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The spontaneous fission (SF) analysis of even mass 242−260Fm isotopes is carried out using a preformed
cluster model based on quantum mechanical fragmentation theory. The deformation effects are included up
to the quadrupole (β2) deformed nuclei with optimum orientations (θopt.

i ) leading to hot-compact (side-to-side)
and cold-elongated (tip-to-tip) configurations. The spherical and hot-compact deformed configurations of decay
fragments result in the symmetric fragment mass distributions for Fm isotopes; however, the symmetric peak
gets sharper with an increase in the neutron (N) number of the parent nucleus. In the case of cold orientations,
a transition from two-peaked (asymmetric fission) to three-peaked (multimodal fission) mass distribution is
observed with an increase in the mass number of Fm. The SF half-lives (T SF

1/2) are calculated using the neck-length
parameter (�R) for 242−260Fm isotopes and compared with the experimental data. Besides this, the induced fission
of Fm isotopes is studied within the dynamical cluster-decay model. The energy dependence of fission fragment
mass distributions and the isotopic dependence is analyzed at energy range E∗ = 5–42 MeV. In addition, the role
of temperature-dependent deformations in the fission dynamics is also explored.
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I. INTRODUCTION

The nuclear fission process, the splitting of the atomic
nucleus into two or more fragments, has a significant role in
the generation of electric power, the stability of superheavy
nuclei, the termination of the r-nucleosynthesis process, and
the generation of exotic nuclear isotopes. In addition, the
fission decay products have many industrial and medical ap-
plications. It is therefore important to have an appropriate
knowledge of the fission fragment mass distributions of heavy
nuclei. Several experimental and theoretical efforts have been
made to analyze the properties of nascent fission fragments,
and it has been observed that macroscopic-microscopic effects
play an important role in fission dynamics [1–5].

The literature shows some exceptional observations [3–9]
in reference to fission fragment mass distributions. For
example, the 180Hg nucleus disintegrates into asymmetric
fragmentation; however, it is supposed to decay via symmetric
fission fragments, i.e., 90Zr + 90Zr having the magic neutron
number N = 50 [3,4]. The n-induced fission of the 238U nu-
cleus at higher energies (En = 50–60 MeV) has maintained
the two-humped mass asymmetric distribution, where shell
effects are expected to vanish at such higher energies [5].
Moreover, the actinides are known to have an asymmetric
fission pattern, but the first observation of a transition from
asymmetric to symmetric fission has been measured in the
region of mass A = 256–258 of Fm isotopes [7,8]. Such com-
peting emergence among the symmetric and the asymmetric
fission is mainly associated with deformed magic shell effects
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[2]. Apart from this, the tip-to-tip (equatorial or elongated)
and side-to-side (polar or compact) configurations of nuclei
have great impact on the formation and decay dynamics of a
nucleus [10,11]. In view of the above, we require a thorough
analysis of fission fragment mass distributions in reference to
the macroscopic-microscopic effects, deformations, orienta-
tions, angular momentum, and energy dependence of fission
observables for a wide isotopic range.

In the present manuscript, the spontaneous fission (SF)
and the induced fission (IF) of fermium (Fm) isotopes having
even mass number A = 242–260 are studied. It would be
interesting to study the fission mechanism of Fm isotopes
as they may exhibit a symmetric profile due to presence of
two-proton magic Sn (Z = 50) mass-symmetric nuclei. Ear-
lier, one of us and collaborators have studied the decay of the
254Fm∗ compound nucleus (CN) formed in the 11B + 243Am
reaction in a wide excitation energy range [12]. The obtained
results suggest that deformation and orientation effects play
important roles in the fission dynamics [12]. To analyze the IF
dynamics, we have extended this study to other isotopes, i.e.,
242−260Fm∗ formed in 11B + 231−249Am reactions at excitation
energies E∗ = 5–42 MeV. The analysis of spontaneous fission
and induced fission is worked out using the preformed cluster
model (PCM) [13–16] and the dynamical cluster-decay model
(DCM) [17–21], respectively.

The aim of this work is (i) to analyze the spontaneous as
well as the induced fission of Fm isotopes having mass num-
ber A = 242–260; (ii) to examine the role of deformations and
orientations of decay fragments in the structure of the frag-
mentation potential V(η, R) and the preformation probability
(P0); (iii) to investigate the impact of the excitation energy
(E∗), the angular momentum (�), and the neutron (N) number
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of fissioning nuclei on fission fragment mass distributions;
(iv) to study the possibility of multimodal fission, i.e., the
existence of both symmetric and asymmetric fission in Fm
isotopes; and (v) to identify the nascent light (AL) and heavy
(AH ) fission fragments to analyze the role of spherical and
deformed magic shell closure.

This manuscript is organized as follows: The description
of cluster decay models based on quantum mechanical frag-
mentation theory is given in Sec. II. The calculations of
spontaneous fission and induced fission of Fm isotopes and
their corresponding discussions are presented in Sec. III, and
finally the conclusions drawn are summarized in Sec. IV.

II. METHODOLOGY

In the present work, the SF and IF of fermium isotopes
is studied within the framework of the PCM [13–16] and the
DCM [17–21], respectively. These methods are based on the
quantum mechanical fragmentation theory [22–24] which is
governed via the collective coordinates of mass (and charge)
asymmetry η = (A1 − A2)/(A1 + A2), relative separation dis-
tance (R), multipole deformations (βλi), and orientations (θi),
where i = 1 and 2 correspond to heavy (A1 or AH ) and light
(A2 or AL) nuclei in the same plane. The main ingredient
of this methodology is the collective fragmentation potential
VR(η, T ) that brings the structural effects of the parent nucleus
into the formalism and is calculated at fixed R = Ra (the entry
point of the penetration path) as

VR(η, T ) =
2∑

i=1

[VLDM(Ai, Zi, T )] +
2∑

i=1

[δUi] exp
(−T 2/T 2

0

)
+VC (R, Zi, βλi, θi, T ) + VP(R, Ai, βλi, θi, T )

+V�(R, Ai, βλi, θi, T ). (1)

Here, VLDM, the T -dependent macroscopic liquid drop model,
is taken from Davidson et al. [25], which is based on the
semiempirical mass formula of Seeger [26]. δU , the “empiri-
cal” microscopic shell correction as stated in Ref. [27], is also
made T dependent in reference to Ref. [28]. Both VLDM and
δU , the parts of the binding energy (B.E.), are obtained by
using the macroscopic-microscopic renormalization method
of Strutinsky [29]. The macroscopic (VLDM) and microscopic
(δU ) parts of the B.E. play an important role in deciding the
symmetric and asymmetric division of the fissioning nucleus.
Moreover, the δU term is strongly affected by the excitation
energy of the nucleus [see Eq. (1)] and becomes silent at
sufficiently higher energies [28]. In Eq. (1), VC , VP, and V� are
the Coulomb, proximity, and centrifugal potentials, respec-
tively (for further description, see Ref. [21]). The prox2000
version of the proximity potential [30,31] is considered for
the calculations of induced fission and spontaneous fission.

The static (T -independent) deformations of fragments are
taken up to quadrupole deformations (β2i) from the theoretical
estimates of Möller et al. [32], and the “optimum” orientations
θ

opt.
i for hot-compact and cold-elongated configurations are

taken from Table 1 of Ref. [11]. The orientations of decay
fragments are uniquely fixed on the basis of the (+ or −) sign
of their corresponding β2i, which manifest in the form of the
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FIG. 1. A pictorial representation of hot-compact (a)–(c) and
cold-elongated (d)–(f) configurations for prolate (p), oblate (o), and
spherical (s) shapes of nuclei. See Ref. [11] for further details.

hot-compact or the cold-elongated configuration. A pictorial
description of deformed configurations along with orientation
angles is given in Fig. 1. The deformation parameters are also
made temperature dependent [33,34], by using the relation

βλi(T ) = exp(−T/T0)βλi(0), (2)

where βλi(0) represents the static deformation and T0 is the
temperature of the nucleus at which shell effects start to vanish
(T0 = 1.5 MeV) [28].

Using the fragmentation potential VR(η, T ), the preforma-
tion yields P0(Ai ) of the decaying fragments (Ai) is obtained
by solving the Schrödinger equation in the η coordinate at
fixed R = Ra,{

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η, T )

}
ψν (η) = E νψν (η),

(3)

with ν = 0, 1, 2, 3, . . . referring to ground-state (ν = 0) and
excited-state solutions, with the ground-state preformation
probability P0 given as

P0 = |ψ (η(Ai ))|2
√

Bηη

2

ACN
. (4)

The higher values of ν contribute to excited states, and these
contributions enter via excitation of higher vibrational states.
For these excited states, the wave function reads as

|ψ |2 =
∞∑

ν=0

|ψν |2 exp(−E ν/T ). (5)

The preformation probability (P0) is the probability to find
certain mass fragments at position R on the decay path and
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FIG. 2. PCM-calculated scattering or interaction potential for (a) spherical, (b) β2-deformed hot-compact, and (c) β2-deformed cold-
elongated configurations for asymmetric spontaneous fission of the 242Fm nucleus.

is calculated using collective clusterization to estimate the
fission products. Bηη in Eq. (4) represents the smooth hydro-
dynamical mass parameter [35]. The next step is to estimate
the penetrability P. For ground-state and excited-state de-
cays, the barrier penetration proceeds differently, which is
explained via the PCM and DCM descriptions in the subse-
quent section.

A. Preformed cluster model

The decay half-life T1/2 and the decay constant λ are cal-
culated as

T1/2 = ln 2

λ
= νP0P. (6)

Here, P0 and P are the preformation probability and the barrier
penetrability, referring to η and R motions, respectively. ν0 is
the barrier assault frequency, calculated as

ν0 = velocity

R0
= (2E2/μ)1/2

R0
, (7)

where R0 is the radius of the parent nucleus, μ is the reduced
mass, and E2 is the kinetic energy related to the Q value,
given as E2 = (A1/A)Q. It is to be noted that the PCM is the
� = 0 and T = 0 version of the DCM for ground-state decay
processes. To compute the fragmentation potential for ground-
state decay analysis, Eq. (1) is solved at T = 0 and � = 0,
where P0 is calculated using Eq. (4) for the ν = 0 vibrational
state. In the PCM, the penetration probability P is a three-step
process obtained from the Wenzel-Kramers-Brillouin (WKB)
integral and is calculated using

P = PaWiPb. (8)

The transmission probability consists of three contributions as
shown in Fig. 2:

(i) the penetrability Pa from Ra to Ri,

Pa = exp

(
−2

h̄

∫ Ri

Ra

{2μ[V (R) − V (Ri )]}1/2dR

)
;

(9)

(ii) the inner deexcitation probability Wi at Ri (and is
taken to be unity [36]),

Wi = exp(−bEi ); (10)

(iii) the penetrability Pb from Ri to Rb

Pb = exp

(
−2

h̄

∫ Rb

Ri

{2μ[V (R) − Q]}1/2dR

)
. (11)

In the above equations, V (R) is the scattering potential and
is calculated using the relation

V (R) = VP + VC + V�, (12)

where V� = 0 for ground-state decays.

B. Dynamical cluster-decay model

For � partial waves, the CN decay or the fragment’s pro-
duction cross section is given by

σ (A1, A2) = π

k2

�max∑
�=0

(2� + 1)P0P, k =
√

2μEc.m.

h̄2 , (13)

where the preformation probability P0 is defined by Eqs. (4)
and (5) for the excited states (ν �= 0), and the penetrability
P is calculated as shown in Eq. (14), which further depends
on the temperature (T ) and the angular momentum (�). μ =
mA1A2/(A1 + A2) is the reduced mass, and �max is maximum
angular momentum fixed where the cross sections of light
particles (or evaporation residue) become negligibly small.
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For investigating the dynamics of an excited compound nu-
cleus, the T -dependent fragmentation potential is calculated
using Eq. (1).

In the DCM, the penetrability P is a one-step process
(different from the PCM method) and is calculated using the
following WKB integral,

P = exp

(
−2

h̄

∫ Rb

Ra

{2μ[V (R) − Qeff ]}1/2dR

)
, (14)

with V (Ra, T ) = V (Rb, T ) = TKE(T ) = Qeff (T ). V (Ra, T )
acts like an effective Q value of decay, Qeff (T ), and TKE(T )
as the total kinetic energy of decaying fragments. The point
(Ra) of the penetration path is defined as

Ra(T ) = R1(α1, T ) + R2(α2, T ) + �R(T )

= Rt (α, T ) + �R(T ), (15)

with radius vectors Ri (i = 1 and 2),

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi )

]
, (16)

and T -dependent nuclear radii R0i(T ) of the nuclear system,

R0i(T ) = R0i(1 + 0.0007T 2) fm. (17)

Here, R0i is taken from Refs. [30,31] for the prox00 version of
the proximity potential. αi is the angle between the symmetry
axis and the radius vector of the colliding nucleus, and �R
is the only parameter of the model known as the neck-length
parameter, which assimilates the neck formation effects and
related deformation effects.

III. CALCULATIONS AND RESULTS

This part is divided into two subsections, i.e., Secs. III A
and III B. In the first section, the SF investigation of radioac-
tive Fm isotopes is made; however, the second section is
devoted to the 11B-induced fission of Fm nuclei.

A. Spontaneous fission of Fm isotopes

In the PCM, the angular and temperature effects are
silent; however, the deformation effects are included up to
quadrupole (β2) deformations of fragments with optimum
orientations of decay fragments. Depending on the prolate
and oblate shapes (+ and − signs) of β2 deformations, the
orientation angles are uniquely fixed, which results in the
“hot-compact” and “cold-elongated” configurations as shown
in Fig. 1 (for a detailed description of optimum orienta-
tions, see Ref. [11]). The hot-compact and cold-elongated
configurations are also known as equatorial (side-side) and
polar (tip-tip) configurations, respectively. In this manuscript,
we denote hot-compact and cold-elongated configurations
as β2-deformed (hot) and β2-deformed (cold) orientations.
First, the barrier characteristics are analyzed for the asymmet-
ric spontaneous fission of the 242Fm → 140Ce (β21 = 0.0) +
102Me (β22 = 0.329) nucleus in reference to these configura-
tions. Figures 2(a), 2(b), and 2(c) show the scattering potential
V (R), respectively, for the choice of spherical, β2-deformed
(hot), and β2-deformed (cold) approaches. It is observed from

FIG. 3. Collective fragmentation potential VR(η) of 242Fm and
260Fm nuclei for (a), (b) spherical, (c), (d) β2-deformed (hot), and
(e), (f) β2-deformed (cold) configurations. The fission regions and
related β2 deformations are also marked.

Figs. 1 and 2 that the barrier properties are significantly modi-
fied with the inclusion of deformations and orientation effects.
The interaction radius is largest for the case of cold configura-
tions and smallest for the hot configuration as evident from
Figs. 1 and 2. Consequently, cold orientations correspond
to the smallest interaction barrier and hot configurations to
the largest interaction barrier. This means that such effects
are highly important as they in turn modify the preformation
probability P0, the barrier penetrability P, and hence the decay
half-life.

For further analysis of fission valleys, the collective frag-
mentation potential VR(η) of 242Fm and 260Fm fissioning
nuclei is plotted in Figs. 3(a)–3(f) as a function of the light
fragment mass (A2) for the choice of spherical, β2-deformed
(hot), and β2-deformed (cold) approaches. The structure of
fission valleys is significantly modified with the inclusion of
deformation and orientation effects. The corresponding fission
region is marked in the figure. If we focus on the spherical
approach (β2 = 0 for each fragmentation), the fission dips
indicate that the symmetric fragments are main contributors in
the spontaneous fission of 242Fm and 260Fm parent nuclei [see
Figs. 3(a) and 3(b)]. The contributed fission fragments of both
nuclei in Figs. 3(c) and 3(d) also show the symmetric fission
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FIG. 4. The preformation yield P0 is plotted as a function of fission fragments of all considered Fm isotopes for (a)–(j) spherical fragments,
(k)–(t) β2-deformed hot-compact configurations, and (u)–(δ) β2-deformed cold-elongated configurations.

pattern for the β2-deformed hot configuration. However, the
cold interactions in Figs. 3(e) and 3(f) show a dominance of
asymmetric fission and multimodal fission, respectively, for
242Fm and 260Fm nuclei. Here, multimodal fission means the
coexistence of both symmetric and asymmetric fission.

It is clear from above analysis that the inclusion of hot or
cold orientations cause significant influence on the fragment
mass distribution, as the fragmentation potential depends on
the deformation parameter and on the choice of radius vector
as shown in Eq. (1). For β2-deformed (hot) cases, the symmet-
ric fission valleys in the fragmentation potential are observed
in the neighborhood of spherical or nearly spherical fragments
(β2 ≈ 0). However, for cold configurations, the asymmetric
minima in the fragmentation potential correspond to highly
deformed fragments (β2 > 0.3) where the symmetric one be-
longs to spherical or nearly spherical nuclei (β2 ≈ 0).

In hot orientations, the spherical decaying fragments have
interaction radii larger than those of the β2-deformed frag-
ments, and hence the fragmentation potential has a smaller
magnitude for spherical fragments; therefore, we get the
symmetric distribution for this case. On the other side, the
cold-elongated interactions of highly deformed fragments
result in the larger interaction radii leading to the lower frag-
mentation potential as compared to spherical fragments. As a
consequence, the asymmetric fission becomes prominent for
the case of cold interactions. It will be of further interest
to explore the causes and consequences of spherical emer-
gence (symmetric) and deformed (asymmetric) fragments in
the cold interaction criteria, for the case of the 260Fm nucleus.
For further analysis, the preformation probability P0 of each
isotope of Fm is shown in Figs. 4(a)–4(j), 4(k)–4(t), and
4(u)–4(δ) for spherical, β2-deformed (hot), and β2-deformed
(cold) approaches, respectively. It is to be noted here that the
fragmentation potential goes as an input in the Schrödinger
equation used to calculate the preformation probability P0, and
the valleys of the fragmentation potential correspond to the
peaks of the preformation probability and vice versa. Overall,

the mass distribution of 242−260Fm isotopes show the symmet-
ric pattern in the fission region for spherical and β2-deformed
(hot) cases. However, the symmetric peak becomes sharper
with an increase in the neutron (N) number of the Fm parent
nucleus and with the inclusion of β2-deformed hot orienta-
tions in the decay fragments. For the β2-deformed (cold) case,
a transition from double peak to triple peak is observed as one
goes from 242Fm to 260Fm fissioning nuclei. This indicates
that the β2-deformed (cold) approach follows a different fis-
sion decay path than that of the spherical and hot interactions.
The results of the preformation probability shown in Fig. 4
are in agreement with the ones plotted for the fragmenta-
tion potential in Fig. 3. The lighter-mass Fm isotopes exhibit
asymmetric spontaneous fission. However the mass distribu-
tions of the heavier fermium isotope (260Fm) seem to suggest
the possibility of multimodal spontaneous fission (that means
the coexistence of symmetric and asymmetric fission). This
indicates that the cold-elongated configuration results are in
reasonable agreement with the experimental observations of
Refs. [6–9].

To analyze the multimodal fission of Fm isotopes, the po-
sitions of nascent fission fragments in proton (Z) and neutron
(N) numbers and the most probable fission fragments are
identified in reference to the peaks of the preformation proba-
bility P0. The most probable light (AL) and heavy (AH ) fission
fragments are listed in Table I, and the Z and N numbers of
the light fission fragments (AL) are plotted in Figs. 5(a) and
5(b) as a function of the mass number of the parent nuclei for
the spherical and β2-deformed (cold) approaches. The choice
of fission fragments for the β2-deformed (hot) case is the
same as that of the spherical approach. The symmetric peaks
for both spherical and hot interactions are mainly governed
by the spherical magic shell closures of the proton number
at Z = 50, which means the 242−260Fm isotopes decay via
isotopes of tin (Sn). The neutron number of these isotopes
increases with the mass number of the parent nuclei and ap-
proaches the spherical neutron shell closure of N = 82 for the
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TABLE I. The PCM-calculated SF half-lives T SF
1/2 are presented

along with the fitted neck-length parameter �R and the most
probable fission fragments for spherical and β2-deformed (cold)
orientations. The calculated half-lives are also compared with the
experimental one [37].

Parent Decay �R (fm) log10T SF
1/2 (sec)

nucleus channel PCM Expt.

Spherical
242Fm 120Sn + 122Sn 1.418 −1.586 −3.097
244Fm 122Sn + 122Sn 1.420 −1.600 −2.481
246Fm 122Sn + 124Sn 1.369 −0.826 0.903
248Fm 124Sn + 124Sn 1.372 5.247 4.556
250Fm 124Sn + 126Sn 1.000 7.353 7.402
252Fm 126Sn + 126Sn 0.640 9.606 9.596
254Fm 126Sn + 128Sn 0.640 7.291 7.294
256Fm 128Sn + 128Sn 0.653 4.023 4.019
258Fm 128Sn + 130Sn 1.100 −3.440 −3.432
260Fm 130Sn + 130Sn 0.725 −2.372 −2.397

β2-deformed
242Fm 102Mo + 140Ce 0.880 −2.928 −3.097
244Fm 98Zr + 146Nd 0.760 −2.268 −2.481
246Fm 98Zr + 148Nd 0.480 0.860 0.903
248Fm 98Zr + 150Nd 0.180 4.767 4.556
250Fm 100Zr + 150Nd 0.015 7.397 7.402
252Fm 100Zr + 152Nd 0.001 7.615 9.596
254Fm 102Zr + 152Nd 0.083 6.228 7.294
256Fm 102Zr + 154Nd 0.274 2.455 4.019
258Fm 102Zr + 156Nd 0.660 −3.339 −3.432

128Sn + 130Sn 1.050 −3.439
260Fm 104Zr + 156Nd 0.582 −2.324 −2.397

130Sn + 130Sn 0.670 −2.382

heaviest considered isotope. For the β2-deformed (cold) case,
the Z number and the N number of light asymmetric fission
fragments lie in the neighborhood of the deformed magic shell
closures of Z = 38 and N = 60 and 62. This indicates that
deformed magic shell closures play an important role in the
case of cold-elongated configurations. However, the symmet-
ric peak becomes more prominent in heavier-mass 258−260Fm
nuclei and belongs to the spherical doubly magic shell clo-
sures of the Sn (Z = 50, N = 82) nuclei. From Figs. 3–5, it
may be concluded that the spherical and deformed magic shell
closures along with the deformation and orientation degree of
freedom play an important role in the division of a fission-
ing nucleus. The SF half-lives (T SF

1/2) of identified fission
fragments are calculated by using the only parameter of the
PCM, i.e., the “neck-length” parameter (�R) for spherical
and β2-deformed (cold) cases. Table I and Fig. 6(c) represent
the PCM-calculated half-lives, which show nice agreement
with the experimental data [37]. For the case of 258,260Fm
nuclei, the half-lives are calculated for both symmetric fis-
sion and asymmetric fission fragments as both nuclei show
multimodal fission in cold interactions. The fission half-lives
and the neck-length parameters along with the identified most
probable fission fragments are listed in Table I. The magni-
tude of �R is small for cold interactions in comparison to
the spherical approach. The decay half-life depends on the

FIG. 5. (a) Proton (Z) and (b) neutron (N) numbers of most
preferred light fission fragments are plotted as a function of mass
of Fm spontaneous fissioning nuclei for spherical and β2-deformed
(cold) cases.

preformation probability P0 and the penetrability P as per
Eq. (6). Figures 6(a), 6(b), and 6(c) depict log10 P0, log10 P,
and log10 T SF

1/2 of the most favorable fission fragments, respec-
tively, as a function of the mass number of the parent nuclei. It
is clear from figure that log10 T SF

1/2 show the opposite trend to
log10 P0 and log10 P. It is clearly evident from Fig. 6 that, when
preformation and penetration probabilities are large, the decay
half-life is small and vice versa. This indicates that the higher
probability of fragment preformation and the subsequent pen-
etration lead to lower magnitude of the decay half-life. This
justifies the fact that the preformation factor and the barrier
penetrability are highly desirable for adequate addressal of the
SF mechanism.

B. Induced fission of Fm isotopes

In the previous section we have explored the spontaneous
fission of Fm isotopes and investigated the fission mass dis-
tribution for the spherical as well as the deformed choice
of decay fragments in the collective clusterization process.
Further, to analyze the excitation energy (E∗

CN) and angular
momentum (�) effects on fission fragment mass distribu-
tions, the excited-state fission decay analysis of Fm isotopes
formed in the heavy-ion-induced reactions is carried out in
this section. Previously, one of us and collaborators have
made an investigation of the 254Fm∗ nucleus formed in the
11B + 243Am reaction at various excitation energies using the
spherical approach, the β2 deformation, and higher multi-
pole (β2–β4) deformations within the DCM [12]. This work
explored some interesting results with regard to the effects
of deformations, orientations, and excitation energies. As an
expansion of this work, we have chosen 11B-induced reactions
on 231−249Am targets forming hot and rotating 242−260Fm∗

isotopes to analyze the fission fragment mass distributions.
First, the fragmentation potential VR(η, T ) and the pre-

formation probability P0 of the 242Fm∗ nucleus formed via
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FIG. 6. The logarithm of (a) the preformation probability (log10 P0), (b) the penetrability (log10 P), and (c) the SF half-lives (log10 T SF
1/2 (s))

as a function of the mass number of Fm isotopes for spherical, β2-deformed (hot), and β2-deformed (cold) configurations.

the 11B + 231Am reaction at excitation energy E∗ = 42 MeV
are calculated for three kinds of approaches as used for the
case of spontaneous fission, such as spherical, β2-deformed
(hot), and β2-deformed (cold) configurations of decay
fragments [see Figs. 7(a) and 7(b)]. In Figs. 7(a) and 7(b),
the deformations are considered T -independent, i.e., static
deformations [β2(0)]. The calculations are made at �R =
1.0 fm in reference to work on 254Fm∗ at the same excitation
energy [12]. It is evident from Fig. 7 that the structure of
the fragmentation potential is significantly modified with the
inclusion of deformations and orientations. The mass distri-
bution shows asymmetric behavior for β2-deformed (cold)
configurations. However, the broad symmetric pattern of the

FIG. 7. (a) Fragmentation potential VR(η) and (b) preformation
probability P0 of the 242Fm∗ nucleus plotted as a function of frag-
ment mass for spherical, β2-deformed (hot), and β2-deformed (cold)
configurations.

spherical approach changes to a sharp symmetric fission peak
for the hot configuration. The reason behind these structural
variations of the fragmentation potential and the preformation
probability is similar to one explored for spontaneous fission,
discussed in Sec. III A. The results for hot-compact configu-
rations are in agreement with those of a previous study [12].
It was observed that various Fm isotopes show symmetric
fission fragment mass distributions for static and dynamic
β2-deformed hot-compact orientations [12]. In Fig. 7, the
cold-elongated configuration represents the asymmetric fis-
sion mass distribution in agreement with the experimental
observation of Refs. [9,38,39]. Therefore, further analysis is
carried out for the choice of β2-deformed cold-elongated con-
figurations only.

To explore the temperature (T ) dependence on deforma-
tion for cold-elongated orientations, a comparative analysis of
T -independent (static) and T -dependent (dynamic) β2 defor-
mations is made in Figs. 8(a) and 8(b) and Figs. 8(c) and 8(d),
respectively, for 242Fm∗ and 260Fm∗ excited nuclei at E∗ = 42
MeV and � = 0h̄. It is seen from Fig. 8 that the dynamic
deformations [β2i(T )] impart significant influence on the frag-
mentation path and the preformation distribution. The static
deformations [β2i(0)] follow an asymmetric fission pattern for
both fissioning nuclei. In the case of dynamic deformations,
the 242Fm∗ nucleus exhibits broad mass distribution (mix
of symmetric and asymmetric components), whereas a clear
symmetric peak appears in the mass distribution of the 260Fm∗

nucleus. This indicates that dynamic deformations have great
influence on the fission fragment mass distributions and show
nice agreement with the experimental observations [9,38].

The above results are plotted at zero angular momentum
(i.e., V� = 0) only, the � dependence on fragment mass dis-
tribution is explored via Eq. (1). Figures 9(a) and 9(b) show
the preformation probability for 242Fm∗ and 260Fm∗ nuclei for
cold interactions using dynamic deformations in a broad range
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FIG. 8. DCM-calculated (a), (c) fragmentation potential V (A2) and (b), (d) preformation probability P0 for 242Fm∗ and 260Fm∗ nuclei are
plotted for static (T -independent) and dynamic (T -dependent) deformations for cold orientations.

of angular momenta, i.e., � = 0-�max at E∗ = 42 MeV. There
are some structural variations in the structure of P0 for both
nuclei. However, the overall mass distribution of fission frag-
ments remains similar, i.e., broad spectrum (near asymmetric)
for 242Fm∗ and symmetric distribution for 260Fm∗ nucleus.

FIG. 9. Preformation probability (P0) as a function of fragment
mass (Ai) for (a) 242Fm∗ and (b) 260Fm∗ nuclei at angular momentum
values � = 0–�max.

�R is the only parameter of the model that is used to
address the experimental half-lives and decay cross sections.
However, in the present case our main focus is to analyze mass
distributions of Fm isotopes. To analyze the impact of �R

FIG. 10. The preformation probability P0(Ai ) is presented for a
neck-length parameter range of �R = 0–1.5 fm for (a) 242Fm and
(b) 260Fm compound nuclei.
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FIG. 11. The preformation yield P0(Ai ) of 242,250,256,260Fm fissioning nuclei is plotted at excitation energies E∗ = 5, 10, 20, and 42 MeV.

on the mass distributions, the preformation yield P0 is plotted
in Figs. 10(a) and 10(b), respectively, for 242Fm∗ and 260Fm∗

nuclei at E∗ = 42 MeV for �R = 0.0 to 1.5 fm. It is clearly
evident that the magnitude of P0 increases with increments
in �R. However, the fission pattern remains similar, i.e., near
asymmetric for 242Fm∗ and symmetric for 260Fm∗. That means
�R does not clearly affect the fission decay channel of the
considered fissioning nuclei.

Finally, the energy dependence of fission fragment mass
distributions of 242,250,256,260Fm∗ isotopes is studied in Fig. 11
at excitation energies E∗ = 5, 10, 20, and 42 MeV and corre-
sponding �max values for the cold-elongated orientation case.
It is clearly observed from Fig. 11 that fission fragment
mass distributions are significantly modified with increase
in excitation energy and neutron numbers of compound nu-
clei. The evolution towards mass asymmetry slows down
with increases in excitation energies for 242,250,256Fm∗ [see
Figs. 11(a)–11(l)]. This can be easily understood from the fact
that shell effects start diminishing with increases in energy
[28]. However, the 260Fm∗ nucleus prefers to decay via sym-

metric fragments at all energies. If we compare spontaneous
fission versus induced fission from Figs. 4 and 5 for cold
interactions, it is observed that for both cases lighter-mass
Fm nuclei prefer asymmetric fission distribution. For heavier-
mass Fm nuclei, the triple-humped distribution is observed
for the case of spontaneous fission showing the significant
contribution of asymmetric components along with dominant
symmetric fragments. However, at various excitation energies
the symmetric fission is the more dominant decay mode in
comparison with asymmetric fission, as one can see from
Figs. 11(m)–11(p). These results are in fair agreement with
the induced fission measurements of Refs. [9,38,39].

IV. SUMMARY

First, the spontaneous fission of 242−260Fm isotopes is stud-
ied within the preformed cluster model. We have computed
the fission fragment mass distributions for three types of
decay configurations: spherical, quadrupole β2-deformed hot-
compact, and β2-deformed cold-elongated. The interaction
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radius decreases as one goes from cold-elongated to spherical
to hot-compact shapes, whereas the interaction barrier height
increases as one goes from cold-elongated to spherical to
hot-compact configurations of decay fragments. These results
affect the barrier characteristics and hence the fragmentation
path, because the potentials involved strongly depend on the
deformation and the interaction radius of decay fragments.
The spherical and β2-deformed hot-compact configurations
depict the symmetric pattern for each fermium isotope; how-
ever, the symmetric peaks become sharp with increases in the
neutron (N) number of the parent nucleus. The β2-deformed
cold-elongated shapes of decay fragments show a transition
from double-humped (asymmetric fission) to triple-humped
(multimodal fission) mass distribution. The heavier isotopes
such as 258−260Fm exhibit multimodal fission (i.e., coexistence
of both symmetric and asymmetric fission) for the cold con-
figuration criteria. Spherical and β2-deformed hot-compact
approaches show that Fm isotopes decay via spherical magic
shell closure [Sn (Z = 50) isotopes]. However, for cold orien-
tations, Fm nuclei prefer to decay via asymmetric fragments
having deformed magic shell closures of Z = 38 and N = 60
and 62. From this, we conclude that spherical as well as
deformed magic shell closures play an important role in the
fission dynamics of Fm isotopes. The decay half-lives of the
considered spontaneous fissioning nuclei are calculated and
have nice agreement with the experimental data.

Next, the induced fission of 242−260Fm∗ compound nuclei
formed via 11B + 231−249Am reactions at excitation energies

E∗ = 5–42 MeV is investigated using the dynamical cluster-
decay model for the choice of cold-elongated configurations
of fragments. We have observed that the T -dependent (dy-
namic) deformations play a significant role in fission fragment
mass distributions. A transformation from an asymmetric to
a symmetric fission peak is observed with an increase in the
neutron number of the Fm∗ nucleus. Moreover, the excitation
energies of fissioning nuclei significantly affect the fission
mass distributions. The angular momentum (�) and the neck-
length parameter (�R) dependence of mass distributions are
studied and it is observed that magnitude of preformation
yields significant changes; however, the overall fission decay
pattern remains the same.

The present study highlights the significance of defor-
mation and orientation effects, together with the excitation
energy and the isotope dependence of fission fragment mass
distributions for both spontaneous and induced fission dynam-
ics. It will be of further interest to investigate the ternary
fission (i.e., the division of fissioning nuclei into three frag-
ments) of Fm isotopes in reference to the structure of the
fragmentation potential and fission yields.
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