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Bayesian evaluation of charge yields of fission fragments of 239U
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Recent experiments [Phys. Rev. Lett. 123, 092503 (2019); 118, 222501 (2017)] have made remarkable
progress in measurements of the isotopic fission-fragment yields of the compound nucleus 239U, which is of
great interests for fast-neutron reactors and for benchmarks of fission models. We apply the Bayesian neural
network (BNN) approach to learn existing evaluated charge yields and infer the incomplete charge yields of
239U. We found that the two-layer BNN is improved compared to the single-layer BNN for overall performance.
Our results support the normal charge yields of 239U around Sn and Mo isotopes. The role of odd-even effects in
charge yields has also been studied.
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I. INTRODUCTION

Nuclear fission is a very complex nonequilibrium quantum
many-body dynamic process, and a deeper understanding of
fission presents a well-known challenge in nuclear physics [1].
There are still strong motivations to study nuclear fission with
increasingly wide nuclear applications [2] in productions of
energies and rare isotopes, and in fundamental physics such as
synthesizing superheavy elements [3,4] and constraints on the
r process [5]. In particular, high-quality energy dependent fis-
sion data are very needed for fast-neutron reactors. However,
fission measurements are very difficult and fission data are
generally incomplete and have large uncertainties. In major
nuclear data libraries [6–9], evaluated fission yields are only
available at thermal neutron energies, 0.5 and 14 MeV.

Recently, the isotopic 239U fission products with close
excitation energies have been measured experimentally by dif-
ferent methods [10,11]. Previously, the fission fragment mass
distributions or charge distributions were obtained. However,
precise measurements of full isotopic fission yields only
became possible very recently with inverse kinematics and
magnetic spectrometers [12–15]. The correlated fission ob-
servables are very crucial for deeper understandings of the
fission process. It was reported that the charge yields around
Sn and Mo are exceptionally small in the 238U(n, f ) reaction
[10] but they were normal in later experiment on 239U via
transfer reactions [11]. It would be interesting to evaluate the
two discrepant experimental results.

The microscopic fission dynamical models based on po-
tential energy surfaces (PES) can obtain reasonable fission
mass yields and charge yields [16]. In addition, the nona-
diabatic time-dependent density functional theory [17] is
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promising to obtain various fission observables such as fission
yields, total kinetic energies, and neutron multiplicities, due
to developments of supercomputing capabilities. The macro-
microscopic fission models based on complex PES have been
successfully used for descriptions of fission yields [18]. Gen-
erally fission models with more predictive ability would have
less precision. For precise evaluations of fission data, phe-
nomenological models such as the Brosa model [19] and
the recent GEF (GEneral description of Fission observables)
model [20] are very successful and have been widely used.

It is known that machine learning is powerful for learning
and inferring from complex big data, which is of great interest
in interdisciplinary physics subjects. Recently, it was shown
that Bayesian neural networks can be used for evaluations
of incomplete fission mass yields with uncertainty quantifica-
tions [21]. Machine learning has been used in nuclear physics,
such as in the extrapolation of nuclear masses [22–24], fission
yields [21,25], various nuclear structure [26–31], and reaction
observables [32–34]. Machine learning has also been widely
applied in other physics subjects, such as the constraints of
the equation of state of neutron stars from gravitational wave
signals [35] and for facilitating the lattice QCD calculations
[36]. We speculate that machine learning is promising for
developing new evaluation methods of nuclear data, with
regard to correlated fission observables and existing large
uncertainties.

Previously, we have applied BNN to evaluate fission mass
yields [21]. In this work, we apply BNN to evaluate the fission
charge yields, in particular the discrepant charge yields of
the compound nucleus 239U. The charge distribution data are
usually scarce and are very useful in nuclear applications.
There could be different energy dependent behaviors of charge
distributions and mass distributions [37]. The charge distri-
butions show distinct odd-even effects [38], while odd-even
effects are ambiguous in mass distributions. Compared to our
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previous work, we employ a multilayer neural network in this
work.

II. THE MODELS

The BNN approach [39] adopts probability distributions as
connection weights and is naturally suitable for uncertainty
quantifications, in contrast to standard neural networks which
optimize definite values for connection weights. The BNN
approach to statistical inference is based on Bayes’s theorem,
which provides a connection between a given hypothesis (in
terms of problem-specific beliefs for a set of parameters ω)
and a set of data (x, t ) to a posterior probability p(ω|x, t ) that
is used to make predictions on new inputs, which is written as

p(ω|x, t ) = p(x, t |ω)p(ω)

p(x, t )
, (1)

where p(x, t |ω) is the “likelihood” that a given model de-
scribes the data and p(ω) is the prior density of the parameters
ω; x and t are input and output data; p(ω|x, t ) is the probability
distribution of parameters ω after considering the data (x, t ),
i.e., the posterior distribution; p(x, t ) is a normalization factor
which ensures the integral of posterior distribution is 1.

We adopt a Gaussian distribution for the likelihood based
on an objective function, which is written as

p(x, t |ω) = exp(−χ2/2), (2)

where the objective function χ2(ω) reads

χ2(ω) =
N∑

i=1

(
ti − f (xi, ω)

�ti

)2

. (3)

Here N is the number of data points, and �ti is the asso-
ciated noise scale which is related to specific observables.
The function f (xi, ω) depends on the input data xi and the
model parameters ω. In this work, the inputs of the network
are given by xi = {Z f i, Zi, Ai, Ei}, which include the charge
number Z f i of the fission fragments, the charge number Zi and
mass number Ai of the fission nuclei, and the excitation energy
of the compound nucleus Ei = ei + Si (ei and Si are incident
neutron energy and neutron separation energy, respectively);
ti are the fission charge yields.

The posterior distributions are obtained by learning the
given data. With new data xn, we make predictions by averag-
ing the neural network over the posterior probability density
of the network parameters ω,

〈 fn〉 =
∫

f (xn, ω)p(ω|x, t )dω. (4)

The high-dimensional integral in Eq. (4) is approximated by
Monte Carlo integration in which the posterior probability
p(ω|x, t ) is sampled using the Markov chain Monte Carlo
method [39].

In BNN we need to specify the form of the functions
f (x, ω) and p(ω). In this work, we use a feed-forward neural
network model defined the function f (x, ω). That is,

f (x, ω) = a +
H∑

j=1

b j tanh

(
c j +

I∑
i=1

d jixi

)
, (5)

where H is the number of neurons in the hidden layer, I
denotes the number of input variables and ω = {a, bj, c j, d ji}
are the model parameters: a is the bias of output layers, bj are
the weights of output layers, c j are biases of hidden layers,
and d ji are weights of hidden layers. In total, the number
of parameters in this neural network is 1 + (2 + I ) × H . To
study the odd-even effects, an additional input variable to
identify the odd-even charge number is employed. The con-
fidential interval (CI) at 95% level is given for uncertainty
quantifications in this work. More details about BNN can be
found in Ref. [39].

III. RESULTS AND DISCUSSIONS

First, we apply BNN to learn the existing evaluated
distributions of charge yields from JENDL [7], which includes
2303 data points of the neutron induced fissions of 29
nuclei (227,229,232Th, 231Pa, 232,233,234,236,237,238U, 237,238Np,
238,239,240,241,242Pu, 241,243Am, 242,243,244,245,246,248Cm,
249,251Cf, 254Es, 255Fm). We adopt a single hidden layer
network of 32 neurons and a double hidden layer network of
16-16 neurons for comparison. We adopt 105 BNN sampling
iterations in all calculations in this work. A large number
of sampling iterations are required for large data sets and
large parameter sets. Note that the computing costs of
BNN are very high compared to standard neural networks.
The obtained standard deviations χ2

N = ∑
i[ti − f (xi )]2/N

are 1.43 × 10−5 and 6.36 × 10−6 for the single-layer and
double-layer networks respectively. The single-layer network
has been used previously for mass yields [21]. Generally
the double-layer network has much improved the learning
performance of charge yields. In this work, the charge
distributions are trained independently and the normalization
of the charge distributions is examined, which is close to the
required 2.0 within 2%. Figure 1 displays the BNN learning
results of charge distributions of six nuclei. It is shown that
the single-layer network is less precise compared to the
double-layer network. In particular, the single-layer network
is not satisfactory for descriptions of 255Fm. Similarly, it
was shown previously that the single-layer network is not
satisfactory for mass yields around 227Th and 255Fm where
neighboring nuclei in the learning set are not sufficient [21].
The confidential intervals (CI) at 95% level are also shown
in Fig. 1. It is consistent that CI of the double-layer network
is much smaller than that of the single-layer network. In
239Pu, the odd-even effects in charge yields are shown and the
double-layer network can reproduce the peak structures while
the results of the single-layer network are rather smooth.
Note that the double-layer network has more connection
parameters than the single-layer network, although they have
the same number of neurons. There is also a risk of overfitting
or training convergence issues with more parameters. Both the
parameter numbers and the architecture can affect the network
performance. After the above considerations, we chose the
double-layer network which is suitable for the present study.

Next we test the predictive ability of BNN with a learning
set without 235U, compared with JENDL evaluation data. The
predicted charge distributions of 235U are shown in Fig. 2.
It can be seen that single-layer results cannot describe the
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FIG. 1. Comparison of one-layer (blue lines) and two-layer (red
lines) BNN learning results of charge yields from JENDL [7]. The
shadow region corresponds to the confidence interval (CI) at 95%.

detailed peak structures of the charge distributions at low inci-
dent neutron energies. At energies of 14 MeV, the single-layer
results are better. At low energies, the charge distributions
have obvious odd-even effects, which disappear at high exci-
tations. We see that the double-layer predictions can describe
the energy dependence of the odd-even effects. It is also
shown from CI that the double-layer predictions have smaller
uncertainties than the single-layer predictions.

It is known that odd-even effects are considerable in charge
distributions while it is not obvious in mass distributions. The
charge yields of proton-even nuclei are larger than those of
proton-odd nuclei around peaks. To simulate the odd-even
effects in BNN, we add an additional input δ = ±0.2 for
indicating even and odd atomic numbers respectively. The
input parameter set now becomes xi = {Z f i, Zi, Ai, Ei, δi}.
Note that δi is an artificial input and is associated with the
proton number of each fragment. Similar methods have been
used in BNN to account for odd-even pairing correlations and
shell corrections in estimations of global nuclear masses [24].
Figure 3 displays the training performance of charge distri-
butions of n + 238U at a neutron energy of 0.5 MeV. It can
be seen that, with the single-layer network, the influence of
additional odd-even input δ is significant, while the odd-even
effects are not shown without the δ input. The associated CI
with δ input is slightly reduced. For the double-layer network,
the odd-even effects are shown with and without the δ input,
with similar uncertainties. The additional δ input does not
gain much performance for the double-layer network. Our
main motivation is to evaluate the charge distributions of the
compound nucleus 239U, so we trained BNN with resampled
learning of the evaluated n + 238U data from JENDL, as shown

FIG. 2. The BNN predicted fission charge yields of n + 235U at
neutron energies of 0.025 eV [(a) and (b)], 0.5 MeV [(c) and (d)],
and 14 MeV [(e) and (f)], after learning the JENDL data without 235U.
The results of one-layer (left) and two-layers (right) are compared.
The shadow region corresponds to CI at 95%.

in Fig. 3(c). This means that the n + 238U data are learned
twice. In this case, we reproduce learning data very precisely
with the double-layer network plus odd-even input and resam-
pled learning of n + 238U data.

Finally, we evaluate the charge distributions of fission
fragments of the compound nucleus 239U, based on the re-
cent experimental data. In a recent experiment, Wilson et al.
[10] for the first time used a novel technique which involves
the coupling of a high-efficiency γ -ray spectrometer to an
inverse-kinematics neutron source to extract charge yields
of fission fragments via γ -γ coincidence spectroscopy of
238U(n, f ). These experimental data are compared with results
of the GEF evaluations [20], and charge yields around Sn
and Mo isotopes are significantly smaller, with a deviation of
600%. However, in another recent experiment by Ramos et al.
[11] direct measurements of isotopic fission yields of 239U
performed using the neutron-transfer 9Be(238U, 239U) 8Be re-
action do not show the abnormal deviation. The excitation
energies in 239U in the two experiments are 6.5 and 8.3 MeV
respectively, which should have more or less similar fission
yields. The significant discrepancy can impact fission studies
and nuclear applications.

Figure 4 displays the BNN evaluations of the two exper-
imental data sets. In Fig. 4, BNN adopts the double-layer
network with and without the odd-even indication. The learn-
ing data set includes evaluated charge distributions from
JENDL and the two incomplete experimental data. In particular,
the n + 238U data from JENDL have been resampled twice. The
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FIG. 3. The BNN results of fission charge distribution of n +
238U at neutron energy of 0.5 MeV. (a) Comparison of one-layer
results without and with odd-even input. (b) Comparison of two-layer
results. (c) Results of with odd-even input and resampled learning.
The shadow region corresponds to CI at 95%.

evaluations without odd-even input and resamplings would
not be satisfactory. It can be seen that the evaluations with
odd-even input have significantly improved descriptions of the
peak details. The associated CI with odd-even input is also
much smaller than that of evaluations without odd-even input.
The controversial charge yields around Sn and Mo isotopes
in the two evaluations are not small by our approach. This
is confirmed even without resampling n + 238U data. This
is consistent with the latest experiment where the abnormal
deviation is not seen. In addition, we speculate that the ex-
perimental charge yields at peaks around Z = 40 and Z = 52
could be too large based on BNN evaluations. The BNN
evaluation is also very successful for the 2017 data with clear
odd-even effects, although it has very few data points of even
atomic number. The evaluations by GEF are also shown [11].
For this particular case, BNN evaluations are comparable to
GEF evaluations.

IV. SUMMARY

In summary, we applied a double-layer Bayesian neural
network to learn and predict charge yields of fission frag-
ments for the first time. We found that the performance of the

FIG. 4. The BNN evaluations of fission charge yields of the
compound nucleus 239U with two different experimental data. (a) The
experiment corresponds to an excitation energy of 6.5 MeV [10].
(b) The experiment corresponds to an excitation energy of 8.3 MeV
[11]. The blue lines and red lines are the two-layer BNN plus resam-
pled learning results, without and with odd-even input, respectively.
The olive lines are the GEF evaluations taken from [11]. The shadow
region corresponds to CI at 95%.

double-layer network is significantly better than that of the
single-layer network although they have the same number of
neurons. The double-layer network can describe the odd-even
effects of charge yields at low energies, while odd-even effects
are not obvious in mass yields. We also add an additional
input in BNN to indicate the odd-even atomic number, which
is very useful to improve evaluations. We apply these methods
to evaluate the incomplete charge yields of two recent experi-
ments of 239U. Our BNN evaluations do not obtain abnormally
small charge yields around Sn and Mo isotopes as reported in
Ref. [10]. This is consistent with the latest experiment [11].
The BNN evaluations are comparable to GEF evaluations for
this particular case. Further improvement of BNN is still under
way and is promising for quantitative modeling fission data
for practical nuclear applications.
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