̄e−β(E+μ̃) + 2�e−2β(E+μ̃) + e−3β(E+μ̃)

1 + 3�̄e−β(E+μ̃) + 3�e−2β(E+μ̃) + e−3β(E+μ̃)
, (9)

respectively. We get back the usual NJL results from these
distribution functions by putting � = �̄ = 1. Thus, while
calculating different transport coefficients in the ambient of
these models one needs to be careful. For the NJL model it
will be sufficient to replace the usual mass by the effective
one. But for the PNJL model one also needs to incorporate
the modified distribution functions (see Ref. [30]). With these
modified distribution functions the effective mass in the PNJL
model reads as

M = m0 + 2GSNcNf

∫
d3 p

(2π )3

M

E
(1 − fQ − fQ̄). (10)

The corresponding thermodynamic potential is written as


PNJL = U (�, �̄, T ) + GS

2
�2 − GV

2
n2 − 2Nf T

∫
d3 p

(2π )3
ln[1 + 3(� + �̄e−(E−μ̃)/T )e−(E−μ̃)/T + e−3(E−μ̃)/T ]

−2Nf T
∫

d3 p
(2π )3

ln[1 + 3(�̄ + �e−(E+μ̃)/T )e−(E+μ̃)/T + e−3(E+μ̃)/T ] − κT 4 ln[J (�, �̄)] − 2Nf Nc

∫
	

d3 p
(2π )3

E . (11)

The Vandermonde determinant J (�, �̄) is given by [40,45]

J[�, �̄] = 27

24π2
[1 − 6��̄ + 4(�3 + �̄3) − 3(��̄)2].

(12)

C. EPNJL

It has been confirmed through a different lattice QCD
(LQCD) simulation that chiral and deconfinement transi-
tions take place at the same temperature [46] or nearly the
same temperature [47]. Now this is not clearly understood
whether it is a mere coincidence or there are some correla-
tions between these two apparently distinct phenomena. To
understand this coincidence through effective models a con-
jecture of strong entanglement between the chiral and the
deconfinement dynamics has been proposed [48,49]. Because
of this entanglement of two dynamics it is known as the
EPNJL model. This is realized by introducing Polyakov loop-
dependent coupling constants where the form of the ansatz is
so chosen that it is Z3 symmetric. Thus, the Lagrangian in the
EPNJL model is the same as that in Eq. (6) except the coupling
constants GS and GV are now replaced by G̃S (�) and G̃V (�).
They are given by

G̃S (�) = GS[1 − α1��̄ − α2(�3 + �̄3)], (13)

and

G̃V (�) = GV [1 − α1��̄ − α2(�3 + �̄3)]. (14)

If we put α1 = α2 = 0 we get back the usual PNJL model.
The strength of the vector coupling constant is as mentioned

earlier taken in terms of values of GS . In the same way we
can get the thermodynamic potential for the EPNJL model
by introducing Polyakov loop-dependent coupling constants
in Eq. (11). Now along with all the parameters in the PNJL
model we have two new parameters α1 and α2 which need to
be fixed. This is performed and discussed in detail in Ref. [50].
It is found there that the values of (α1, α2) = (0.1, 0.1) allow
to reproduce the coincidence of two transition temperatures
to be within the range provided by the lattice QCD for the
zero chemical potential [51,52]. The explicit form of the gap
equation in the EPNJL model is the same as that written in
Eq. (10) except that GS and GV will now be replaced by G̃S

and G̃V as given in Eqs. (13) and (14), respectively.
The picture of transition from a current quark mass

m0 ≈ 0.010 GeV at high T to constituent quark mass M ≈
0.320 GeV at low T will mainly map the quark-hadron phase
transition, and the maximum transition of mass is occurring
at the transition temperature point. In different extended NJL
models, this point is shifted. Figure 2 demonstrates it nicely.

Let us start with the discussion of transition temperature
for the NJL model first. From the melting of the M(T ) curve
(red solid line) for the NJL model, one can recognize roughly
the maximum melting point as T� ≈ 0.177 GeV (at μ = 0).
It is only chiral dynamics which is associated with this mass
melting in the NJL model, therefore, T� is popularly known
as the chiral transition temperature. As we increase μ the
transition temperature keeps on decreasing. On the other hand,
in the PNJL model we have both chiral and deconfinement
dynamics. So essentially, we have two phase transitions—one
is the chiral phase transition, occurring at T� , and the other
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FIG. 2. Temperature dependence of constituent quark masses for
NJL (solid line), PNJL (dotted line), and EPNJL (dashed line) at
μ = 0.

is the deconfinement phase transition, occurring at tempera-
ture T� (say). In the PNJL model at μ = 0, we have found
T� = 0.233 and T� = 0.228 GeV (for μ = 0, � = �̄, so we
have T� = T�̄) by searching the inflection points of the quark
condensate and Polyakov loop, respectively.1 As we increase
μ both transition temperatures decrease, and there is now
differences between T� and T�̄ for nonzero μ although very
small. We take the average of the two temperatures ( T�+T�̄

2 )
to denote the deconfinement temperatures for nonzero val-
ues of μ. Since the chiral transition temperature is always
very close to the deconfinement transition temperature, we
use the average of the two ( T�+T�

2 ) to denote as the critical
temperature in the PNJL model. In the EPNJL model with the
parameter choice (α1, α2) = (0.1, 0.1) we get T� = 185 and
T� = 183 MeV at μ = 0 [50].

D. Thermodynamical quantities

We see that the thermal distributions, denoted by fQ,Q̄, are
taking different forms in different versions of the model. In the
NJL model it is the usual FD distribution function with effec-
tive mass (MQ) and chemical potential (μ̃) as given in Eq. (3).
In the absence of vector interaction, μ̃ reduces to μ. When we
deal with the PNJL model the FD distributions transform to
some modified forms as given in Eq. (9). Apart from these
palpable differences in forms, distributions in the NJL and
PNJL models are also different through the constituent quark
masses, which are different for these two models (see Fig. 2).
The form of the distributions remain the same in the PNJL

1These inflection points can be found by plotting the first tempera-
ture derivative of � or � as a function of temperature and finding the
maximum of the corresponding plot, which signifies the transition
temperature T� or T�, respectively. In other words, these are the
points at which the curvature changes sign. The readers might look
into Refs. [39,40,50] for a detailed discussion, particularly, Ref. [50]
which involves the same parameter set as used in the present calcu-
lation.

and EPNJL models, but quantitatively they are again different
because of their differences in effective mass (Fig. 2).

Now, in general, if we denote fQQ̄ as thermal distribution
functions, then we can present our different thermodynamical
quantities in terms of fQQ̄, owing to the quasiparticle relation
of statistical mechanics. Thermodynamical quantities, such as
pressure P, energy density ε, and net quark or baryon density
ρ can be obtained from the quasiparticle relations [27],

P = 2Nf Nc

∫
d3 p

(2π )3

p2

3E
[ fQ + fQ̄], (15)

ε = 2Nf Nc

∫
d3 p

(2π )3
E [ fQ + fQ̄], (16)

ρ = 2Nf Nc

∫
d3 p

(2π )3
[ fQ − fQ̄]. (17)

The entropy density s and the heat function h are related to the
above quantities through the following relations:

s = ε + P − μρ

T
, (18)

h = (ε + P)/ρ. (19)

Heat function h is an important quantity, defined by the ratio
of enthalpy density (ε + P) to the net quark density (ρ). This
quantity becomes divergent (unphysical) at μ = 0 where net
quark density vanishes. However, enthalpy density hρ = ε +
P remains finite.

III. TRANSPORT COEFFICIENTS

A detail derivation of the expressions of transport coef-
ficients from relaxation time approximation (RTA) can be
seen in Refs. [28,53–57] and from the Kubo approach in
Refs. [58–60]. In this section, we will take a revisit of RTA
methodology just for a sequential description.

To calculate different transport coefficients of relativistic
fluid, the necessary macroscopic quantities are the energy-
momentum tensor (T μν), the four-dimensional quark-baryon
current (Nμ), and the electric current (Jμ). Here, four-vectors
are represented by greek letters, and three-vectors are repre-
sented by latin letters. If we consider that the fluid is made
up of a two-flavor quark and antiquark, then in microscopic
kinetic theory the macroscopic quantities can be expressed as

T μν = 2Nf Nc

∫
d3 p

(2π )3

pμ pν

E
( fQ + fQ̄), (20)

Nμ = 2Nf Nc

∫
d3 p

(2π )3

pμ

E
( fQ − fQ̄), (21)

and

Jμ = 2Nc

∑
u,d

∫
d3 p

(2π )3

pμ

E
(eQ fQ + eQ̄ fQ̄), (22)

where flavor degeneracy Nf = 2; color degeneracy Nc = 3;
the summation stands for the two-flavor quark and
antiquark to account for their charges (eu,ū = ±2e/3
and ed,d̄ = ∓e/3); particle four-momentum pμ = (E , p);

E =
√

p2 + m2 for particle mass pμ = (E , p); E =
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√
p2 + m2 are nonequilibrium distribution functions of

quarks and antiquarks, respectively. Splitting fQ,Q̄ by the
equilibrium (Fermi-Dirac or modified) distribution f 0

Q,Q̄ and a
small deviation δ fQ,Q̄ for the quark and antiquark, i.e.,

fQ,Q̄ = f 0
Q,Q̄ + δ fQ,Q̄, (23)

one can separate out the ideal and dissipation parts of
T μν, Nμ, and Jμ as

T μν = T μν
0 + T μν

D , (24)

Nμ = Nμ
0 + Nμ

D , (25)

and

Jμ = Jμ
0 + Jμ

D . (26)

Here, the reversible-ideal part of the energy momentum
tensor is T μν

0 = −gμνP + (ε + P)uμuν , and Nμ
0 , Jμ

0 are that
of the quark-baryon charge current and electric charge current,
respectively. The dissipation parts of two currents are Nμ

D , Jμ
D

and for the energy-momentum tensor are as follows:

T μν
D = W μuν + W νuμ + πμν + �μν, (27)

where W μ represents the energy flow, πμν and �μν are shear
and bulk viscous stress tensors, respectively. All the dissipa-
tive candidates πμν, �μν, W μ, and Nμ

D are orthogonal to the
four-velocity of fluid element uμ. They can be extracted from
T μν and Nμ by their respective connections [61],

πμν = {
1
2

(
�μ

σ �ν
ρ + �μ

ρ �ν
σ

) − 1
3�μν�σρ

}
T σρ,

� + P = − 1
3�μνT μν, (28)

qμ = W μ − hNμ
D = uνT νσ�μ

σ − h �μ
ν Nν .

Here, the projection operator orthogonal to fluid velocity is
�μν = gμν − uμuν, �, and P are, respectively, bulk and local
isotropic pressure. In practice, four-velocity uμ is chosen in
two ways, known as Eckart and Landau frames. In the Eckart
frame uμ is parallel to Nμ and so, Nμ

D = 0. Similarly, W μ = 0
in the Landau frame. For a system with no net charge, the four-
velocity in the Eckart formalism is not well defined. Hence, in
general, under this situation one should use the Landau frame.

The transport coefficients η, ζ , κ , and σ are basically
proportionality constants, which make a connection between
thermodynamical forces (πμν , �μν , qμ, Eμ) and the corre-
sponding currents (Uμν

η , Uμν

ζ , Uμ
κ , Jμ

D ) as [28,53–57,60,62]

πμν = ηUμν
η , with Uμν

η =
(

Dμuν + Dνuμ − 2

3
�μν∂ρuρ

)
,

(29)

�μν = ��μν = ζUμν
ζ , with Uμν

ζ = �μν∂ρuρ and

� = ζ ∂ρuρ, (30)

qμ = κUμ
κ , with Uμ

κ = T �μν

(
DνT

T
− DνP

hn

)
, (31)

Jμ
D = σμνEν, with E ν = (0, Ei ). (32)

Here, Dμ = ∂μ − uμuσ ∂σ and Eμ ≡ F 0μ contain the electric-
field part only of electromagnetic field tensor Fμν . Using the

Gibbs-Duhem relation,

DνP

ρ
= h

DνT

T
− T Dν

(
μ

T

)
, (33)

Eq. (31) can be further simplified as

Uμ
κ = T 2

h
�μνDν

(
μ

T

)
. (34)

Now, owing to the microscopic relations, given in
Eqs. (20)–(22), and then using Eq. (29), we can get

πμν = 2Nf Nc

[
1

2

(
�μ

σ �ν
ρ + �μ

ρ �ν
σ

) − 1

3
�μν�σρ

]

×
∫

d3 p
(2π )3

pσ pρ

E
(δ fQ + δ fQ̄), (35)

� = 2Nf Nc

[
−1

3
�μν

] ∫
d3 p

(2π )3

pμ pν

E
(δ fQ + δ fQ̄), (36)

qμ = 2Nf Nc

∫
d3 p

(2π )3
�μ

σ

[{
uν

pν pσ

E
− h

pσ

E

}
δ fQ

+
{

uν

pν pσ

E
+ h

pσ

E

}
δ fQ̄

]
, (37)

and

Jμ
D = 2Nc

∑
Q=u,d

∫
d3 p

(2π )3

pμ

E
(eQδ fQ + eQ̄δ fQ̄). (38)

In the local rest frame, four-velocity u = (1, 0), p · u = E ,
and, hence, Eq. (37) can be written as

qμ = 2Nf Nc

∫
d3 p

(2π )3

pμ

E

×{(E − h)δ fQ + (E + h)δ fQ̄}. (39)

The small deviation of the (Fermi-Dirac or modified) dis-
tribution function can be assumed as

δ fQ,Q̄ = (
fQ,Q̄ − f 0

Q,Q̄

) ∝ −
∂ f 0

Q,Q̄

∂E
∝ β f 0

Q,Q̄

(
1 − f 0

Q,Q̄

)
= φ(Q,Q̄)β f 0

Q,Q̄

(
1 − f 0

Q,Q̄

)
, (40)

where φ(Q,Q̄) will contribute to the dissipative part of energy-
momentum tensor T μν

D , quark-baryon charge current Nμ
D , and

electric charge current Jμ
D as defined in Eqs (23)–(26). To

satisfy the Landau-Lifshitz condition uμT μν
D = 0, a natural

choice is to use the same tensorial decomposition as defined in
Eqs. (29)–(32). Hence, φ(Q,Q̄) can be expressed as a function
of space-time and momentum as [28,53,55–57,62]

φ(Q,Q̄) = A(Q,Q̄)
μν Uμν

η + B(Q,Q̄)
μ Uμ

κ + C(Q,Q̄)
μ Eμ

+Z (Q,Q̄)(∂ρuρ ). (41)

The coefficient factors Aμν, Bμ, Cμ, and Z for different
thermodynamical tensors Uμν

η , Uμ
κ , Eμ, and (∂ρuρ ) are asso-

ciated with corresponding transport coefficients η, κ, σ , and
ζ , respectively. These coefficient factors can be obtained with
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the help of the Boltzmann equation,

∂ fQ,Q̄

∂t
+ ∂xi

∂t

∂ fQ,Q̄

∂xi
+ ∂ pi

∂t

∂ fQ,Q̄

∂ pi

=
(

∂ fQ,Q̄

∂t

)
col

⇒ ∂ fQ,Q̄

∂t
+ vi ∂ fQ,Q̄

∂xi
+ F i ∂ fQ,Q̄

∂ pi

=
(

∂ fQ,Q̄

∂t

)
col

, (42)

where vi is the particle velocity and F i is the applied force
on the particle. The right-hand side of Eq. (42), representing
the collisional term (accounting for the forces acting between
particles in collisions), can be approximated by the Anderson-
Witting collision term [63],(

∂ fQ,Q̄

∂t

)
col

= −
(

pμuμ

E

)
δ fQ,Q̄

τQ,Q̄
. (43)

This is the standard RTA technique, where τQ,Q̄ is the rough
timescale required for the particle and antiparticle to relax
from its nonequilibrium distribution fQ,Q̄ to the equilibrium
distribution f 0

Q,Q̄. Using Eq. (43) in Eq. (42) and then express
that the RTA-based Boltzmann transport equation in covariant
form as

1

E
pμ∂μ fQ,Q̄ + eQ,Q̄Fμν pν

E

∂ fQ,Q̄

∂ pμ
= −

(
pμuμ

E

)
δ fQ,Q̄

τQ,Q̄
. (44)

On the right-hand side, δ fQ,Q̄ can be expressed in terms
of corresponding tensors [Uμν

η , (∂ρuρ ), Uμ
κ , and Eμ ≡ F 0μ],

associated with the transport coefficients (η, ζ , κ , and
σ ) by using Eq. (41). On the left-hand side, we will
assume fQ,Q̄ ≈ f 0

Q,Q̄. Let us proceed for the FD distribution
of the NJL model, but the same steps can be performed for the
modified distribution of the PNJL and EPNJL models if we
follow the Appendix, given in Sec. VI B. We can write the FD
distribution in covariant form

f 0
Q,Q̄ = 1

/{
exp

(
pμuμ ∓ μ

T

)
+ 1

}
, (45)

where pμ is the particle quantity (four-momentum) and
uμ, T , and μ are fluid quantities, which depend on space and

time. So Eq. (44) will get the modified form,

1

E
pμ∂μ f 0

Q,Q̄ + eQ,Q̄Fμν pν

E

∂ f 0
Q,Q̄

∂ pμ

= −
(

pμuμ

ET

)
1

τQ,Q̄

[
A(Q,Q̄)

μν Uμν
η + B(Q,Q̄)

μ Uμ
κ

+C(Q,Q̄)
μ Eμ + Z (Q,Q̄)(∂ρuρ )

]
f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)
. (46)

Now, the idea is to express the left-hand side of Eq. (46) in
terms of the tensors, sitting on the right-hand side so that we
can equate their coefficients on both sides and get the expres-
sions of Aμν, Bμ, Cμ, and Z . The first term on the left-hand
side in Eq. (46) can be expressed in terms of Uμν

η , Uμ
κ , and

∂ρuρ [28,53,55], whereas the second term on the left-hand side
in Eq. (46) can be expressed in terms of Eμ ≡ F 0μ [56,57,62],
and then one can find

A(Q,Q̄)
μν = τQ,Q̄

pμ pν

E
,

B(Q,Q̄)
μ = τQ,Q̄

βpμ

E
(E ∓ h), (47)

C(Q,Q̄)
μ = τQ,Q̄

eQ,Q̄ pμ

E

and

Z (Q,Q̄) = τQ,Q̄
1

3E

[
p2 − 3c2

s

(
E2 − T 2

dM2
Q

dT 2

)]
,

where bulk viscosity component Z (Q,Q̄) is obtained for μ =
0, but components of shear viscosity (A(Q,Q̄)

μν ) and electrical

conductivity (C(Q,Q̄)
μ ) can be used for both μ = 0 and μ 
= 0

(just by changing the distribution function). The component of
thermal conductivity B(Q,Q̄)

μ is relevant for μ 
= 0 as it carries
the quantity-enthpy per particle h, which is diverged at μ =
0. The detailed calculation of the above outcome is given in
Appendix 1.

Now, using Eqs. (47) in Eqs. (41) and (40) and then in
Eqs. (35), (36), (38), and (39), we get

πμν = 2NF Nc

{
1

2

(
�μ

σ �ν
ρ + �μ

ρ �ν
σ

) − 1

3
�μν

σρ

}∫
d3 p

(2π )3

(
pσ pρ

E

)
β

(
pα pβ

E

){
τQ f 0

Q

(
1 − f 0

Q

) + τQ̄ f 0
Q̄

(
1 − f 0

Q̄

)}Uη

αβ, (48)

� = 2NF Nc

∫
d3 p

(2π )3

β

9E2

[
p2 − 3c2

s

(
E2 − T 2

dM2
Q

dT 2

)]2{
τQ f 0

Q

(
1 − f 0

Q

) + τQ̄ f 0
Q̄

(
1 − f 0

Q̄

)}
(∂ρuρ ), (49)

qμ = 2NF Nc

∫
d3 p

(2π )3

(
pμ

E

)
β2

(
pν

E

){
τQ(E − h)2 f 0

Q

(
1 − f 0

Q

) + τQ̄(E + h)2 f 0
Q̄

(
1 − f 0

Q̄

)}Uκ
ν , (50)

and

Jμ = 2Nc

∑
Q=u,d

∫
d3 p

(2π )3

(
pμ

E

)
β

(
pν

E

){
e2

QτQ f 0
Q

(
1 − f 0

Q

) + e2
Q̄τQ̄ f 0

Q̄

(
1 − f 0

Q̄

)}
Eν . (51)
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Now, if we compare Eqs. (48)–(51) with Eqs. (29)–(32), then we can identify the final expressions of transport coefficients as

η = 2NF Ncβ

15

∫
d3 p

(2π )3

(
p2

E

)2

{τQ fQ(1 − fQ) + τQ̄ fQ̄(1 − fQ̄)}, (52)

ζ = 2NF Ncβ

9

∫
d3 p

(2π )3

1

E2

[
p2 − 3c2

s

(
E2 − MQT

dMQ

dT

)]2

{τQ fQ(1 − fQ) + τQ̄ fQ̄(1 − fQ̄)}, (53)

κ = 2NF Ncβ
2

3

∫
d3 p

(2π )3

( p
E

)2
{τQ(E − h)2 fQ(1 − fQ) + τQ̄(E + h)2 fQ̄(1 − fQ̄)}, (54)

and

σ =
(

2Ncβ

3

)(
5e2

9

) ∫
d3 p

(2π )3

(
p
E

)2

{τQ fQ(1 − fQ) + τQ̄ fQ̄(1 − fQ̄)}. (55)

Here, the speed of sound is c2
s = s

T ( ds
dT )V

. To simplify the nota-

tion, we have put fQ,Q̄ in the last expressions instead of f 0
Q,Q̄.

We will consider fQ,Q̄ as an equilibrium distribution function
for the last expressions and all other sections and subsections.
The FD distribution will be taken as the equilibrium distri-
bution for the NJL model, whereas the modified distribution,
given in Eq. (9), will be considered as the equilibrium dis-
tribution for the PNJL or EPNJL models. This replacement
calculation for transport coefficients can be found in Ref. [30].
Here also we have addressed the same in Appendix 2.

A. Causal aspects

Now, the above diffusion relations, Eqs. (29), (31), and
(32) do not carry any time information, they are instantaneous
relations and, therefore, violate the causality. Among the huge
number of references on it, readers can follow Refs. [61,64–
69] for causal aspects in viscosity, thermal conductivity, and
electrical conductivity. Here, we will go through causal as-
pects in shear viscosity estimation only.

To understand the acausality problem of the Navier-Stokes
equation, if we can consider a very small perturbation in en-
ergy density ε → ε + δε and fluid velocity uμ → uμ + δuμ,
then we will get a dispersion relation of diffusion Eq. (29) as
[64]

ω = η

ε + p
k2, (56)

where k is the wave vector. Hence, we can get diffusion speed,

vT (k) = dω

dk
= 2

η

ε + P
k, (57)

which means diffusion speed can be infinite (by crossing the
speed of light) as k tends to infinity. The Navier-Stokes equa-
tion (29) is actually derived from first-order thermodynamics.
But if we consider entropy density up to second order, then
we can obtain causal hydrodynamics equations ([64,65,70]),

πμν = η
(
Dμuν + Dνuμ − 2

3�μνDαuα + πμνT D(β2/T )

−2β2Dπμν − β2π
μν∂αuα

)
, (58)

which is the causal replacement of Eq. (29). Realizing the new
coefficient β2 as β2 = τπ

2η
, where τπ is defined as the shear

relaxation time, we can get the dispersion relation for Eq. (58)
as [64]

ω − i
η

ε + p

k2

1 + iωτπ

= 0. (59)

Then the diffusion speed at very large k becomes

vmax
T ≡ lim

k→∞

√
η

(ε + P)τπ

. (60)

Here, the subscript T stands for transverse velocity. The dif-
fusion speed will not be greater than the speed of light if

τπ � η

ε + P
, (61)

which is observed for all known fluids. One can recover the
instantaneous Eq. (29) by using τπ = 0. This fact will be well
explored in Sec. IV B with different extensions of the NJL
model.

IV. RESULTS

A. μ = 0 case

In Sec. II, we have discussed the formalism of different
extension components of NJL models such as: (a) vector in-
teraction (Sec. II A), (b) PNJL (Sec. II B), and (c) EPNJL
(Sec. II C). The present article is intended to investigate the
comparative role of these different extensions of NJL models
on transport coefficients of quark matter where we will dis-
cuss the results for the μ = 0 case in this subsection. Before
that, let us see the thermodynamical quantity, such as entropy
density, which will be required to measure the fluid property
of quark matter. The governing expression is Eq. (18). Fig-
ure 3 shows the T dependence of (normalized) entropy density
where a straight horizontal line (black solid line) denotes its
massless value (s ≈ 9.2T 3), commonly known as the Stefan-
Boltzmann (SB) limit. Now, the interaction reduces that value
as shown by the dotted red, dashed-dot blue, and dashed green
lines in Fig. 3, which are obtained from the NJL, EPNJL, and
PNJL models, respectively. Through these different extended
effective QCD models, interaction is mainly mapped through
T -dependent masses M(T ), shown earlier in Fig. 2. Since the
thermodynamical phase-space part of s is mainly controlled
by M(T ), one can mark a similar kind of transition pattern
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FIG. 3. Normalized entropy density s/T 3 vs temperature T for
massive quarks based on the NJL (dotted line), the EPNJL (dashed-
dot line), and the PNJL (dashed line) models. As limiting cases we
have also shown plots for massless (horizontal solid black line) and
massive (black solid line) quarks using the standard FD distribution
function. For massive quarks we used confinement mass, which is
calculated to be 326 MeV.

between M(T ) and s(T ). High-T entropy density s of the
PNJL and EPNJL models is suppressed from the SB limits
because the FD distributions of the NJL model are replaced
by their respective modified Polyakov loop distribution. We
have also added a curve for constant confinement mass M =
0.326 GeV, shown by the black solid line, drawn using the
standard Fermi-Dirac distribution function. It is included to
demonstrate that the effective models recover this limiting
value at low temperatures. Thus, all the models (NJL, PNJL,
and EPNJL) basically reproduce or approach the massive and
massless limits at T → 0 and T → ∞, respectively.

Next, we come to the transport coefficients estimations
from Eqs. (52), (54), (55), and (53). If we note the expressions
of transport coefficients in Eqs. (52), (55), (54), and (53)
then we can identify two parts, carrying the temperature- (T )
and chemical potential- (μ) dependent information. One is
the relaxation time of the medium constituent, and another
is the thermodynamical part, influenced by its Fermi-Dirac-
modified distribution function as well as the (T , μ-) dependent
mass. At μ = 0, shear viscosity η, bulk viscosity ζ , and
electrical conductivity σ are relevant transport coefficients as
thermal conductivity κ is diverged and not well defined at
μ = 0. Hence, to zoom in the thermodynamical phase-space
part of η, σ , and ζ , we have plotted η/(τT 4), σ/(τT 2), and
ζ/(τT 4) vs T in Figs. 4(a)–4(c) respectively. Interestingly,
we can find a similar kind of pattern in η/(τT 4), σ/(τT 2)
as we have found for s/T 3. It is because all are basically
mapping approximately similar kinds of (normalized) thermo-
dynamical phase-space components. Therefore, according to
their rapid changing point on the temperature axis, different
extended models follow the same ranking. NJL melts first
at low T , then EPNJL and then PNJL at relatively high T .
Bulk viscosity in Fig. 4(c) shows peaks near the transition
temperatures of the respective models as expected [19]. There
will be two sources for which the bulk viscosity contribution
becomes maximum near the transition temperature. The first

(a)

(b)

(c)

FIG. 4. Normalized (a) shear viscosity η/(τT 4), (b) electrical
conductivity σ/(τT 2), and (c) bulk viscosity ζ/(τT 4) vs temperature
T for massive quarks based on the NJL (dotted line), the EPNJL
(dash-dotted line), and the PNJL (dashed line) models. As limiting
cases we have also shown plots for massless (horizontal solid black
line) and massive (black solid line) quarks using the standard FD
distribution function. For massive quarks we used confinement mass,
which is calculated to be 326 MeV.

and dominant source is the interaction measure of thermody-
namics ε − 3P, which is vanishing in the massless medium-
or high-temperature QCD media but becomes nonzero in the
intermediate- and low-temperature regions. The LQCD as
well as the effective QCD model calculations, such as NJL
exhibit the maximum interaction measure near the transi-
tion temperature. Being proportional with interaction measure
[ζ ∝ (ε − 3P)], bulk viscosity displays a similar kind of
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TABLE I. Locations of temperatures (MeV) where different
temperature-dependent quantities—quark condensate �, Polyakov
loop �, s/T 3, η/(τT 4), σ/(τT 2) show their change and transition
(for the μ = 0 case).

Models � � s/T 3 η/(τT 4) σ/(τT 2)

NJL 177 Two-peak 165 172
PNJL 233 228 230 230 232
EPNJL 185 183 184 183 185

peak structure near the transition temperature. This interaction
measure can alternatively be understood as ( 1

3 − c2
s ), which

basically interprets the deviation of the speed of the sound
square from its massless value of 1/3. This ζ ∝ ( 1

3 − c2
s ) ∝

(ε − 3P) relation is, thus, the main source for exhibiting the
peak pattern of bulk viscosity, which alternatively reveals
the conformal breaking structure of the QCD medium [19].
Another source is the quantity dM

dT , which shows the peak
structure near chiral transition temperature T� . Sitting in the
expression of bulk viscosity, dM

dT and ( 1
3 − c2

s ) become two
sources to amplify the peak structure.

At the end of Sec. II C, we have discussed quark conden-
sate �2 and Polyakov loop �, which change with T to map
the chiral and confinement-deconfinement phase transitions,
respectively. The order parameter (�) can be estimated from
the NJL model, whereas the PNJL and EPNJL can describe
both order parameters (�, �). The transition temperatures
T� and T� are basically the inflection points, which are cal-
culated by taking the derivative of the corresponding order
parameter with respect to T and then finding the extremum
for that. The quantities s/T 3, η/(τT 4), and σ/(τT 2) are quite
interesting as they contain the collective effect of both order
parameters. Table I documents the values of these tempera-
tures for order parameters—quark condensate �, Polyakov
loop �, and as well as for the quantities s/T 3, η/(τT 4),
and σ/(τT 2). The temperatures for the transport coefficients
and the entropy density have been estimated in the same
fashion as it is performed for the order parameters. From the
expressions of s/T 3, η/(τT 4), and σ/(τT 2), written above,
one notes that �(T ) enters through M(T ), whereas �(T )
enters through both M(T ) and thermal distribution functions.
Although two order parameters enter in the expressions of
s/T 3, η/(τT 4), and σ/(τT 2) in the same ways, but their
momentum-dependent integrands are different and, therefore,
they are not showing the same temperatures as evident from
Table I. The differences are more evident for the NJL model;
as one introduces the background gauge field in the PNJL
or EPNJL model the differences almost vanish and the tem-
peratures calculated from these quantities are almost similar
to those calculated from the order parameters. Only s/T 3

in the NJL model exhibits the two-peak structure instead of
one peak, which is a model-parameter-dependent fact. So,
ignoring this fact we can roughly conclude that the transition

2Not to be confused with electrical conductivity.

(a)

(b)

FIG. 5. (a) Temperature dependence of the relaxation time in the
NJL, PNJL, and EPNJL models for which we get η/s = 1/4π . For
comparison we have also given plots for massless and massive (with
confinement mass, 326 MeV) quarks using standard FD statistics.
(b) Corresponding maximum values of diffusion speed vT .

points of s/T 3, η/(τT 4), and σ/(τT 2) are close to average
values of T� and T� for the PNJL and EPNJL models.

B. Perfect fluid and causal aspects

We have normalized information of τ during plotting shear
viscosity in Fig. 4, but it can also be a temperature-dependent
quantity if one attempts to calculate it microscopically, and
τ (T ) can modify the T -dependent profile of shear viscosity
as well as other transport coefficients. From the experimental
side, η/s of the quark matter created at RHIC is found to be
very close to its lower bound 1

4π
, based on viscous hydro-

dynamic model analysis of elliptic flow [13]. We may get a
rough idea about the values of τ for which our estimated η/s
will be close to the lower bound. This restriction also gives
us a temperature-dependent τ instead of its constant value.
For a massless spin-1/2 particle with zero chemical potential,
τ = 5/4πT gives us η/s = 1/4π . This is shown as the black
line in Fig. 5. Imposing the same restriction of η/s = 1/4π

in the NJL, PNJL, and EPNJL model calculations, we get
required relaxation time τ (T ), displayed by dotted, dashed,
and dashed-dot lines in Fig. 5. Let us analyze these curves.
We know that (approximately) the massless quark can only
be expected at very high temperatures, but as we decrease
the temperature, the nonzero quark condensate will form for
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which constituent quark mass also grows up. Mapping this
fact via the gap equation in the NJL model, the thermody-
namical part of η becomes suppressed in the low-temperature
domain with respect to the massless case. This lower value of
the thermodynamical part can be compensated by little higher
values of τ for getting the same values of η/s (= 1/4π ) as
obtained in the massless case. Therefore, the red dotted line
(τ of the NJL model) is quite larger than the black solid
line (τ of the massless case) in the low-temperature domain.
Above the transition temperature, both curves are merged as
the condensate melts down completely. When we transit to
the PNJL model, the confinement picture has been taken into
consideration (statistically) via the modified thermal distribu-
tion function, which has lower statistical weight than the FD
distribution. So, with respect to the NJL case, PNJL has lower
strength for the thermodynamical part of η, so for getting
KSS3 limits of η/s, it needs little larger values of τ , shown
by the green dashed line in Fig. 5. The EPNJL curve sits in
between the NJL and the PNJL curves as expected from their
M(T ) pattern in Fig. 2.

In Sec. IV B, we have discussed the causal aspects of dis-
sipation phenomena. Dissipation current and forces are linked
instantaneously by Eqs. (29), (31), and (32), which means
they are communicated via infinite diffusion velocity (vT →
∞) and, hence, causally disconnected. Through Eq. (58), the
causal connection between the shear-channel force and the
current can be established by introducing finite shear relax-
ation time τπ . The relaxation time τ , discussed earlier, can
be called the collisional relaxation time to distinguish it from
shear relaxation time τπ . To zoom in their differences, one
can think of τ as a microscopic timescale, which is originated
from microscopic collision, whereas τπ can be considered as
a macroscopic timescale, required to satisfy causality. In prac-
tice, we take τπ ≈ τ but actually they are different timescales,
which is pointed out in Ref. [61]. A rigorous relation in RTA
[66] can connect them by relation,

τπ = τ

(
uμkμ

T

)λ

= τ

(
E

T

)λ

(in the fluid rest frame) , (62)

where λ is the unknown parameter. So the inequality, given in
Eq. (61), will get a rigorous form

τπ >
η

(ε + P)
,

τ

(
E

T

)λ

>
βπτ

(ε + P)
, (63)

⇒ vmax
T =

√
βπ

(ε + P)

(
T

E

)λ

< 1,

3KSS (named after the scientists who discovered it, Kovtun-Son-
Starinets) is a lower bound on the fluidity of the medium which is the
ratio of shear viscosity to entropy density and is found to be equals
to 1/4π .

where η = βπτ is assumed. In general, we consider λ = 0,
which means τπ = τ , i.e., the inequality becomes

vmax
T =

√
βπ

(ε + P)
< 1. (64)

The maximum value of diffusion speed, from Eq. (60), can
be written for the massless case as

vmax
T ≡

√
τ

5τπ

, (65)

since η = τ (ε + P)/5 for the massless fermionic-bosonic
medium. Now, one can easily recognize that τπ → 0 in
Eq. (60) or (65) give us vmax

T → ∞. Hence, to mention rela-
tivistic inequality vmax

T � 1, the massless matter should follow
the inequality:

τπ � τ

5
. (66)

This lower limit of τπ (= τ/5) is drawn by the long dashed
line in Fig. 5(a). So, in principle, τπ can be lower or greater
than τ , but we can bound it within the inequality: τ

5 � τπ �
10 fm where the upper limit has been fixed from the phe-
nomenological side by assuming the 10-fm lifetime of the
medium (shown by the straight horizontal long dashed line).
For the τπ ≈ τ approximation, the vmax

T = 1/
√

5 massless
case and vmax

T (T ) for the NJL, PNJL, and EPNJL models
are drawn in Fig. 5(b) where all curves follow vmax

T � 1/
√

5
since we assume τπ ≈ τ . However, we should accept that the
general form of vmax

T (at μ = 0),

vmax
T =

√√√√(
T

E

)λ
[

β

15

∫ d3 p
(2π )3

( p2

E

)2
fQ(1 − fQ)∫ d3 p

(2π )3

( p2

3E + E
)

fQ

]
, (67)

whose massless limit should be

lim
m→0

=
√(

1

3

)λ[1

5

]
, (68)

where roughly the average energy can be considered as E ≈
3T . Here, we have generated our numerical values for λ = 0,
i.e., for τπ = τ instead of going for any general form. At high
T , all are merged to a massless limit as expected, and at low
T , the values of vmax

T (T ) are quite lower. It means that at
the low-T domain, τπ is quite larger, i.e., quite a safer zone
for causal aspects. The inequality τ

5 � τπ � 10 fm is shown
by the arrow in Fig. 5(a) where the corresponding approxi-
mated values of vmax

T are displayed in different zones. Here
also, we have put massless (M = 0) and confinement mass
(M = 0.300-GeV) curves (two solid black lines) for τπ = τ

in Figs. 5(a) and 5(b).

C. Finite μ results

Now, let us move to finite μ results, where we can ex-
plore the estimation of thermal conductivity κ , which cannot
be studied in the μ = 0 picture. However, thermal diffusion
coefficients can be estimated at μ = 0 (see Ref. [61]). We
also explore the effect of vector interaction, the incorpora-
tion of which becomes almost indispensable at nonzero μ.
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(a)

(b)

(c)

FIG. 6. Finite density plots at different values of GV for (a) nor-
malized shear viscosity, (b) thermal conductivity, and (c) heat
function as a function of T in the NJL model.

In Fig. 6(a), we have plotted η/(τT 4) against the T axis for
μ = 0.150 GeV. For the massless case, instead of a horizontal
line as obtained in Fig. 4(a), we are getting a decreasing func-
tion of temperature, shown by the black solid line in Fig. 6(a).
To understand the blowing trend in the low-temperature range,
let us see an analytic form of T dependence for finite μ by
taking some rough assumption, described below.

For μ = 0, the massless results of Eq. (52) are

η

τT 4
=

(
7

8

)(
π4

90

)(
4(4NF Nc)

5π2

)
≈ 1.84, (69)

which can be approximated as

η

τT 4
=

(
4(4NF Nc)

5π2

)
≈ 1.94 , (70)

if we take the Maxwell-Boltzmann distribution in place of
the Fermi-Dirac distribution of the quark. Now, for μ 
= 0,
Eq. (70) can get a simplified form

η ≈ 2Nf Nc
β

15

∫
d3 p

(2π )3
τ

(
p2

E

)2

[e−β(E−μ)+e−β(E+μ)]

= 2Nf Nc
β

15

∫
d3 p

(2π )3
τ p2e−βE [eβμ + e−βμ]

= 2NF Nc
4τT 4

5π2
[eβμ + e−βμ]

⇒ η

τT 4
= 1.94 cosh(μ/T ), (71)

which can explain the blowing up nature of the black solid
line in Fig. 6(a) when we decrease the temperature. Now if we
revisit again Fig. 4(a), then we see that transition from m = 0
to nonzero M(T ) provides a large suppression at the low-T
domain, which is realized as the effect of the nonperturbative
QCD interaction. Hence, in the μ 
= 0 picture, the transi-
tion of m = 0 → M(T ) makes the blowing up (black solid)
curve be transformed to the (red dotted) suppressed curve.
Due to this turning, we will get a peaklike behavior around
T = 160 MeV. Now we know that with the increase in μ,
the transition temperature (T�) decreases. Similarly, transition
points for transport coefficients, such as η/(τT 4), σ/(τT 2)
as well as thermodynamical quantities, are also noted to be
shifted towards lower temperatures as μ increases.

Now let us come to the vector interaction picture of the NJL
model. As we introduce the vector interaction the transition
temperature gets modified for a given chemical potential—it
starts increasing with the strength of GV , which basically
couples to the chemical potential through the relation μ̃ =
μ − GV n, μ̃ being the effective chemical potential. It means
that if we increase the value of GV the value of the effective
chemical potential decreases, thus, the transition temperature
increases. A similar transition in the peaklike appearance of
η/(τT 4) is observed, and it shifts towards higher T as GV

is increased. Apart from the transition points, Fig. 6(a) also
shows a decreasing profile for increasing GV . The reason for
the reduction of the transport coefficient with vector inter-
action can be realized as follows. We have already seen in
Sec. II A and in Fig. 1, the constituent mass M is slightly
enhanced with GV near the transition temperature. On the
other hand, the effective chemical potential μ̃ decreases with
GV . These increasing M’s and decreasing μ̃’s make the ther-
modynamical phase-space part of η reduce.

Similar to shear viscosity, the electrical conductivity fol-
lows the same pattern (not shown), but totally different
variation can be found for thermal conductivity as shown in
Fig. 6(b). For thermal conductivity, heat function h, or more
precisely enthalpy density per net baryon-quark density plays
an important role. Its temperature dependence is shown in
Fig. 6(c) where we see that h increases with GV at high tem-
peratures, which dominantly appear in κ . Now, the reason for
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increasing h with GV can be understood as follows. Increasing
GV makes μ̃ decrease, and so, ρ decreases. Hence, h ∝ 1/ρ

increases.

V. SUMMARY

The present article has attempted to explore the effect of
different extended components of mean-field models on trans-
port coefficient calculations and made a comparison among
them. First we start with the NJL model which can map chiral
phase transition of the QCD medium. Here, the quark conden-
sate melts down near the chiral transition temperature, around
which normalized transport coefficients and the thermody-
namical quantity, such as entropy density, also face maximum
changes. Whereas, bulk viscosity is showing peak structure
near the transition temperaturelike interaction measure of
QCD thermodynamics, observed in LQCD and effective QCD
model calculations. Hence, they may be roughly considered
as alternative quantities for mapping chiral phase transition.
Then to mimic QCD further closely we incorporate the de-
confinement dynamics along with the chiral one by taking
into account the background gauge field through the PNJL
model. Along with the chiral transition temperature, one can
separately identify the deconfinement temperature where the
Polyakov loop faces a rapid change. The transport coefficients
along with thermodynamical quantities will exhibit quite an
interesting profile as they contain both chiral and decon-
finement dynamics. Hence, they show their signals, such as
maximum change (shear viscosity and electrical conductivity)
or maximum value (bulk viscosity) around an intermediate
temperature between chiral and deconfinement transition tem-
peratures. After the PNJL model, we have considered the
EPNJL model, which incorporates a strong entanglement be-
tween the chiral and the deconfinement dynamics to enforce
the coincidence of chiral and deconfinement transition tem-
peratures within the range provided by the LQCD. Due to
this merging of two transition temperatures, we note that
order parameters (the quark condensate and the Polyakov
loop), normalized-thermodynamical quantities, such as en-
tropy density and normalized-transport coefficients, such as
shear viscosity and electrical conductivity, are showing their
maximum changes or transitions near the same temperature.
Bulk viscosity will show a peak at that temperature. The
massless case and the NJL model calculations of transport
coefficients are coincided at high temperatures, but the PNJL
and EPNJL results still remain suppressed at high tempera-
tures due to the transformation of Fermi-Dirac to the modified
distribution function.

After exploring the thermodynamical phase-space compo-
nents of transport coefficients, we have tried to estimate the
relaxation time of quarks from the phenomenological under-
standing, which expects that the shear viscosity to the entropy
density ratio will be very close to the KSS bound. Imposing
that phenomenological expectation, required relaxation time
from the massless case to the NJL, to the EPNJL to the PNJL
models become larger at low temperatures, but they merge at

high temperatures. Defining a shear relaxation time to satisfy
the causal aspect in the fluid, we have shown its possible range
for the RHIC-LHC matter. In normal practice, the (macro-
scopic) shear relaxation time is considered to be equal with
the (microscopic) particle relaxation time, but, in reality, the
former timescale might be larger or smaller than the latter one.
It is causality, which dictates that the shear diffusion speed in
the medium should not exceed the speed of light for which
we get the lower limit of the shear relaxation time. On the
other hand, the medium lifetime might be considered as the
upper limit of the shear relaxation time. Since shear diffusion
speed from the massless case to model calculations faces large
suppression at low temperatures, therefore, we can say that the
nonperturbative low-temperature zone of QCD is causally the
more safer zone.

At the end, we have studied the finite quark chemical po-
tential zone of quark matter. Similar features of the decreasing
transition temperature with the increasing chemical potential
is reflected through the appropriate shift of a peaklike appear-
ance of normalized transport coefficients to a lower value of
temperature. The role of vector interaction in the NJL model
and estimation of thermal conductivity at the finite quark
chemical potential are also investigated.
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APPENDIX

1. Left-hand side of relative biological effectiveness

Here, we will address the detail calculation on the left-hand
side of the relative biological effectiveness as given in Eq. (46)
and see how it can be converted to different (thermodynam-
ical) gradient tensors, associated with shear viscosity, bulk
viscosity, thermal conductivity, and electrical conductivity.
The reader can find the corresponding calculations of shear
viscosity, the bulk viscosity parts from Refs. [28,53,55], the
thermal conductivity part from Refs. [28,55], and the electri-
cal conductivity part from Refs. [56,57] separately, but here
we present them in a combined form. The FD distribution
function, given in Eq. (45), depends on macroscopic quantities
or fluid-element quantities—temperature T , chemical poten-
tial μ, and four-velocity uμ, which can depend on x in the
local equilibrium picture. It also depends on the microscopic
quantity or the particle quantity—four-momentum pμ, which
will not have any x dependence. So Eq. (45) can be rewritten
in the local equilibrium picture as

f 0
Q,Q̄ = 1

/{
exp

(
pνuν (x) ∓ μ(x)

T (x)

)
+ 1

}
. (A1)
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Using Eq. (A1) in the first term on the left-hand side of Eq. (46), we get

pμ

E
∂μ f 0

Q,Q̄ = −
exp

( pνuν (x)∓μ(x)
T (x)

)
{
exp

( pνuν (x)∓μ(x)
T (x)

) + 1
}2

[
pμ

E
∂μ

{
pνuν (x) ∓ μ(x)

T (x)

}]

= − f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)[ pμ pν

ET (x)
∂μuν (x) − pμ pνuν

ET 2(x)
∂μT (x) ∓ pμ

E
∂μ

(
μ(x)

T (x)

)]
,

= − f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)[ pμ pν

ET

{
∂μuν (x) − uν∂μT (x)

T

}
+ 2

ET

dM2
Q

dT
uμ∂μT ∓ pμ

E
∂μ

(
μ(x)

T (x)

)]
(A2)

Our goal will be to express Eq. (A2) in terms of thermodynamical tensors Uμν
η , ∂ρuρ , and Uμν

κ , connected with η, ζ , and κ .
Using the identity [53],

∂μT

T
= uα∂αuμ − c2

s uμ∂αuα, (A3)

with the square of the speed of sound c2
s = ( ∂P

∂ε
), we can get

pμ

E
∂μ f 0

Q,Q̄ = − f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)[ pμ pν

2ET

{
Dμuν + Dνuμ − 2

3
�μν∂αuα

}

− 1

3ET

{
pμ pν

(
�μν + 3c2

s uμuν

) − 3c2
s T 2

dM2
Q

dT

}
(∂ρuρ ) ∓ pμ

E
∂μ

(
μ(x)

T (x)

)]
. (A4)

Using Eqs. (A6) and (46), we get

− f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)[ pμ pν

2ET
Uμν

η − 1

3ET

{
pμ pν

(
�μν + 3c2

s uμuν

) − 3c2
s T 2

dM2
Q

dT

}
(∂ρuρ )

]

= −
(

p · u

ET

)
1

τQ,Q̄

[
A(Q,Q̄)

μν Uμν
η + Z (Q,Q̄)(∂ρuρ )

]
f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)
. (A5)

Now, from the above equation comparing the coefficients of Uμν
η and ∂ρuρ on both sides [53],

⇒ A(Q,Q̄)
μν = τQ,Q̄

pμ pν

2E
(using p · u = E ) (A6)

and

Z (Q,Q̄) = −τQ,Q̄

3E

{
pμ pν

(
�μν + 3c2

s uμuν

) − 3c2
s T 2

dM2
Q

dT

}

= τQ,Q̄
1

3E

[
p2 − 3c2

s

(
E2 − T 2

dM2
Q

dT 2

)]
(in the local rest frame). (A7)

The solution (Eq. A7) is not unique [53]. One can make a shift Z (Q,Q̄) → Z ′(Q,Q̄) = Z (Q,Q̄) − a − bE , which can also be true.
The unknown constants a, b are associated with particle number and energy conservation, respectively. Here we calculate bulk
viscosity for the zero chemical potential (μ = 0), thus, a = 0. Now, if we have a particular solution of Eq. (A7) as Z (Q,Q̄)

par which

satisfies the Landau-Lifshitz condition (the fluid frame is at rest with energy flow) then Z (Q,Q̄) = Z (Q,Q̄)
par − bE . With the help of

the microscopic definition of thermodynamical quantities, such as entropy density (s), heat capacity cV , and Eq. (49), we can
find the bulk pressure as

� = 2NF Ncβ

∫
d3 p

(2π )3

Z (Q,Q̄)
par

3E

[
p2 − 3c2

s

(
E2 − T 2

dM2
Q

dT 2

)]{
f 0
Q

(
1 − f 0

Q

) + f 0
Q̄

(
1 − f 0

Q̄

)}
(∂ρuρ ), (A8)

and

Z (Q,Q̄)
par = τQ,Q̄

1

3E

[
p2 − 3c2

s

(
E2 − T 2

dM2
Q

dT 2

)]
. (A9)

Here, we can express the square of the speed of sound at μ = 0 as c2
s = s

cV
= s

T ( ds
dT )V

.
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Now, Eq. (A2) also carries Uμ
κ , related to κ , which can be constructed by combining the last two terms of Eq. (A2),

− pμ(p · u)∂μT (x)

ET 2
∓ pμ

E
∂μ

(
μ(x)

T (x)

)
= pμ

E

{
− (p · u)∂μT (x)

T 2
∓ ∂μ

(
μ(x)

T (x)

)}

≡ pi

E

{
−E ∂iT (x)

T 2
∓ ∂i

(
μ(x)

T (x)

)}
(using p · u = E and pμ ≡ pi )

= pi

E

{
E

h
∓ 1

}
∂i

(
μ(x)

T (x)

)[
Eq. (33) with ∂iP = 0 is − ∂iT

T 2
= 1

h
∂i(μ/T )

]
. (A10)

Using Eq. (A10) in Eq. (A2) and then in Eq. (46), we get

− f 0
Q,Q̄

(
1 − f 0

Q,Q̄

) pi

E

{
E

h
∓ 1

}
∂i

(
μ(x)

T (x)

)
+ · · · = −

(
p · u

ET

)
1

τQ,Q̄

[
Bi T 2

h
∂i

(
μ(x)

T (x)

)
+ · · ·

]
f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)
⇒ Bi

(Q,Q̄) = τQ,Q̄
pi

ET
(E ∓ h) (using p · u = E )

⇒ Bμ

(Q,Q̄)
= τQ,Q̄

pμ

ET
(E ∓ h). (A11)

On the other hand, the second term on the left-hand side of Eq. (46) can be simplified through the four-vector to the three-
vector and again to the four-vector components (i.e., the μ → i → μ index) as

eQ,Q̄Fμν pν

E

∂ f 0
Q,Q̄

∂ pμ
≡ eQ,Q̄E i

∂ f 0
Q,Q̄

∂ pi
= − f 0

Q,Q̄

(
1 − f 0

Q,Q̄

)[
eQ,Q̄E i ∂

∂ pi

(
E

T

)]

= − f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)[
eQ,Q̄

�E · �p
ET

]
= − f 0

Q,Q̄

(
1 − f 0

Q,Q̄

)[
eQ,Q̄

Eμ pμ

ET

]
. (A12)

Since in electromagnetic-field tensor Fμν , there are only electric fields (as no external magnetic field is considered in the present
paper), so Fμν pν

E = F 0μ + F i j p j

E + · · · = F 0μ = Eμ is used in the above calculations.
Using Eq. (A12) in Eq. (A2) and then in Eq. (46), we get

− f 0
Q,Q̄

(
1 − f 0

Q,Q̄

)[
eQ,Q̄

Eμ pμ

ET

]
+ · · · = −

(
p · u

ET

)
1

τQ,Q̄

[
C(Q,Q̄)

μ Eμ + · · · ] f 0
Q,Q̄

(
1 − f 0

Q,Q̄

) ⇒ Cμ = τQ,Q̄

eQ,Q̄ pμ

E
. (A13)

2. PNJL-EPNJL distribution replacement

The modified distribution function, given in Eq. (9), can be realized as the color average of the FD distribution of the color
particle with the imaginary chemical potential [30]. Let us write down the FD distribution with the imaginary chemical potential
Qi in the local equilibrium picture as [71]

f i
Q,Q̄ = 1

/{
exp

(
pνuν (x) ∓ μ(x) ∓ Qi

T (x)

)
+ 1

}
, (A14)

where Qi = 2πT (+q, 0,−q) with dimensionless condensate variable q. The Polyakov loop variable can be expressed as

� = 1

3

∑
i

eiβQi = 1

3
{1 + 2 cos(2πq)} . (A15)

Let us rename the modified distribution function as f� and rewrite as

f �
Q,Q̄ = �e−β(E∓μ) + 2�̄e−2β(E∓μ) + e−3β(E∓μ)

1 + 3�e−β(E∓μ) + 3�̄e−2β(E∓μ) + e−3β(E∓μ)
= N

D
(say). (A16)

One can easily check the relation between f i
Q,Q̄ and f �

Q,Q̄ as

1

3

∑
i

f i
Q,Q̄ = 1

3

[
1

exp{(E ∓ μ ∓ i2πT q)/T } + 1
+ 1

exp{(E ∓ μ)/T } + 1
+ 1

exp{(E ∓ μ ± i2πT q)/T } + 1

]

= 1

3

[
e2β(E∓μ){1 + 2 cos(2πq)} + 2eβ(E∓μ){1 + 2 cos(2πq)} + 3

e3β(E∓μ) + e2β(E∓μ){1 + 2 cos(2πq)} + eβ(E∓μ){1 + 2 cos(2πq)} + 1

]

=
[

e2β(E∓μ)� + 2eβ(E∓μ)� + 1

e3β(E∓μ) + 3e2β(E∓μ)� + 3eβ(E∓μ)� + 1

]
[using Eq. (A15)]

= f �
Q,Q̄. (A17)
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FIG. 7. The ratio between phase-space integration with the ap-
proximated (excluding the extra term) and the exact (including the
extra term) vs T , whose values close to 1 reflect that one may go
with this approximation.

The transport coefficient calculations remain almost the same,
and only the terms, associated with the distribution, will have
to be recalculated. When we start our journey from the color
particle FD distribution f i

Q,Q̄ and its color average 1
3

∑
f i
Q,Q̄,

then their derivative with respect to E , pi, and x will have the
same anatomy as earlier, i.e.,

1

3

∑
i

∂ f i
Q,Q̄

∂E
= −β

1

3

∑
i

f i
Q,Q̄

(
1 − f i

Q,Q̄

)
,

1

3

∑
i

∂ f i
Q,Q̄

∂ pi
= −β

1

3

∑
i

(
pi

E

)
f i
Q,Q̄

(
1 − f i

Q,Q̄

)
, (A18)

1

3

∑
i

∂μ f i
Q,Q̄ = −1

3

∑
i

f i
Q,Q̄

(
1 − f i

Q,Q̄

)
∂μ

{
pνuν (x) ∓ μ(x)

T (x)

}
.

These relations indicate that the anatomy of Eqs. (40), (46),
and (A2) remains the same. Only the FD distribution is re-
placed by a FD distribution of color particles. Now we have
to transform the FD distribution of color particles f i

Q,Q̄ in

Eq. (A19) into the modified distribution function f �
Q,Q̄. We can

express the terms f i
Q,Q̄(1 − f i

Q,Q̄) as

−1

3

∑
i

f i
Q,Q̄

(
1 − f i

Q,Q̄

) = 1

3β

∑
i

∂ f i
Q,Q̄

∂E
= 1

β

∂ f �
Q,Q̄

∂E
= 1

β

(
D ∂N

∂E − N ∂D
∂E

)
D2

. (A19)

If we expand the above expression, we can get(
D ∂N

∂E − N ∂D
∂E

)
D2

= N

D

(
1 − N

D

)
+ {2D(�e−2β(E∓μ) + e−3β(E∓μ) ) − 2N2}/D2

= f �
Q,Q̄

(
1 − f �

Q,Q̄

) + 2e−2β(E∓μ)[(1 + e−2β(E∓μ) )�(1 − �) + e−β(E∓μ)(1 − �2)]/D2

≈ f �
Q,Q̄

(
1 − f �

Q,Q̄

)
. (A20)

The extra term in Eq. (A20) might be ignored with respect to the dominating term f �
Q,Q̄(1 − f �

Q,Q̄). For a numerical check,
Fig. 7 has shown the ratio between phase-space integration with approximated (excluding extra term) and exact (including extra
term), i.e.,

χapprox

χexact
=

∫
d3k

(2π )3

[
β f �

0

(
1 − f �

0

)]
∫

d3k
(2π )3

[ − 1
3

∑
i

∂ f i
Q,Q̄

∂E

] . (A21)

We note that the extra term roughly contributes up to 10%. So one may go safely for rough estimation of different transport

coefficients with the simplified phase-space factor [β f �
0 (1 − f �

0 )] instead of its complicated version [− 1
3

∑
i

∂ f i
Q,Q̄

∂E ] or
(D ∂N

∂E −N ∂D
∂E )

D2 .
We have shown here susceptibility-type quantity χ , which is basically attached with all transport coefficients, hence, this
approximation will be valid during estimation transport coefficients or any other quantities, which are proportionally connected
with susceptibility. Owing to this assumption, we have used the replacement identity,

−1

3

∑
i

f i
Q,Q̄

(
1 − f i

Q,Q̄

) ≈ − f �
Q,Q̄

(
1 − f �

Q,Q̄

)
, (A22)

during the calculation of different transport coefficients in the PNJL and EPNJL models.
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