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Quartic cumulant of baryon number in the presence of a QCD critical point

D. Mroczek
Illinois Center for Advanced Studies of the Universe, Department of Physics,

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

A. R. Nava Acuna
Department of Physics, University of Houston, Houston, Texas 77204, USA

J. Noronha-Hostler
Illinois Center for Advanced Studies of the Universe, Department of Physics,

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

P. Parotto *

Department of Physics, University of Wuppertal, Wuppertal D-42119, Germany

C. Ratti
Department of Physics, University of Houston, Houston, Texas 77204, USA

M. A. Stephanov
Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607, USA

(Received 8 September 2020; accepted 22 February 2021; published 4 March 2021)

In the context of the ongoing search for the QCD critical point at the Relativistic Heavy-Ion Collider, we
study the equation of state near the critical point in the temperature and baryon chemical potential plane. We use
the parametric representation introduced in earlier literature, which maps the universal three-dimensional Ising
equation of state onto the QCD phase diagram using several non-universal parameters. We focus on the quartic
cumulant of the baryon number, or baryon number susceptibility χB

4 , which can be accessed experimentally
via net-proton fluctuation kurtosis measurements. It was originally predicted, through universality arguments
based on the leading singular contribution, that χB

4 and net-proton kurtosis should show a specific nonmonotonic
behavior due to the critical point. In particular, when following the freeze-out curve on the phase diagram by
decreasing beam energy, the kurtosis is expected to dip, and then peak, when the beam energy scan passes close to
the critical point. We study the effects of the nonuniversal and thus far unknown parameters of the Ising-to-QCD
mapping on the behavior of χB

4 . We find that, while the peak remains a solid feature, the presence of the critical
point does not necessarily cause a dip in χB

4 on the freeze-out line below the transition temperature. The critical
point contribution to the dip appears only for a narrow set of mapping parameters, when subleading singular
terms are sufficiently suppressed.

DOI: 10.1103/PhysRevC.103.034901

I. INTRODUCTION

One of the current major thrusts of the nuclear physics
program is to map out the phase diagram of quantum chro-
modynamics (QCD) and specifically look for a critical point
in the transition from a hadron resonance gas into deconfined
plasma of quarks and gluons. Because the location of the QCD
critical point is yet unknown, searches are currently ongoing
across the relevant region of the QCD phase diagram. At high
temperatures and intermediate baryon chemical potentials,
relativistic heavy-ion collisions are able to scan the phase

*Corresponding author: parotto@uni-wuppertal.de

diagram by systematically decreasing the collision energy.
This is the motivation behind the second phase of the Beam
Energy Scan (BES-II) at the Relativistic Heavy-Ion Collider
(RHIC) (see, e.g., Ref. [1] for a recent review). At lower
temperatures and higher baryon chemical potentials, useful
information can be extracted from the study of neutron stars
and neutron star mergers. In fact, it appears that there may
even be significant overlap in the phase diagram pertaining to
the lowest beam energies in heavy-ion collisions and neutron
star mergers [2,3].

Lattice QCD calculations cannot be performed at finite
μB [4]; therefore, it is currently not possible to determine
the location of the critical point from first principles. Thus,
experimental searches for the critical point are central to
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determining its location [3,5]. The main strategy is based on
the search for certain nonmonotonic dependence of fluctua-
tions on an experimental variable, such as the collision energy√

s, as the critical region is traversed during the scan of the
QCD phase diagram [6–9]. The nonmonotonic behavior of
fluctuation measures is directly related to the divergence of
susceptibilities at the critical point. Therefore, susceptibilities
of conserved charges are of major interest for first princi-
ple lattice calculations (see, e.g., Ref. [10] for a review). In
the case of heavy-ion collisions, there are three conserved
charges: baryon number (B), strangeness (S), and electric
charge (Q), whereas in neutron star (mergers) only B and Q
are conserved, because the typical timescales are sufficiently
large for weak processes to become relevant.

Baryon number susceptibilities diverge at the critical point
[11], and are, therefore, the most promising observables in its
search. Since experiments measure multiplicities of charged
particles, the closest quantities to baryon number suscepti-
bilities, or cumulants, are the net-proton number cumulants,
which show similar critical behavior [8,12,13]. Electric charge
fluctuations contain a singular contribution from net-proton
fluctuations, but this effect is diluted by pions and therefore
it is expected to be milder [12]. Additionally, higher order
cumulants are the most sensitive to critical behavior because
they scale with higher powers of the correlation length [8,9]
in the vicinity of the critical point. However, experimental
measurements currently are only available up to the fourth
cumulant [5,14] at large baryon densities with reasonable
error bars.1

At μB = 0, it is possible to calculate the higher order BSQ
susceptibilities on the lattice and then use them to reconstruct
the lower order ones at small finite baryon densities, although
with large numerical uncertainties [10,16,17]. Alternatively,
effective models exist that can reproduce lattice QCD results
and do include a critical point at finite baryon density [18].

Another approach is to make use of the fact that the QCD
critical point is expected to be in the same universality class
as the three-dimensional (3D) Ising model [19–24]. Using
this approach, a specific nonmonotonic behavior of the fourth
cumulant of net-proton number as a function of

√
s was pro-

posed as a potential critical point signature in Ref. [9]. This
prediction has sparked interest in the community, especially
in light of the BES-II and its Fixed Target Program [25,26],
which is intended to provide larger statistics and reach lower
collision energies.

The baryon number susceptibility, which has a similar
behavior, can be obtained from the equation of state by dif-
ferentiating the pressure at fixed temperature:

χB
4 (T, μB) =

(
∂4 p

∂μ4
B

)
T

. (1)

Due to the mapping between the QCD and the 3D Ising
model critical equations of state, the leading divergence at the
critical point comes from the fourth derivative of the Gibbs

1The data for the sixth cumulant [15] are also available but with
large statistical error bars and only at vanishing baryon densities.

free energy G, i.e., the third derivative of the critical order
parameter (the magnetization M) with respect to the ordering
(magnetic) field h at constant reduced temperature r:

χ
Ising
4 (r, h) =

(
∂4G

∂h4

)
r

=
(

∂3M

∂h3

)
r

. (2)

Taking only the leading singular contribution, the predicted
behavior for χB

4 along a freeze-out curve (location of freeze-
out point as a function of

√
s) starting at μB = 0 and passing

close to the critical point is as follows. From its value at μB =
0, χB

4 is expected to decrease at increasing μB, then move
upwards and reach a peak in the vicinity of the critical point.
This peculiar, doubly nonmonotonic behavior has motivated
the experimental search for the critical point in the past years,
also due to a quite similar behavior observed in the measured
quantity

κσ 2 = κ4/κ2, (3)

where κ , σ = √
κ2 and κ4 are the kurtosis, variance, and quar-

tic cumulant of the net-proton number distribution. Indeed,
the data from the STAR experiment [14] show κσ 2 decreasing
and then swinging upwards as the collision energy decreases,
which resembles the behavior predicted in Ref. [9]. Although
this similarity is indeed quite promising, other explanations
have been proposed for the dip, such as global conservation of
baryon number, which is expected to play a bigger role at low
collision energies where the system is smaller [27,28]. Trans-
port models that do not include any criticality, but do account
for charge conservation, are able to reproduce the decrease at
finite μB [29]. On the other hand, the dip also arises when
extrapolating χB

4 to finite μB in lattice QCD through a Taylor
series [16,17]. This suggests that at least some contribution to
the experimentally observed dip comes from the equilibrium
equation of state, which may, in principle, be due to the
approach to the critical point.

The specific nonmonotonic behavior predicted in Ref. [9]
and described above focuses on the leading contribution to
χB

4 , given by χ
Ising
4 . In the parametric equation of state we

use in this paper, due to the mixing of r and h variables in
the mapping of 3D Ising to QCD equation of state, there are
also subleading critical contributions. The peculiarity of the
QCD equation of state, as we see below in more detail, is that
the leading contribution is suppressed by the smallness of the
slope α1 of the phase-separating line in the T, μB plane at the
critical point. Therefore, unless the r, h mixing is also sup-
pressed, the subleading critical contribution could dominate
in a significant part of the critical region, thus qualitatively
changing the prediction.

In this work we investigate this effect by comparing two
choices of the mixing parameters, which show qualitatively
different behavior of χB

4 near the critical point. One choice
is a common “default” choice in the literature, where the r, h
mixing is not suppressed. Another choice is motivated by the
recent work in Ref. [30], which argues that, close to the chiral
(small quark mass) limit, the mixing is suppressed. While in
the latter choice we recover the pattern of χB

4 behavior similar
to Ref. [9], in the former, the subleading terms significantly
changes that pattern. While the peak of χB

4 is a robust feature
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independent of the parameter choice, the dip at μB < μBC

is sensitive to the choice. It is worth pointing out that we
explored several other parameter choices, not shown here,
and that the dip disappears in almost all of them. The second
parameter choice shown here is one of the few in which the dip
is still visible. The reason for this will become clear below.

This paper is organized as follows. In Sec. II we quickly
summarize the procedure developed in Ref. [31] to construct
equations of state for QCD with a built-in criticality in the
correct universality class. In Sec. III we present a discussion
of the dependence of the critical region size and shape on
the different parameters, focusing on the contribution from
the leading divergence. In Sec. IV we present our results for
several different choices of the parameters in the Ising-to-
QCD map, which lead to our conclusions, summarized in
Sec. VI.

II. PARAMETRIC EQUATION OF STATE

In this work, we utilize the procedure for constructing a
family of equations of states with a critical point developed in
Ref. [31]. This parametric family is constructed in such a way
that all its members match lattice QCD results at μB = 0 [up
to order O(μ4

B)] and contain a critical point in the 3D Ising
model universality class. We note that the implementation of
the critical behavior is essentially the same as in Ref. [9].

The procedure can be summarized as follows:

(i) Define a parametrization of the 3D Ising model EoS in
the vicinity of the critical point, imposing the correct
critical behavior. Express the magnetization M, the
magnetic field h and the reduced temperature r =
(T − Tc)/Tc in terms of the new parameters (R, θ )
with [32–35]

M = M0Rβθ,

h = h0Rβδ h̃(θ ), (4)

r = R(1 − θ2),

where M0 � 0.605 and h0 � 0.364 are normaliza-
tion constants, h̃(θ ) = θ (1 + aθ2 + bθ4), with a =
−0.76201 and b = 0.00804, and β � 0.326, δ � 4.80
are 3D Ising model critical exponents [33]. The pa-
rameters are within the range R � 0 and |θ | � θ0,
where θ0 � 1.154 is the first nontrivial zero of h̃(θ ).

(ii) Map the phase diagram of the 3D-Ising model onto
the T μB plane of QCD, choosing the location of the
critical point. A simple linear map [36] requires six
parameters, and can be written as

T − TC

TC
= w(rρ sin α1 + h sin α2), (5)

μB − μBC

TC
= w(−rρ cos α1 − h cos α2), (6)

where (TC, μBC ) are the coordinates of the critical
point, and (α1, α2) are the angles between the hori-
zontal (fixed T ) lines on the QCD phase diagram and
the h = 0 and r = 0 Ising model axes, respectively.
Finally, w and ρ are scaling parameters for the Ising-

to-QCD map: w determines the overall scale of both
r and h, while ρ determines the relative scale between
the two.

As in Ref. [31], we reduce the number of param-
eters to four by imposing that the critical point is
located on the chiral transition line given by lattice
QCD calculations [37]:

T = T0 + κ2 T0

(
μB

T0

)2

+ O(
μ4

B

)
, (7)

which allows us to fix the values of TC and α1 by
choosing μBC only.

In order to be consistent with previous work, we
use the same input from lattice QCD as in Ref. [31].
Although recently new results on the QCD transition
line have become available2 [38,39], we note that
utilizing these new results would not have any effect
on the conclusions presented here.

(iii) Impose exact matching to lattice QCD at μB = 0 at
the level of the coefficients of Taylor expansion of the
pressure through

T 4cLAT
n (T ) = T 4cNon-Ising

n (T ) + T 4
C cIsing

n (T ), (8)

where cLAT
n are the coefficients calculated from the

lattice, and cIsing
n determine the contribution to the

former due to the presence of the critical point. Eq. (8)
is thus the definition for the coefficients cNon-Ising

n re-
quired to match the given critical equation of state to
lattice data without changing the singular behavior at
the critical point. The procedure is carried out up to
order O(μ4

B).
(iv) Reconstruct the full QCD pressure as

P(T, μB) = T 4
∑

n

cNon-Ising
n (T )

(
μB

T

)n

+ PQCD
crit (T, μB), (9)

where PQCD
crit (T, μB) is the critical pressure from the

3D-Ising model mapped onto QCD. For additional
details, we again refer the reader to Ref. [31].

With the procedure summarized here, the constructed EoS
(i.e., the pressure, from which all needed derivatives can be
calculated) by construction meets the initial requirements,
and depends on the nonuniversal mapping between 3D Ising
model and QCD through the specific choice of parameters.

In the following we focus on the observable effects of a
critical point on the fourth order susceptibility of the baryon
number in Eq. (1). For this purpose we can safely limit our-
selves to the critical contribution to χB

4 , because in the region
we consider it largely exceeds any possible contribution from

2Both in this work and in Ref [31], we assume that the QCD tran-
sition line is a parabola, with curvature κ2 determined in Ref. [37].
Recent results from lattice QCD [38,39] are consistent with this value
of the curvature, and predict the next-to-leading order parameter κ4

which is consistent with 0 within error bars.
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TABLE I. The two sets of parameter choices we employ in this
work. Notice that, as detailed in the main text, TC and α1 are not
free parameters, but they follow from the choice of μBC due to the
constraints from Eq. (7).

μBC TC α1 α2 − α1 w ρ

I 420 MeV 138 MeV 4.6◦ 90◦ 0.5, 1, 2 0.5, 1, 2
II 420 MeV 138 MeV 4.6◦ −3◦ 0.5, 1, 2 0.5, 1, 2

non-critical-point-related physics. Moreover, since the pro-
cedure we just summarized stops at order O(μ4

B), the total
contribution obtained in our approach differs from the critical
one by a constant in μB, i.e., a function depending on the
temperature only. Thus, a similar plot for the total contribution
would show the same features.

III. THE SIZE AND SHAPE OF THE CRITICAL REGION

While the divergence of χB
4 at the critical point is present

for any choice of parameters due to the parametrization
in Eq. (4), the extent of the region in the phase diagram
where its magnitude is large (either positive or negative)
is a nonuniversal property of the theory—the “size of the
critical region”—which cannot be inferred from universality
arguments. It is nonetheless of crucial importance, as it can
ultimately determine whether the critical behavior can be ob-
served in experiments.

Here we describe how the parameters of the mapping con-
trol the size of the critical region. We define the critical region
as the region where the leading singular part of the equation of
state dominates over the regular part. This comparison cannot
be done on the pressure itself, since the critical contribution
to the pressure vanishes at the critical point (as r2−α). A
reasonable measure of the critical region should be based on
a quantity which diverges at the critical point, such as the
baryon susceptibility, χB

2 = Pμμ or, in our case, χB
4 = Pμμμμ

[where Pμ = ∂ (p/T 4)/∂ (μB/T ) at fixed T ]. We shall estimate
the size of the critical region along the crossover, h = 0, line.
The singular part of χB

4 at h = 0 is given by

χ
sing
4 ∼ AGμμμμ(r, 0) ∼ AGhhhh(r, 0)h4

μ (10)

∼ Arβ(1−3δ)

(
s1

wTCs12

)4

∼ A

(
�μB

ρwTCc1

)β(1−3δ)( s1

wTCs12

)4
. (11)

where PQCD
crit (T, μB) = AG(r, h), Gμ = ∂G/∂ (μB/T ), si =

sin αi, ci = cos αi, and s12 = sin(α1 − α2); A is an overall
constant and hμ = ∂h/∂μB at fixed T . Comparing this to the
regular contribution of order χ

reg
4 ≈ 1, we find for the extent

of the critical region in the μB direction

�μB ∼ TCρwc1

(
A1/4

TC

s1

ws12

) 4
β(3δ−1)

. (12)

Therefore, while increasing ρ increases the size of the
critical region, the effect of increasing the parameter w is very

weak. For the mean-field value of β = 1/2 and δ = 3, the w
dependence is completely absent, while for the values β =
1/3, δ = 5 approximating the exact values of 3D Ising model
exponents one finds a very weak dependence �μB ∼ w1/7.

To determine the extent in the vertical, i.e., μB = const =
μBC direction, we note that this corresponds to a finite ratio
h/r = −ρc1/c2. Thus, the scaling variable r/h1/(βδ) → 0 as
we approach the critical point, and we can set r = 0 when
determining the magnitude of χ4:

χ
sing
4 ∼ AGμμμμ(0, h) ∼ AGhhhh(0, h)h4

μ (13)

∼ Ah(1−3δ)/δ

(
s1

wTCs12

)4

= A

(
c1�T

wTCs12

)(1−3δ)/δ( s1

wTCs12

)4
. (14)

The condition χ
sing
4 ≈ 1 then gives

�T ∼ TC

(
A

T 4
C

) δ
3δ−1 s1

c1

(
s1

ws12

) δ+1
3δ−1

. (15)

The dependence on w is given by �T ∼ w− δ+1
3δ−1 . For the

mean-field value of δ this corresponds to w−1/2 and for δ = 5
to w−3/7.

IV. RESULTS AND DISCUSSION

We now employ the procedure described in Sec. II to calcu-
late the susceptibilities of the baryon number. We summarize
our parameter choices in Table I. We fix the location of the
critical point sufficiently far from the μB = 0 axis to allow for
maximum freedom in our parameter choice but still within the
range of the Taylor expansion of O(μ4

B). To satisfy those crite-
ria we use μBC = 420 MeV, which results in TC � 138 MeV
and α1 � 4.6◦, and study several values of the parameters
(w, ρ). In addition, we consider two different choices for the
relative angle between the (r, h) axes. First, we keep the two
axes orthogonal (α2 − α1 = 90◦), as this has been a common
“default” choice in the literature. Then we examine the case
with the angle between the two axes α2 − α1 = −3◦. This
second choice is motivated by the fact that, in the chiral limit,
the angle difference vanishes (as quark mass to power 2/5)
and 0 < α2 < α1 for sufficiently small quark mass,3 according
to Ref. [30]. Note that, according to Eqs. (12) and (15), a small
value for s12 yields a larger critical region size for the same w

and ρ: �μB ∼ s−6/7
12 and �T ∼ s−3/7

12 .
We now investigate the behavior of the critical contri-

bution to χB
4 over the QCD phase diagram, with focus on

the region close to the critical point T = 130–160 MeV and
μB = 250–450 MeV.4

3This can be seen explicitly in the random matrix model of the QCD
phase diagram [21,30].

4We point out that, with the current linear mapping between the
Ising model and QCD phase diagrams, this second parameter choice
would give rise to a pathological equation of state with negative
baryon density. However, this is not relevant for the results presented
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FIG. 1. Density plots of the critical contribution to χB
4 (T, μB ) in the (T, μB ) plane with a critical point located at (TC � 138 MeV, μBC =

420 MeV), and with α2 − α1 = 90◦, for (top to bottom) w = 0.5, 1, 2 and (left to right) ρ = 0.5, 1, 2. The critical point is indicated by a red
dot, while the chiral/deconfinement transition line is represented by the solid orange line. The yellow and green areas correspond to positive
values (the regions where it is the largest are indicated in yellow) of χB

4 , while the blue ones correspond to negative values (darker blue in the
regions where it is largest in magnitude).

In Figs. 1 and 2, density plots of the critical contribution to
χB

4 (T, μB) in the (T, μB) plane are shown for w = 0.5, 1, 2
and ρ = 0.5, 1, 2 in the case of α2 − α1 = 90◦ and w =
0.5, 1, 2 and ρ = 0.125, 0.25, 0.5 in the case of α2 − α1 =
−3◦, respectively. The yellow and green areas correspond to
positive values (the regions where it is the largest are indicated
in yellow) of χB

4 , while the blue ones correspond to negative
values (darker blue in the regions where it is largest in magni-
tude). The orange curve shows the QCD transition line from
Eq. (7). The red dot marks the critical point.

We note that the color function is not the same for Figs. 1
and 2. The color schemes are such that a factor 10 in the value
of χB

4 separates the two figures, for the same color. This is
because, due to the dependence of χB

4 on s12, this quantity is
overall significantly larger in all the plots of Fig. 2 than in
those of Fig. 1.

We would like to point out the following relevant features
in Figs. 1 and 2:

here, since we only consider the critical contribution to the equation
of state, and not the full one. It would be interesting to explore
whether a different, nonlinear mapping could lead to a nonpatho-
logical equation of state with this parameter choice, which is one of
the very few which leads to a dip in χB

4 . We leave this investigation
for future work.

(i) A smaller value of w leads to a larger critical region
in the T direction, for both values of the relative angle
α2 − α1. This follows from Eq. (15).

(ii) The main effect of ρ is to stretch the critical region
in the μB direction. Indeed, the size of the critical
region along μB increases linearly with ρ, while the
one in the T direction is not affected by ρ according
to Eqs. (12) and (15).

(iii) It is most interesting to compare our findings to what
was originally anticipated in Ref. [9] based on the
leading singular contribution. While the pattern in
Fig. 2 is in agreement with the leading singularity pre-
diction, in Fig. 1 that prediction only holds extremely
close to the critical point.

Away from the critical point the subleading sin-
gular terms modify the pattern. In Fig. 1 for ρ =
2.0 and in Fig. 2 the main effect is the bending of
the negative lobe away from the crossover line. The
downward bending in Fig. 2 is a consequence of
0 < α2 < α1, while the upward bending in Fig. 1 is
a consequence of α1 < α2 < 180◦, as explained in
Ref. [30].

As a result, in Fig. 1, the critical contribution to
the dip to the left of the critical point is absent, except
in the extremely close vicinity of the critical point. In-
stead, the approach to the critical point from the left is
characterized by a peak instead of a dip. Furthermore,
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FIG. 2. Density plots of the critical contribution to χB
4 (T, μB ) in the (T, μB ) plane with a critical point located at (TC � 138 MeV, μBC =

420 MeV), and with α2 − α1 = −3◦, for (top to bottom) w = 0.5, 1, 2 and (left to right) ρ = 0.125, 0.25, 0.5. The critical point is indicated
by a red dot, while the chiral/deconfinement transition line is represented by the solid orange line. The yellow and green areas correspond to
positive values (the regions where it is the largest are indicated in yellow) of χB

4 , while the blue ones correspond to negative values (darker
blue in the regions where it is largest in magnitude).

FIG. 3. Profile of the critical contribution to χB
4 along lines parallel to the chiral transition line, and separated by �Tshift = 1, 2, 4 MeV.

The top and bottom rows correspond to α2 − α1 = 90◦ and α2 − α1 = −3◦, respectively.
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for smaller ρ values, an additional negative lobe ap-
pears below the critical point for larger μB.

To understand the effect of the choice of α2 on the sig-
nificance of the subleading singular contributions to χB

4 we
observe, let us examine the Ising-to-QCD mapping more
closely. Equations (5) and (6) allow us to convert the deriva-
tives with respect to μB in the definition of χB

4 in Eq. (1) into
derivatives with respect to Ising variables h and r:

∂μB = 1

w ρ TCs12
(s1 ∂h + s2 ∂r ). (16)

Since h corresponds to the most relevant perturbation at the
critical point (h has the largest scaling dimension), the domi-
nant contribution to the derivative ∂μB sufficiently close to the
critical point comes from ∂h. Since α1 is small, when α2 is not
small, the contribution of ∂h is suppressed by s1/s2 compared
to ∂r . This is precisely the case in Fig. 1. While taking only
the most divergent terms corresponds to setting ∂μB ∼ ∂h,
and hence χB

4 ∼ χ
Ising
4 from Eq. (2), the full expression for

χB
4 contains many additional subleading, less singular terms

which involve ∂r . The subleading terms will become negligi-
ble sufficiently close to the critical point, but if the leading
contribution is strongly suppressed this may not happen until
we are extremely close to the critical point, as seen in Fig. 1.
Thus, the pattern of the T μB dependence of χB around the
critical point is significantly affected by the subleading terms
in this scenario.

On the other hand, when α2 is small, as for our choice α2 ≈
1.6◦, the pattern is indeed more similar to the one described in
Ref. [9]. This can be seen in Fig. 2, especially when ρ = 0.5.

After analyzing the general behavior of χB
4 over the QCD

phase diagram, we now wish to determine the impact that its
features can have on experimental measurements. We shall
make a simplifying assumption that net-proton kurtosis has
a similar critical behavior to χB

4 , following the argument of
Ref. [12]. In the following we study the behavior of χB

4 along
exemplary freeze-out trajectories, which are roughly parallel
to the chiral/deconfinement transition line from Eq. (7):

TF(μB) = T0 + κ2 T0

(
μB

T0

)2

− �Tshift, (17)

where �Tshift indicates the shift in temperature downward
from the transition line. In Fig. 3 we show the behavior of
the critical contribution to χB

4 along such lines, with shifts
�Tshift = 1, 2, 4 MeV. In the different panels, we consider
the cases with α2 − α1 = 90◦ (top row) and α2 − α1 = −3◦
(bottom row), and with the parameter choices w = ρ = 0.5
(left column) and w = 2, ρ = 0.5 (right column).

The choice that displays a dip for μB < μBC is the one with
w = ρ = 0.5, α2 − α1 = −3◦ and only in the close vicinity
of the transition line, i.e., for �Tshift = 1, 2 MeV. Figure 2
suggests that this would be the case also for smaller values of
ρ, as we note that the lower the value of ρ, the more apparent
the downward bending is of the negative (blue) lobe. Since
this behavior follows from our choice for the angle α2, we
consider in the top panel of Fig. 4 different choices for the
angle α2. We focus on lines parallel to the transition line, with
�Tshift = 1 MeV, and keep w = ρ = 0.5 in all cases.

FIG. 4. Top panel: Profile of the critical contribution to χB
4

along lines parallel to the chiral transition line, and separated by
�Tshift = 1 MeV. The different lines correspond to different choices
for α2 = −5.4◦, 0◦, 1.6◦, 2.6◦, 94.6◦. For all these curves we fixed
w = ρ = 0.5. Bottom panel: The chiral transition line (orange) is
shown together with the h = 0 axis (gray) and the r = 0 axis corre-
sponding to the choices shown in the top panel. The color coding is
kept the same.

We consider a handful of choices for the angle α2. We
include the ones corresponding to Fig. 1 (α2 � 94.6◦) and
Fig. 2 (α2 � 1.6◦), as well as α2 � −5.4◦, 0◦, 2.6◦. In the
bottom panel of Fig. 4 we show the orientations of the r = 0
axis corresponding to the different values of α2 we used. As
anticipated, only in the cases satisfying 0 < α2 < α1 a dip for
μB < μBC is seen. Moreover, we consider in this plot a shift
�Tshift = 1 MeV between the chemical freeze-out line and the
chiral transition line. With larger separation, a dip would be
harder to observe, as shown in Fig. 3.

V. EXPERIMENTAL CONSIDERATIONS

In our current study we focused on the equilibrium prop-
erties of the QCD equation of state that can lead to the
potential discovery of the QCD critical point. However, be-
cause heavy-ion collisions are inherently dynamical systems,
direct comparison with experimental data would require an
event-by-event relativistic viscous hydrodynamics model with
BSQ conserved charges [40,41] and critical fluctuations cou-
pled to a hadronic transport code.
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While important efforts are being made along these lines in
terms of new hydrodynamical models [42–48], transport coef-
ficients [49–55], critical fluctuations [7,56–59], and freeze-out
[60–65], the full dynamical description does not yet exist
at this time. In the meantime, a number of attempts have
been made to quantify effects such as critical slowing down
and memory, finite volume/lifetime, number of particles, de-
cays, charge conservation, kinematic cuts, low statistics, etc.
[28,66–77]. Yet further studies have looked into the influ-
ence of far-from-equilibrium initial conditions and potential
attractors at the critical point [48] and the influence of viscous
effects across a first-order phase transition line [78].

Another remaining question that is very relevant to this
study is the temperature difference between hadronization and
freeze-out. Earlier attempts were made in dynamic models
to quantify either the time scale or temperature range in
the difference between hadronization and freeze-out [79–88].
Generally, this depends on the number of hadrons in the
system [89] and their corresponding interactions [90–93].
However, given enough particles that appear near the phase
transition that are strongly interacting, it is possible to reach
chemical equilibrium on very short timescales [94–98].

VI. CONCLUSIONS

In this work we have studied the fourth-order susceptibility,
χB

4 , of the baryon number in QCD in the presence of a critical
point in the 3D Ising model universality class. We found that
some features of the T and μB dependence of χB

4 could be
significantly affected by sub-leading, less singular terms in the
critical behavior. In all cases that we studied, we found a di-
verging peak at the critical point. However, only in the special
case of 0 < α2 < α1 (which also implies a wide critical region
that is extended along the chiral phase transition) do we obtain
a dip as one approaches the critical point along an exemplary
freeze-out curve below the transition temperature. In this case,

at temperatures significantly lower than the transition the dip
moves to smaller μB and fades away.

One of the main conclusions which can be drawn from this
study is that the peak in net-proton kurtosis is a more robust
signature of the critical point than the dip. In principle, the
observation of a dip could help determine or constrain the
value of the parameter α2 as well as the deviation �Tshift of the
freeze-out temperature from the crossover line (e.g., by 0 <

α2 < α1, �Tshift < few MeV). Strictly speaking, this would
be possible only provided that other potential experimental
contributions to the dip (the baseline) are under control.

It is important to emphasize that this study only con-
siders the equilibrium equation of state and it would be
interesting and important to explore these issues further in
dynamical models. For example, as has been observed in
Refs. [60,66,68], critical slowing down, charge conservation,
and memory effects may help to preserve the signatures of
critical fluctuations down to lower temperatures below the
critical region.
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