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We present a scattering model for nuclei with similar masses. In this three-body model, the projectile has a
core+valence structure, whereas the target is identical to the core nucleus. The three-body wave functions must
be symmetrized for the exchange of the cores. This property gives rise to nonlocal potentials, which are computed
without approximation. The present model is an extension of the continuum discretized coupled channel
formalism, with an additional treatment of core exchange. We solve the coupled-channel system, including
nonlocal terms, by the R-matrix method using Lagrange functions. This model is applied to the 13C + 12C,
13N + 12C, and 16O + 12C systems. Experimental scattering cross sections are fairly well reproduced without any
parameter fitting. The backward-angle enhancement of the elastic cross sections is due to the nonlocal potential.
We discuss in more detail the various nonlocal contributions and present effective local potentials.
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I. INTRODUCTION

Nucleus-nucleus reactions represent an important topic in
nuclear physics. In particular, they constitute the only way to
investigate exotic nuclei. With the development of radioactive
beams, more and more data become available. Accurate theo-
retical models are needed to interpret these data and to extract
the relevant properties of exotic nuclei.

A popular approach is the optical model [1,2], where the
structure of the colliding nuclei is neglected. Microscopic
effects and absorption channels are simulated by complex
potentials. This approach is very simple, but usually involves
several parameters. Information about the structure of the
nuclei is therefore limited.

Three-body models represent a step further in the descrip-
tion of nucleus-nucleus collisions. One of the participating
nuclei is described by a two-body structure, and the main part
of the absorption is simulated by breakup effects in this two-
body nucleus. This approach is referred to as the continuum
discretized coupled channel (CDCC) method [3–6], and has
been extended to systems involving four-body systems [7,8].
It is well adapted to nuclei with a low separation energy, where
breakup effects are expected to be important. The CDCC
method was originally developed to describe deuteron scatter-
ing [3], but many applications have been performed recently
for reactions involving exotic nuclei (see, e.g., Refs. [9,10] for
recent works).

In its present form, the CDCC method neglects possible ex-
change effects between the projectile and the target. A typical
example is the α + 8Be reaction [11], where the symmetriza-
tion between the colliding α particle and the α’s involved
in 8Be is not taken into account. A more recent example is
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the d + 11Be system [12], where d and 11Be are described
by p + n and 10Be +n structures, without antisymmetrization
between the neutrons of d and of 11Be.

An obvious situation where exchange effects are important
is when the colliding nuclei have similar masses. Represen-
tative examples are the 13C + 12C and 17O + 16O reactions. In
such a case the system can be described by a three-body struc-
ture involving two cores and an exchanged particle (typically
a nucleon or an α particle). The symmetrization of the wave
function for the core exchange is then crucial. In the literature,
several works have been done in this direction, with various
approximations of the exchange effects [13–16].

In the present work, we use a three-body model, and treat
exchange effects exactly. This procedure gives rise to nonlocal
potentials in a coupled-channel formalism, but does not re-
quire any parameter fit. As in the traditional CDCC approach,
the only inputs are the two-body interactions between the con-
stituents. A first important step is to determine the nonlocal
potentials, stemming from exchange effects. In a second step,
one has to solve a coupled-channel integrodifferential system.
This is in general a complicated task, but can be simplified
with the help of the R-matrix formalism [17] associated with
the Lagrange-mesh technique [18].

The paper is organized as follows. In Sec. II, we present
the model, with emphasis on the calculation of the nonlocal
terms. Section III is devoted to some applications. We present
results on 13C + 12C, 13N + 12C, and 16O + 12C scattering. In
Sec. IV, we discuss nonlocal effects in more detail. We focus
on the long-range part of the nonlocal kernels. We also present
equivalent local potentials. Concluding remarks and outlook
are presented in Sec. V.

II. THE THREE-BODY MODEL
A. Total wave functions

We consider the three-body system presented in Fig. 1.
The projectile is formed by a core (C) + valence (v) system,

2469-9985/2021/103(3)/034619(13) 034619-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9159-4251
https://orcid.org/0000-0001-7014-4403
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.034619&domain=pdf&date_stamp=2021-03-25
https://doi.org/10.1103/PhysRevC.103.034619


J. DOHET-ERALY AND P. DESCOUVEMONT PHYSICAL REVIEW C 103, 034619 (2021)

 

FIG. 1. Coordinates (r, R) and (r′, R′). C and v represent the core
and valence particles.

and the target is identical to the core. A typical example is
the 13C + 12C system, where the core is 12C and the valence
particle a neutron. For the sake of simplicity, we assume that
the spin of the core is zero. The Hamiltonian of this system is
defined as

H = Tr + TR + VCv (r)

+ VCv (|αr − R|) + VCC (|βr + R|), (1)

where Tr and TR are the kinetic energies associated with r and
R, and VCv and VCC are core-valence and core-core potentials.
The coordinates R and R′ are the relative coordinates between
the projectile and the target before and after symmetrization,
respectively. In definition (1), α and β are positive coefficients
given by

α = AC

AC + Av

, β = Av

AC + Av

= 1 − α, (2)

where AC and Av are the masses of the core and of the valence
particle, respectively. We also define

γ = 1

1 − α2
, (3)

which will be used later.
The present approach is based on the CDCC formalism,

but we include the symmetrization of the wave function with
respect to core exchange. Notice that two possible choices
exist for the potential VCv: either it reproduces the spectro-
scopic properties of the C + v system, or it is fitted on elastic
scattering.

Let us define the core-valence Hamiltonian by

H0 = Tr + VCv (r), (4)

which is diagonalized from

H0φ
� jm
n (r) = E � j

n φ� jm
n (r). (5)

The two-body wave functions are factorized as

φ� jm
n (r) = u� j

n (r)

r
[Y�(�r ) ⊗ χv] jm, (6)

where χv is a spinor associated with the valence particle. The
radial eigenfunctions u� j

n (r) are expanded over a basis, cho-
sen here from Lagrange functions [18]. Lagrange-Laguerre
functions regularized by r and by

√
r [18,19] have been

considered. Both provide the same level of accuracy. As

usual in CDCC calculations, energies E � j
n < 0 correspond to

physical states, whereas states with E � j
n > 0, referred to as

pseudostates, simulate the projectile continuum.
The total wave functions, associated with Eq. (1) are writ-

ten before symmetrization as

	JMπ (R, r) = 1

R

∑
cL

gJπ
cL (R) ϕJMπ

cL (�R, r), (7)

where index c stands for c = (� jn) and where gJπ
cL are ra-

dial wave functions to be determined. The relative angular
momentum is denoted as L. The channel functions ϕJMπ

cL are
defined as

ϕJMπ
cL (�R, r) = [

YL(�R) ⊗ φ� j
n (r)

]JM
. (8)

The total wave function (7) must be symmetrized with respect
to the exchange of the cores. For spin-zero cores, this is
achieved with the exchange operator P,

�JMπ (R, r) = (1 + P)	JMπ (R, r), (9)

where P permutes the coordinates of the cores. More pre-
cisely, we have

P	JMπ (R, r) = 	JMπ (R′, r′) (10)

with

r′ = αr − R,

R′ = (α2 − 1)r − αR. (11)

In the (R′, r′) system, Hamiltonian (1) can be written, in the
so-called “post” form, as

H = Tr′ + TR′ + VCv (r′)

+ VCv (|αr′ − R′|) + VCC (|βr′ + R′|). (12)

In the next step, we consider the three-body Schrödinger equa-
tion

H�JMπ = E�JMπ , (13)

and use Eq. (9) with expansion (7). After projection on the
channel functions, this procedure provides the integrodiffer-
ential system

(TR + Ec − E )gJπ
cL (R) +

∑
c′L′

V Jπ
cL,c′L′ (R)gJπ

c′L′ (R)

+
∑
c′L′

∫
W Jπ

cL,c′L′ (R, R′)gJπ
c′L′ (R′)dR′ = 0, (14)

where

TR = − h̄2

2μ

[
d2

dR2
− L(L + 1)

R2

]
, (15)

μ being the reduced mass. The first two terms of Eq. (14)
correspond to the standard CDCC system [5]. The coupling
potentials are defined by

V Jπ
cL,c′L′ (R) = 〈

ϕJMπ
cL

∣∣VCv + VCC

∣∣ϕJMπ
c′L′

〉
, (16)

where the integration is performed over �R and r. The last
term of Eq. (14) is nonlocal, and arises from the symmetriza-
tion operator P. The nonlocal potential W Jπ

cL,c′L′ (R, R′) can be

034619-2



EXCHANGE EFFECTS IN NUCLEUS-NUCLEUS REACTIONS PHYSICAL REVIEW C 103, 034619 (2021)

decomposed as

W Jπ
cL,c′L′ (R, R′) = (Ec − E )N Jπ

cL,c′L′ (R, R′)

+ T Jπ
cL,c′L′ (R, R′) + VJπ

cL,c′L′ (R, R′), (17)

which explicitly shows overlap N Jπ
cL,c′L′ , kinetic energy T Jπ

cL,c′L′ ,
and potential VJπ

cL,c′L′ terms. The overlap kernel is defined from∫
N Jπ

cL,c′L′ (R, R′)gJπ
c′L′ (R′)dR′

= R

〈
ϕJMπ

cL

∣∣∣∣ϕJMπ
c′L′

gJπ
c′L′ (R′)

R′

〉
, (18)

and equivalent expressions hold for the kinetic energy and
potential kernels. Notice that similar terms shows up in
the coupled-channel approach of transfer reactions [20]. We
discuss the various contributions of Eq. (17) in the next sub-
section.

For scattering states (E > 0), a radial function gJπ
cL (R) has

the asymptotic behavior at large R values

gJπ
cL,ωLω

(R) → vc
−1/2

× [
IL(kcR)δcωδLLω

− U Jπ
cL,ωLω

OL(kcR)
]
, (19)

where ω is the entrance channel, IL and OL are the incoming
and outgoing Coulomb functions, vc and kc are the velocity
and wave number in channel c, and U Jπ is the scattering
matrix. In the R-matrix formalism [17], a channel radius a
separates the internal region, where all terms of the potentials
contribute, and the external region where only the monopole
part of the Coulomb interaction is present. In the internal
region, the radial wave function is expanded as

gJπ
cL,ωLω

(R) =
N∑

i=1

f Jπ
cLi,ωLω

ui(R), (20)

where the N functions ui(R) represent the basis. The choice of
the basis functions is discussed in Sec. II D.

B. Nonlocal terms

The nonlocal potential (17) arises from exchange effects
due to the operator P [Eqs. (9) and (10)]. The overlap and
potential kernels in Eq. (17) are obtained from{
N Jπ

cL,c′L′ (R, R′)
VJπ

cL,c′L′ (R, R′)

}
=J RR′

∫∫
ϕJMπ∗

cL (�R, r)

×
{

1
VCv + VCC

}
ϕJMπ

c′L′ (�R′ , r′)d�R d�R′ ,

(21)

where

J = γ 3 (22)

is the Jacobian from coordinates (r, R) to (R, R′). Coordinates
(r, r′, RCC ) are expressed as

r = −γ (αR + R′),

r′ = −γ (R + αR′),

RCC = r − r′ = 1

α + 1
(R − R′). (23)

In the case of a nucleon transfer, α is close to 1, and the
relative coordinates (r, r′) are large, even for relatively small
values of (R, R′). This means that the core-valence wave func-
tion needs to be accurately known up to large distances. If the
binding energy is small, the nonlocal potentials are therefore
very sensitive to the long-range part of the bound-state wave
function.

The potential term is quite similar to the matrix elements
involved in distorted wave Born approximation (DWBA) cal-
culations [21], and its calculation is explained in several
references (see, e.g., Refs. [21–23]). The calculation of the
overlap and potential kernels is based on the expansions

u� j
n (r) u�′ j′

n′ (r′)
r�+1r′�′+1

=
∑

K

NK
cc′ (R, R′)PK (cos θR),

u� j
n (r)

r�+1
(VCv (r′) + VCC (RCC ))

u�′ j′
n′ (r′)
r′�′+1

=
∑

K

V K
cc′ (R, R′)PK (cos θR), (24)

where θR is the angle between R and R′, and PK (x) is a Legen-
dre polynomial. The components NK

cc′ (R, R′) and V K
cc′ (R, R′)

are obtained from numerical integrations. Notice that these
expansions only depend on the quantum numbers of the pro-
jectile. They do not depend on the angular momenta J, L, L′,
and are therefore performed once.

The derivation of the kinetic-energy kernels is more te-
dious. However, we show in the Appendix, that they can be
deduced from the overlap kernel as

T Jπ
cL,c′L′ (R, R′) = − h̄2

2μ

[
∂2

∂R2
− L(L + 1)

R2

]
N Jπ

cL,c′L′ (R, R′).

(25)

The calculation of the nonlocal kernels from Eqs. (21) and
(24) requires some angular-momentum algebra. We use the
addition theorem

r�Y m
� (�r ) =

�∑
λ=0

Cλ
� rλ

1 r�−λ
2 [Yλ(�1) ⊗ Y�−λ(�2)]�m, (26)

where r = r1 + r2 and

Cλ
� =

[
4π (2� + 1)!

(2λ + 1)!(2� − 2λ + 1)!

]1/2

. (27)

When the valence particle v has a spin zero, the overlap kernel
can be expanded as

N Jπ
cL,c′L′ (R, R′) =J (−γ )�+�′ ∑

K

NK
c,c′ (R, R′)

×
∑
λ1λ2

Cλ1
� Cλ2

�′ αλ1+λ2 R�′+λ1−λ2+1R′�−λ1+λ2+1

× F Jπ
cL,c′L′ (K, λ1, λ2) (28)
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with

F Jπ
cL,c′L′ (K, λ1, λ2)

= 〈[
YL(�R) ⊗ [

Yλ1 (�R) ⊗ Y�−λ1 (�R′ )
]�]JM |PK (cos θR)|[

YL′ (�R′ ) ⊗ [
Y�′−λ2 (�R) ⊗ Yλ2 (�R′ )

]�′]JM 〉
. (29)

The analytical calculation of these coefficients requires some
algebra to modify the order of angular-momentum couplings,
and involves 6 j coefficients. When the valence particle has
a spin, further angular-momentum recoupling is necessary. A
simple value is obtained for � = �′ = 0, where we have

F Jπ (K, 0, 0) = δKJ

4π (2J + 1)
. (30)

C. Symmetry of the nonlocal kernels

Let us briefly discuss the symmetry properties of the non-
local potential (17). According to Eq. (9), we have, when the
cores are bosons,

P�JMπ = �JMπ , (31)

which means that the property

[H, P] = 0 (32)

should be satisfied. This implies that both VCv potentials in
Eqs. (1) and (12) are identical. For example, in the 13C + 12C
system, the n + 12C (real) potential associated with the 13C
ground state should be identical to the n + 12C optical po-
tential which describes the neutron-target scattering. If this
condition is fulfilled, the nonlocal potential W Jπ is symmetric,
and we have

W Jπ
cL,c′L′ (R, R′) = W Jπ

c′L′,cL(R′, R). (33)

This test is very strong since, individually, all terms of the
right-hand side of Eq. (17) are not symmetric. In practical ap-
plications, however, it may seem more physical to choose dif-
ferent potentials: one which binds the C + v system, and the
other which is adapted to the C + v scattering. In such a case,
the symmetry property (33) is approximately satisfied (see the
discussion in Ref. [14]). This means that some properties of
the scattering matrix, such as the symmetry or the unitarity
(for real potentials), are not any more valid. We choose to
restore the symmetry of the nonlocal potential through

W Jπ
cL,c′L′ (R, R′) → 1

2

[
W Jπ

cL,c′L′ (R, R′) + W Jπ
c′L′,cL(R′, R)

]
. (34)

We will see in some examples that these effects, in practice,
are small. The main reason is that, in general, the contribution
of the optical potential VCv is small compared to the optical
potential between the cores.

D. Elastic cross sections

The elastic cross sections are obtained from the scatter-
ing matrices U Jπ [see Eq. (19)]. According to the scattering
theory, the elastic cross section between different particles is
defined from the scattering amplitude as

dσ

dθ
= | f (θ )|2,

f (θ ) = f N(θ ) + f C(θ ), (35)

where θ is the scattering angle. In this definition, f C(θ ) is
the Coulomb amplitude and f N(θ ) is the nuclear amplitude,
defined by

f N(θ ) = 1

2ik

∑
J

(2J + 1)PJ (cos θ )(U J − 1)e2iσJ , (36)

where σJ is the Coulomb phase shift. For the sake of
simplicity, we consider single-channel systems with spin 0 nu-
clei. The generalization is straightforward (see, for example,
Ref. [21]).

As explained in Sec. II A, the scattering matrices are ob-
tained from the resolution of a Schrödinger equation involving
a nonlocal potential. Let us denote as U J

0 and gJ
0(R) the scat-

tering matrix and wave function obtained from the local term
(16) only. These quantities are obtained without symmetriza-
tion of the wave function (9). The integral definition of the
scattering matrix [24] provides a relationship between U J and
U J

0 as

U J = U J
0 + U J

ex,

U J
ex = − i

h̄

∫∫
gJ

0(R)W J (R, R′)gJ (R′)dRdR′. (37)

Consequently the nuclear scattering amplitude can be written
as

f N(θ ) = f N
0 (θ ) + f N

ex(θ ), (38)

where f N
0 (θ ) is obtained from Eq. (36) with the scattering

matrices U J
0 , and where the exchange amplitude f N

ex(θ ) is the
nonlocal contribution

f N
ex(θ ) = 1

2ik

∑
J

(2J + 1)PJ (cos θ )U J
exe2iσJ . (39)

A similar decomposition has been suggested in Refs. [25–27].
Since the calculation of the exchange amplitude f N

ex(θ ) is
based on a nonlocal potential, it is common in the literature to
assume that it can be simulated by the transfer of the valence
particle (see for example Ref. [27], and references therein). In
other words, the exchange amplitude can be approximated as

f N
ex(θ ) ≈ ftr (π − θ ), (40)

where ftr (π − θ ) is the transfer amplitude, usually computed
at the DWBA approximation [22]. In this approximation,
however, the exact wave function gJ (R) is replaced by the
nonsymmetrized wave function gJ

0(R) in Eq. (37), and the non-
local potential W J (R, R′) is approximated from an auxiliary
potential.

Another difference is related to the spectroscopic factors.
As expected in transfer calculations, the DWBA amplitude
ftr (π − θ ) is multiplied by the spectroscopic factor of the
projectile. This multiplicative factor, however, does not show
up in the present approach. The two-body wave function
(6) is of course an approximation which can be improved,
either by introducing a spectroscopic factor or by including
core excitations. The introduction of a spectroscopic factor in
Eq. (6), however, represents a global renormalization of the
expansion (7), and therefore of the symmetrized definition (9).
The scattering matrices deduced from Eq. (19) are therefore
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not affected by a spectroscopic factor. Introducing core exci-
tations in the present approach is a challenge for future works,
but is beyond the scope of the present work.

E. Lagrange functions

As mentioned before, the scattering matrices are calculated
with the R-matrix method, which is based on a channel radius
a and on the choice of basis functions ui. As in previous
works, we choose Lagrange functions which permit fast and
accurate calculations of the matrix elements, in particular for
nonlocal potentials (see Ref. [18] for detail).

The calculation of the R matrix is based on matrix elements
between basis functions over the internal region. The main
input is the matrix defined from

CJπ
cLi,c′L′ j = 〈ui|(TR + Ec − E )δcc′δLL′

+ V Jπ
cL,c′L′ + W Jπ

cL,c′L′ |u j〉. (41)

For example, matrix elements of the local and nonlocal poten-
tials are given by

〈ui|V |u j〉 =
∫ a

0
ui(R)V (R)u j (R) dR,

〈ui|W |u j〉 =
∫ a

0

∫ a

0
ui(R)W (R, R′)u j (R

′) dRdR′. (42)

These calculations are greatly simplified by using N Lagrange
functions for ui which are defined by

ui(R) = (−1)N+i R

Ri

√
Ri

(
1 − Ri

a

)
PN (2R/a − 1)

R − Ri
, (43)

where Ri are the zeros of

PN (2R/a − 1) = 0. (44)

The normalization of Eq. (43) is chosen in such a way that the
Lagrange condition

ui(Rj ) = 1√
aλi

δi j (45)

is satisfied. In this equation, λi is the weight of the Gauss-
Legendre quadrature associated with the [0,1] interval.

With the choice of basis function (43), the calculation of
the matrix elements (42) is extremely simple if the Gauss
approximation of order N is used for the quadratures. At this
approximation, the matrix elements are given by

〈ui|V |u j〉 ≈ V (Ri)δi j,

〈ui|W |u j〉 ≈ a
√

λiλ jW (Ri, Rj ), (46)

and no numerical integral is required for the matrix elements.
We refer to Refs. [17,18] for details.

III. APPLICATIONS

A. The 13C + 12C system

The 13C + 12C system has been intensively studied exper-
imentally [28,29] as well as theoretically [13,14,30]. It is
known that nonlocal effects can be simulated by a parity-
dependent optical potential [15]. Owing to the one-neutron

exchange, the potentials for even and odd partial waves are
different [31]. In the “extreme” situation of identical nuclei,
odd partial waves are strictly forbidden.

We have determined the nonlocal potential (17) from
12C + 12C and n + 12C potentials. For 12C + 12C, we take
the optical potential derived by Treu et al. [32], and defined
(in MeV) as

VCC(r) = − 100

1 + exp[(r − 5.45)/0.48]

− i
15

1 + exp[(r − 5.77)/0.26]
, (47)

where r is expressed in fm. A Coulomb point-sphere potential
of radius RC = 5.45 fm is added. This optical potential is
fitted on elastic-scattering data around the Coulomb barrier.
In all applications, we use the integer masses with h̄2/2mN =
20.736 MeV fm2 (mN is the nucleon mass).

The n + 12C potential is chosen as in Ref. [33], i.e.,

VnC (r) = − V0

1 + exp[(r − r0)/a0]

− (� · s)
V�s

r

d

dr

1

1 + exp[(r − r0)/a0]
, (48)

where V0 = 62.70 MeV for � even and 50.59 MeV for � odd,
and where r0 = 2.656 fm and a0 = 0.705 fm. The spin-orbit
amplitude is V�s = 28.406 MeV. This potential reproduces
the experimental energies of the first 1/2−, 1/2+, and 5/2+
states in 13C. Between the target and the projectile, the same
n + 12C potential is adopted for each partial wave, corre-
sponding to the central part of Eq. (48). Once potentials (47)
and (48) are determined, the model does not contain any free
parameter.

In Fig. 2, the 13C + 12C elastic cross sections at Ec.m. = 7.8
and 14.2 MeV are shown. In each case, we consider four
conditions: (1) when only the local potential is included, the
backward angle enhancement of the cross section is not repro-
duced; (2) the nonlocal calculation involving the 13C ground
state only (dashed line) reproduces fairly well the data; (3)
when the 1/2+ and 5/2+ excited states are introduced (solid
line), elastic scattering is not significantly modified; (4) in
the n + 12C potential between the target and the projectile
(dotted line), we have replaced the real potential (48) by
the Koning-Delaroche parametrization [34]. Although some
symmetry properties are lost (see Sec. II B), there is a weak
influence on the 13C + 12C cross section.

Figure 2(c) presents the amplitudes |U Jπ
L | of the scattering

matrices (elastic channel) at Ec.m. = 7.8 MeV. We choose here
J = L − 1/2 but a similar behavior is observed for J = L +
1/2. Without the nonlocal part of the potential, the variation
is smooth. As expected, the nonlocality leads to a splitting
between odd and even L values. This property gives rise to the
backward angle enhancement of the cross section, and justifies
the use of parity-dependent optical potentials [15] to simulate
non-local effects. An advantage of the present method is that it
does not require any additional parameter. In addition, excited
states of the n + 12C system are included in a straightforward
way.
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FIG. 2. 13C + 12C elastic cross sections (divided by the Ruther-
ford cross section) at Ec.m. = 7.8 MeV (a) and 14.2 MeV (b). The
data are taken from Refs. [28] (full dots) and [29] (open dots). The
solid lines are obtained with the 1/2−, 1/2+, 5/2+ states of 13C.
The dashed (red) lines correspond to the 1/2− ground state only.
The dotted (blue) lines are obtained with different n + 12C potentials
in the entrance and exit channels (see text). (c) presents the ampli-
tudes |U Jπ

L | of the scattering matrices at Ec.m. = 7.8 MeV, and for
J = L − 1/2.

In Fig. 3, we investigate the inelastic cross sections to the
13C(1/2+) and 13C(5/2+) states, which have been measured
in Ref. [35] at energies around the Coulomb barrier. The effect
of the nonlocality is quite important. With the local potential
only, the theoretical cross sections are far below the data. The
calculation involves the 13C(gs, 1/2+, 5/2+) + 12C channels.
Here the cross sections are more sensitive to the choice of
the n + 12C potential. Let us emphasize that there is no fit of
the cross sections. All inputs are kept identical as for elastic
scattering.
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local
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0.01

0.1

1
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C C , C C  (5/2 )
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m
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/
sr

FIG. 3. Inelastic 13C + 12C cross sections to the 1/2+ (a) and
5/2+ (b) states of 13C at Ec.m. = 9.88 MeV. The experimental data are
taken from Ref. [35]. Solid (dashed) lines are obtained with identical
(different) n + 12C potentials in the entrance and exit channels (see
text).

B. The 13N + 12C system

With the development of radioactive beams, the 13N + 12C
mirror system has attracted much attention in the literature
[28,30]. Measurements have provided some information about
charge-symmetry and about the parity effect [28]. Figure 4
shows the 13N + 12C calculated cross sections. Only the 13N
ground state is bound, and has been introduced in the calcula-
tion. With respect to the 13C + 12C system, the only difference
is the introduction of a Coulomb term for p + 12C (with
RC = 2.7 fm). The binding energy of 13N is −1.90 MeV, in
fair agreement with experiment (−1.94 MeV). Here again the
model reproduces remarkably well the experimental data [28].

C. The 16O + 12C system

In the 16O + 12C scattering, an α particle is exchanged
between the target and the projectile. This system has been
intensively investigated in the literature (see, for example,
Refs. [25–27] for recent works).

We consider the elastic-scattering data of Villari et al. [36]
at the typical energy Ec.m. = 23.14 MeV, where a backward-
angle enhancement of the cross sections is observed. We use
the same 12C + 12C core-core potential (47) as in previous
applications. For the α + 12C system, we adopt the potentials
used in Ref. [37], i.e., a Woods-Saxon potential with a range
R0 = 4.15 fm and a diffuseness a = 0.55 fm. In addition to the
0+ ground state, we include the 1−, 3−, and 2+ excited states.
Since the 2+ state presents a cluster structure, R0 is chosen
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13N+12C

FIG. 4. 13N + 12C elastic cross sections (divided by the Ruther-
ford cross section) at Ec.m. = 7.8 MeV (a) and 9.6 MeV (b). The
data are taken from Ref. [28]. Solid lines correspond to the full
calculation, and dashed lines to the local potential only.

larger (4.5 fm) for this state. The Coulomb potential has a
point-sphere shape with a radius RC = 4.15 fm. The depths
of the potentials V0 are adjusted to the experimental binding
energies, which provides V0 = −43.25,−68.95,−41.3, and
−42.4 MeV for the 0+, 2+, 1−, and 3− states, respectively.
Between the target and the projectile, the same α + 12C po-
tential is adopted, corresponding to the 16O ground state.

The elastic cross section is presented in Fig. 5(a) in dif-
ferent conditions. The calculation with the local potential
provides a fair description of the data up to θ ≈ 90◦, but
does not reproduce the enhancement at large angles. With
the nonlocal term, even if the oscillations at backward angles
are not exactly reproduced, the role of inelastic channels is
obvious. The present model, based on the exchange of an α

particle during the collision, cannot be expected to be per-
fect. Other channels are open, such as the neutron or proton
transfer, but are neglected here. There are usually treated by
phenomenological potentials involving additional parameters.

In the 16O + 12C system, the role of the core-valence po-
tential in more important than in 13C + 12C. To assess this
sensitivity, we have also used the α optical potential of
Avrigeanu et al. [38] [dotted line in Fig. 5(a)]. This is ex-
plained by the long range of the α + 12C potential, due to
the Coulomb term. In this system, using a consistent α + 12C
potential in the entrance and in the exit channels seems more
appropriate.
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16O+12C
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FIG. 5. 16O + 12C elastic cross section (divided by the Ruther-
ford cross section) at Ec.m. = 23.14 MeV (a). The data are taken
from Ref. [36]. The solid lines correspond to the multichannel model.
The dashed lines are obtained with the 16O ground state only, and
the dotted lines with different α + 12C potentials (see text). Panel
(b) presents the amplitudes |U Jπ | of the scattering matrices.

The amplitude of the scattering matrices |U Jπ | is dis-
played in Fig. 5(b). As for 13C + 12C, the calculation with
the non-local term provides differences between even and odd
partial waves. These differences, however, are weaker than in
13C + 12C. As observed in Ref. [27], the even-odd effect is
stronger around the grazing angular momentum (J ≈ 18).

IV. DISCUSSION OF THE NONLOCALITY

A. Local equivalent potentials

The effects of the nonlocality can be simulated by an equiv-
alent local potential. For the sake of simplicity, we assume a
single-channel problem. The extension to multichannel sys-
tems is simple and does not modify the conclusions. In a
single-channel model, the radial Schrödinger equation reads

[
− h̄2

2μ

(
d2

dr2
− L(L + 1)

R2

)
+ V Jπ (R) − E

]
gJπ (R)

+
∫

W Jπ (R, R′)gJπ (R′)dR′ = 0 (49)

and can be replaced by

[
− h̄2

2μ

(
d2

dr2
− L(L + 1)

R2

)
+ V Jπ

eq (R) − E

]
gJπ (R) = 0,

(50)
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where the equivalent potential V Jπ
eq (R) is given by

V Jπ
eq (R) = V Jπ (R) + 1

gJπ (R)

∫
W Jπ (R, R′)gJπ (R′)dR′.

(51)

This potential depends on the angular momentum, and
presents singularities at the nodes of the wave functions.
Thompson et al. [39] have proposed to define a smooth, J-
independent, effective potential by

V π
eff (R) =

∑
J ωJπ (R)V Jπ

eq (R)∑
J ωJπ (R)

, (52)

where the weight factors ωJπ (R) are given by

ωJπ (R) = (2J + 1)(1 − |U Jπ |2)|gJπ (R)|2. (53)

In this way, the influence of the nodes is reduced and the
potential (53) does not depend on J . However, the scattering
matrices obtained with Eq. (52) are not strictly identical to
those obtained with Eq. (49) or (50). A test with the cross
sections must be performed to check the accuracy of the
potential (52).

As we expect the equivalent local potentials to depend
on parity, the potential (52) is defined for each parity.
From V +

eff (R) and V −
eff (R), we determine central and parity-

dependent potentials as

V0(R) = 1
2 (V +

eff (R) + V −
eff (R)),

Vπ (R) = 1
2 (V +

eff (R) − V −
eff (R)). (54)

The present work, based on rigorous non-local potentials,
offers the possibility to investigate the parity potential which,
in general, is phenomenological (see, for example, Ref. [28]).
Notice that both V0(R) an Vπ (R) contain real and imaginary
components. A parity effect can be also deduced from tech-
niques based on data inversion [27,40].

B. Asymptotic form of the nonlocal kernels

Here, we present some qualitative aspects regarding
the nonlocal kernels, and in particular the overlap kernel
N Jπ

cL,c′L′ (R, R′). Let us first discuss the overlap functions
NK

cc′ (R, R′) which show up in Eq. (24). To simplify the pre-
sentation, we assume that the valence particle is a neutron in
a s state. In that case, the core-valence wave function tends to

u0(r) → C exp(−kBr), (55)

where kB is the wave number and C the asymptotic normaliza-
tion coefficient (ANC).

To develop further, we use the expansion [15]

exp(−k|r1 − r2|)
k|r1 − r2|
= 2

π

∑
�

(2� + 1)i�(kr<)k�(kr>)P�(cos θr ), (56)

where r< = min(r1, r2) and r> = max(r1, r2), and where θr

is the angle between r1 and r2. In this definition, i�(x) and
k�(x) are modified spherical Bessel functions [41]. For large

arguments, they tend to

i�(x) → exp(x)

2x
,

k�(x) → π
exp(−x)

2x
. (57)

Using the expansion (56) for u0(r) and u0(r′), and using
relations (23), we find, for large (R, R′) values,

u0(r)u0(r′)
rr′ →

∑
K

NK,as(R, R′)PK (cos θR). (58)

In the range αR′ < R < R′/α, the asymptotic kernels are de-
fined by

NK,as(R, R′) = 4

π2
k2

BC2(−1)K
∑
�1�2

(2�1 + 1)(2�2 + 1)

× 〈�10�20|K0〉2k�2 (γ kBR)k�1 (γ kBR′)

× i�1 (αγ kBR)i�2 (αγ kBR′), (59)

and Eq. (57) provides

NK,as(R, R′) ∼ 1

R2R′2 exp

(
− kB

1 + α
(R + R′)

)
. (60)
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FIG. 6. Local effective potentials for the 13C + 12C system at
Ec.m. = 7.8 MeV. In (a), the dashed curve corresponds to the local
potential, and the solid curves to the local equivalent potentials (52).
(b) displays the parity potential Vπ (R) [Eq. (54)].
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FIG. 7. Contributions of the overlap, kinetic energy, and poten-
tials (VCC and VCn) to the nonlocal kernel (17) for R = R′, and for
J = 1/2+ (a) and J = 1/2− (b) in the 13C + 12C system (Ec.m. =
7.8 MeV). The overlap kernel is multiplied by −Ec.m.. For VCC , the
real part is displayed. The inset focuses on the long-range part in a
logarithmic scale.

As α is in general close to 1, Eqs. (59) and (60) are valid for
R ≈ R′. Otherwise, a similar development gives

NK,as(R, R′) ∼ 1

R2R′2 exp

(
− kB

1 − α
|R − R′|

)
. (61)

This shows that the nonlocality overlap kernel presents an
exponential decrease, associated with the binding energy of
the projectile.

When the angular momentum is not an s wave, the expan-
sion (56) can be generalized [15], but this does not change the
general trend. In addition, if the transferred particle is charged,
the asymptotic behavior takes the form

u0(r) → C
exp(−kBr)

rηB
, (62)

where ηB is the Sommerfeld parameter. The faster decrease
can be simulated by using Eq. (55) with a (larger) effective
wave number, which simulates Coulomb effects [42]. Conse-
quently, Eq. (59) remains qualitatively valid, even for charged
transferred particles.

The nonlocal potentials (17) also involve kinetic-energy
and nucleus-nucleus potential terms. As discussed in Sec. II B,
the kinetic-energy kernel is directly deduced from a sec-
ond derivative of the overlap. The asymptotic behaviour is

-2
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0

-1.5 -0.5 0.5 1.5

R = 1
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R = 3
R = 4
R = 5

-50
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50

100

150

200

-1.5 -0.5 0.5 1.5
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R = 4
R = 5

(a)

(b)

FIG. 8. Nonlocal kernels N (R, R′) (a) and W (R, R′) [real part,
(b)] for the 13C + 12C system (J = 1/2+), as a function of (R′ − R)
[see Eq. (17)]. The curves are plotted for different R values.

therefore similar to Eq. (59). To determine the potential con-
tribution, we start from definition (24). The first term in the
potential VCv (r′) is involved in standard DWBA calculations
(post form) [21]. For a transferred neutron, the nuclear contri-
bution in VCv makes this term short-ranged. The asymptotic
behavior (60) is therefore modified, with a smaller range.
In contrast, the core-core interaction VCC always presents a
Coulomb term. One therefore expects this interaction to be
dominant at large distances.

The non-local potentials in Eq. (17) are obtained from
Eqs. (24) and (55), and from angular matrix elements [21,23].
The procedure is similar to the one followed in DWBA cal-
culations. If the internal angular momenta are taken as � =
�′ = 0, the calculation is simple, as the sum over K contains a
single term K = J . We have

N Jπ (R, R′) = J RR′NJ (R, R′)/(2J + 1),

VJπ (R, R′) = J RR′(V J
Cv (R, R′) + V J

CC (R, R′)
)
/(2J + 1).

(63)

Equation (59) contains a phase factor (−1)J at large dis-
tances, which shows that the nonlocal potentials have opposite
signs for even and odd partial waves. This effect arises from
the symmetrization of the wave functions for the core ex-
change. As shown by von Oertzen [13], it can be simulated
by a local, parity-dependent, potential. An application to the
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FIG. 9. Local effective potentials for the 16O + 12C system at
Ec.m. = 23.14 MeV. In (a), the local potential and the equivalent
potential (52) are superimposed. (b) displays the parity potential
Vπ (R) [Eq. (54)].

analysis of the 13C + 12C and of the 13N + 12C systems can be
found in Ref. [28].

C. Application to 13C + 12C

In Fig. 6, we present the effective potentials for the
13C + 12C system at Ec.m. = 7.8 MeV. For the sake of sim-
plicity, we discuss the single-channel calculation. Figure 6(a)
shows the local potential (dashed lines), and the parity-
dependent effective potentials (solid lines) obtained with
Eq. (54). The elastic cross sections obtained with this effec-
tive potential is very close to the original cross section (they
are almost indistinguishable in a figure). As expected, the
potentials present small oscillations due to the nodes in the
scattering wave functions. We have repeated the calculations
with different numerical conditions (channel radius, number
of basis functions), and checked that the effective potentials
are quite stable. Figure 6(b) display the parity potential Vπ

[see Eq. (54)]. The parity effect is important in the real part as
well as in the imaginary part.

In Fig. 7, we display the different contributions in the
nonlocal kernel W Jπ (R, R′) Eq. (17) for R = R′ at Ec.m. = 7.8
MeV. Four terms are present: the overlap, the kinetic en-
ergy, and two contributions of the potential (the core-core
and core-valence terms). Partial waves J = 1/2+ (L = 1)
and J = 1/2− (L = 0) are shown in panels (a) and (b). The
change of sign between both parities is confirmed. At short
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FIG. 10. Contributions of the overlap, kinetic energy and po-
tential (VCC and VCα) to the nonlocal kernel (17) for R = R′, and
for J = 0+ (a) and J = 1− (b) in the 16O + 12C system. The real
part of VCC is shown. The inset focuses on the long-range part in
a logarithmic scale.

distances, the main contribution comes from VCC , but the
kinetic-energy term is dominant at large distances. For con-
sistency, the overlap is multiplied by −Ec.m., and represents a
small contribution. The inset of panel (a) confirms the asymp-
totic behavior. All terms but VCv have the same exponential
behavior. The contribution associated with VCv presents a
faster decrease owing to the absence of the Coulomb inter-
action.

In Fig. 8, we analyze the nonlocality for R �= R′ and for
J = 1/2+. We plot the overlap and real-potential kernels as a
function of (R′ − R) for various R values. For small R values,
the shape of the overlap kernel is close to a Gaussian, which
justifies the Perey-Buck approximation [43]. However, for
R > 1 fm, the shape is more complicated than a Gaussian
factor. As expected the main effect of the nonlocality comes
from |R − R′| � 1 fm.

D. Application to 16O + 12C

The local effective potentials (52) for 16O + 12C at Ec.m. =
23.14 MeV are presented in Fig. 9(a). Again, we limit the
discussion to the single-channel system. Since the depth of
these potentials is rather large, the differences with the exact
local potential (16) are small, indistinguishable at the scale
of the figure. Figure 9(b) shows the parity potential (54).
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FIG. 11. Nonlocal kernels N (R, R′) (a) and W (R, R′) [real part,
(b)] for the 16O + 12C system (J = 0+), as a function of (R′ − R) [see
Eq. (17)]. The curves are plotted for different R values.

As for 13C + 12C, these potentials present oscillations due
to the nodes of the scattering wave functions. Although the
amplitude is small, the effect of the parity potential extends
to large distances. This explains that this potential provides a
large backward-angle enhancement of the cross section (see
Fig. 5). The cross sections provided by the effective potential
(52) are very close to the original cross sections of Fig. 5.

The decomposition of the nonlocal kernel (17) in different
terms is presented in Fig. 10 for J = 0+ (a) and J = 1− (b).
The dominant contribution comes from the core-core potential
VCC . There is a cancellation effect of the overlap, kinetic-
energy, and VCα contributions. At large distances the decrease
of the potentials [inset of Fig. 10(a)] is much faster than in
13C + 12C (see Fig. 7). This is explained by Eq. (60) since kB

is much larger in 16O than in 13C (and coefficient α is smaller).
The nonlocality for R �= R′ is illustrated in Fig. 11 for

J = 0+. As for 13C + 12C, the shape of the overlap kernel is
close to a Gaussian for small R values, but deviates when R
increases.

V. CONCLUSION

Our main goal is an exploratory study of a rigorous
method to treat exchange effects in nucleus-nucleus scat-
tering. Starting from a three-body model, we have derived
local and nonlocal kernels in a coupled-channel formalism.

This represents a natural extension of the three-body CDCC
method. The coupled-channel system, involving nonlocal po-
tentials, is solved with the R-matrix theory, associated with
the Lagrange-mesh technique. This permits fast and accu-
rate calculations of the scattering matrices and of the cross
sections.

We have applied the formalism to typical reactions:
13C + 12C, 13N + 12C, and 16O + 12C, which illustrate the
transfer of a neutron, of a proton, and of an α particle, re-
spectively. In each case we started from a core-core optical
potential, taken from the literature, and which fits 12C + 12C
elastic-scattering data. As expected, exchange effects lead to
a backward-angle enhancement of the elastic cross sections.
For the core-valence potential, we have two “natural” choices:
either it is fitted on the spectroscopic properties of the heavy
particle, or it is fitted on scattering properties. The first choice
guarantees the symmetry of the scattering matrix, since the
same Hamiltonian is used in the entrance and exit channels.
With our examples, we have however shown that both op-
tions provide similar cross sections. This can be explained
by the weak contribution of this potential to the nonlocal
kernel.

We have shown in Sec. IV that the bound-state wave func-
tions of the C + v system need to be accurately determined up
to large distances. If not, the calculation of the various kernels
is inaccurate, and the scattering matrices are unstable. For
this reason, CDCC calculations involving continuum states
raise numerical difficulties with pseudostates as they tend to
zero at very large distances only. The use of bins would be
preferable. In our applications, however, the binding energies
of the projectile are large, and no strong continuum effects are
expected.

The present work opens the path to more ambitious calcu-
lations, such as the α + 8Be system, where exchange effects
could affect the existing calculations [11]. Also it could be
extended to more complicated systems, such as d + 11Be or
13N + 13C which require a four-body theory. Another appli-
cation of the formalism deals with coupled reaction channel
calculations where similar nonlocal kernels are involved [21].
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APPENDIX: CALCULATION OF THE NONLOCAL
KINETIC ENERGY

The kinetic-energy kernel T Jπ
cL,c′L′ is implicitly defined by

∫
T Jπ

cL,c′L′ (R, R′)gJπ
c′L′ (R′)dR′ = R

〈
ϕJMπ

cL

∣∣∣∣TR

∣∣∣∣ϕJMπ
c′L′

gJπ
c′L′ (R′)

R′

〉
,

(A1)
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where the integration is performed over r and �R. An explicit
expression for this kernel can be obtained by, first, writing the
kinetic-energy operator TR in spherical coordinates,

TR = − h̄2

2μR

d2

dR2
R + L̂2

R

2μR2
, (A2)

where L̂R is the orbital angular momentum associated with the
coordinate R. The radial part of TR can be moved outside the
matrix element since the function ϕJMπ

cL is independent of R
and since the matrix element does not involve any integration
over the coordinate R. Besides, since the operator L̂2

R is Her-
mitian, it can be applied, with a trivial effect, on the bra. We
therefore obtain

R

〈
ϕJMπ

cL

∣∣∣∣TR

∣∣∣∣ϕJMπ
c′L′

gJπ
c′L′ (R′)

R′

〉
= − h̄2

2μ

[
d2

dR2
− L(L + 1)

R2

]
R

〈
ϕJMπ

cL

∣∣∣∣ϕJMπ
c′L′

gJπ
c′L′ (R′)

R′

〉
(A3)

=
∫ {

− h̄2

2μ

[
∂2

∂R2
− L(L + 1)

R2

]
N Jπ

cL,c′L′ (R, R′)
}

gJπ
c′L′ (R′)dR′, (A4)

where the definition (18) of the norm kernel and the Leibniz integral rule have been used. By comparison of Eqs. (A1) and (A4),
we get the relation (25), linking the kinetic-energy and norm kernels,

T Jπ
cL,c′L′ (R, R′) = − h̄2

2μ

[
∂2

∂R2
− L(L + 1)

R2

]
N Jπ

cL,c′L′ (R, R′). (A5)
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