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Improvements to the macroscopic-microscopic approach of nuclear fission
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The well-established macroscopic-microscopic (mac-mic) description of nuclear fission enables the prediction
of fission-fragment yields for a broad range of fissioning systems. In this work, we present several key
enhancements to this approach. We improve upon the microscopic sector of nuclear potential-energy surfaces
by magnifying the resolution of the Lipkin-Nogami equations and strengthening the Strutinsky procedure, thus
reducing spurious effects from the continuum. We further present a novel deterministic method for calculating
fission dynamics under the assumption of strongly damped nucleonic motion. Our technique directly determines
the evolution of the scissioned shape distribution according to the number of random-walk steps rather than
the statistical accumulation of fission events. We show that our new technique is equivalent to the Metropolis
random walk pioneered over the past decade by Randrup and colleagues. It further improves upon it because
we remove the need for altering the nuclear landscape via a biased potential. With our final improvement, we
calculate fission fragments mass and charge distributions using particle number projection, which affords the
simultaneous calculation of both mass- and charge-yield distributions. Fission fragments are thus calculated
from the quantum-mechanical A-body states of the potential-energy surface rather than from the collective mass
asymmetry variable αg of the finite-range liquid-drop model used in past work. We highlight the success of our
enhancements by predicting the odd-even staggering and the charge polarization for the neutron-induced fission
of 233U and 235U.
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I. INTRODUCTION

Fission data, especially those based on fragment yields,
are a key ingredient in many applications. For instance, the
accurate description of fission yields is influential for nu-
clear engineering and waste management [1,2], the production
of radioactive isotopes via fragmentation [3–7], reactor neu-
trinos [8,9], and in the pursuit of synthesizing superheavy
elements [10–13]. Fission may also play an important role
in the formation of the heavy elements in astrophysical pro-
cesses [14–19]. The complexity of nuclear fission makes this
reaction challenging to model theoretically from fundamental
principles.

There are many approaches to the theoretical description of
fission. Fully microscopic models describe the fission process
by assuming the nuclear interaction between the nucleons
only. The most frequently used implementation is the energy
density functional (EDF) theory [20], where the density de-
pendence of the energy is derived from an effective interaction
or directly parametrized [21,22]. Among EDF approaches,
the time-dependent Hartree-Fock (in its broad sense, possi-
bly including symmetry restorations or pairing correlations)
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consists in the explicit determination of the time-dependent
evolution of the mean-field potential [23–32]. Developments
are also being made to include two-body dissipation. A first
method, TD2RDM, is based on the time-dependent version
of the reduced density-matrix method and explicitly consid-
ers the two-body density-matrix time-evolution [33]. Another
promising way is the inclusion of stochastic fluctuations in
the dynamics [34–36]. A different strategy to describe fis-
sion involves using the time-dependent generator coordinate
method (TDGCM) which is based on the assumption that
only a few collective variables drive the overall fission dy-
namics. This hypothesis enables the reduction of the many
degrees of freedom involved in the fissioning system de-
scription to only a couple of them (one to three in practical
applications) [20,37–44]. Efforts have been made to extend
this approach and include dissipative effects in a microscopic
framework [43,45,46].

Approaching the description of fission observables from
macroscopic-microscopic theory provides yet another alterna-
tive. In this approach, the fissioning system is modeled to first
approximation as a macroscopic system (e.g., a liquid-drop or
a droplet of nuclear matter) to obtain the smooth part of its
energy [47,48]. Corrections are then applied that account for
the missing microscopic behavior such as shell and pairing
effects [49–51]. The time evolution of the fissioning system
is then obtained statistically with the exact or approximate
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resolution of the Langevin equations [52–54]. Approximate
methods that assume strong damping are modeled via a ran-
dom walk on the potential-energy surface and are found to
produce a good agreement with known data [55,56].

The benefit of such semiclassical approaches over the mi-
croscopic approaches applied to the description of fission
is the inclusion of larger spaces for the collective shape
degrees of freedom and the ability to model stochastic dy-
namics, while retaining reasonable calculation times. Thus,
such models are applicable to a range of reactions across many
heavy fissioning systems [57]. To date, these approaches have
examined several starting configurations for the dynamics,
including from the ground state, inner saddle region, and
after the last saddle [54,57]. Those studies which start after
the last saddle explicitly ignore dynamics before this point,
potentially neglecting important pathways. Studies that start
at the ground state may introduce a phenomenological tilting
of the potential-energy surface in an attempt to force the cal-
culation to go over the fission barrier sufficiently quickly. The
downside to the tilting is that it may introduce an unphysical
bias to the results. Finally, the fragments properties of past
work, e.g., Ref. [55], may be calculated with reference only to
the collective asymmetry coordinate αg, thereby limiting the
predictive power of the approach.

In this work, we address several of the major shortcomings
of past macroscopic-microscopic fission studies to describe
the nascent fission-fragment yields. In Sec. II, we outline our
theoretical model and highlight the various improvements. In
Sec. III, we present the results we have obtained with our
approach.

II. THEORETICAL APPROACH

Our description of the fission process can be decomposed
into three main steps. First, the shape-dependent potential-
energy surface (PES) of the corresponding fissioning system
(typically target-plus-neutron) is determined by using a
semiclassical method based on the macroscopic finite-range
liquid-drop model (FRLDM) with microscopic corrections.
The calculation of the potential-energy surface, which has
been improved by using an enhanced Strutinsky method that
drastically reduces the continuum effects and allows the use
of a higher-quality particle basis, is presented in Sec. II A.
Second, we simulate the fission dynamics using the new
algorithm presented in Sec. II B. This algorithm is used to
obtain the probability to populate each scissioned configura-
tion of the PES. The term “scissioned configuration” refers to
the set of all the shapes where it is meaningful to calculate
fission-fragment properties. Eventually, in what follows, such
configurations are defined as those having a neck between
the prefragments whose radius is below a threshold value
rneck. Finally, in Sec. II C, we present how we can deduce, for
the first time in this type of approach, the fission fragments
probability distribution in charge and mass, Y (Z, A), based on
a microscopic projection technique.

A. Potential-energy landscape

Several parametrizations of the sharp macroscopic density
have been developed, see, e.g., Ref. [58], to specify the rel-
evant degrees of freedom associated with large deformations
encountered in fission. In this work, we restrict ourselves to
the description of binary fission. Even though there is experi-
mental evidence for ternary [59–62] and even quaternary [63]
fission, their contribution to the fragment probability distri-
bution is smaller than binary fission by orders of magnitude.
Thus, we use the so-called matched-quadratic-surface (MQS)
parametrization that was introduced in Refs. [64–67] for the
specification of our shape families. The MQS parametrization
contains nine degrees of freedom. Six degrees of freedom
remain by ensuring a smooth junction between the bodies and
fixing the volume of the shape. Because one of the parameters
corresponds to the center of mass, this may be set to the origin,
reducing the number of parameters to five. We use the symbol
χ to denote a specific MQS shape. The predefined grid we
use to calculate the PES is taken from Ref. [68]. We note
that the nodes associated with αg = −0.02 are redundant due
to parity-reversal symmetry and therefore are not explicitly
calculated.

For a nuclear system defined by Z protons and N neutrons,
the potential energy E (χ) associated with a given set of MQS
parameters can be written as

E (χ) = Emac(χ) + �Eshell (χ) + �Epair (χ), (1)

where the first term Emac(χ) is the macroscopic energy ob-
tained assuming that the fissioning system is a nuclear drop of
charged liquid. It depends implicitly on Z and N as discussed
in greater detail in Appendix A. The two remaining terms
define the microscopic corrections.

To obtain the sharp contribution to the energy coming from
shell effects, �Eshell(χ), we determine a microscopic many-
body state at the mean-field approximation. The effective
averaged potential for the isospin τ is

V (τ )(χ) = V (τ )
1 (χ) + V (τ )

C (χ) + V (τ )
s.o. (χ), (2)

where each term is taken from Ref. [67]. The first term V (τ )
1

corresponds to the parametrized mean-field associated with
the central part of the nuclear interaction and is obtained by
assuming a Yukawa interaction between the nucleons,

V (τ )
1 (r; χ) = − Vτ

4πa3
pot

∫
�

dr′ e−|r−r′|/apot

|r − r′|/apot
, (3)

where � is the volume delimited by the shape associated
with the MQS parameters χ scaled to have fixed volume
of 4

3πAR3
pot [Rpot is defined by Eq. (81) of Ref. [69]]. The

potential depths Vτ are given by

Vn = Vs + Va δ̄, (4)

Vp = Vs − Va δ̄, (5)

where Vs and Va are parameters of the model and δ̄ is given by
Eq. (85) of Ref. [69]. The Coulomb term V (τ )

C (r; χ) is only
acting on protons and, using the superposition principle, is
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given by

V (p)
C (r; χ) =

∫
dr′ ρ

(χ)
prot.(r

′)
e2

|r − r′| , (6)

where ρ
(χ)
prot.(r1) is the proton density. In our model, it is as-

sumed sharp and homogeneous inside the shape, leading to

V (p)
C (r; χ) = eρc

∫
�

dr′

|r − r′| , (7)

where

ρc = Ze
4
3πR3

pot

. (8)

The spin-orbit term has the form

V (τ )
s.o. = λτ

(
h̄2

2mnucc

)2 ∇V (τ )
1 σ × p

h̄
, (9)

where the interaction strength λτ is taken for each isospin τ

as a linear function of the mass A [69] such that

λτ = kτ A + lτ , (10)

and kτ and lτ are parameters. All the parameters involved in
the calculation of our potential-energy landscapes are listed in
Appendix A.

Assuming that the particles of the compound system are
independent, the many-body state can, therefore, be obtained
as a Slater determinant of particles, the state of each particle
being an eigenfunction of the Hamiltonian associated with
the energy ei of the particle. Differentiating ourselves from
past FRLDM work, the shell correction is calculated inde-
pendently for each isospin by using the improved Strutinsky
method presented in Refs. [70,71]. This procedure removes
spurious contributions from the continuum, which happens
when the number of shells, N0, in the harmonic-oscillator
basis used to estimate the shell-plus-pairing correction, is
set too large, thus causing divergences in the calculation of
the energy. The avoidance of such spurious contributions is
the reason why the size of the particle basis was limited to
N0 = 12 in past work. In this work, we use N0 = 20, which
is sufficiently larger than N0 = 12 while remaining computa-
tionally manageable. We have tested our Strutinsky procedure
up to N0 = 30 and found no anomalies.

Pairing correlations are obtained by using the Lipkin-
Nogami approach with the seniority-pairing approximation
on the Slater-determinant of particles used to estimate shell
effects [72,73]. The relevant equations read

Npair = Lmin +
Lmax∑

k=Lmin

v2
k , (11)

2

G
=

Lmax∑
k=Lmin

1√
(εk − λ)2 + �2

, (12)

v2
k = 1

2

[
1 − εk − λ√

(εk − λ)2 + �2

]
, (13)

εk = ek + (4λ2 − G)v2
k , (14)

λ2 = G

4

⎧⎪⎪⎨
⎪⎪⎩

∑Lmax
k=Lmin

u3
kvk

∑Lmax

l=Lmin
l �=k

ulv
3
l

∑Lmax
k=Lmin

u2
kv

2
k

∑Lmax

l=Lmin
l �=k

u2
l v

2
l

⎫⎪⎪⎬
⎪⎪⎭. (15)

This is a nonlinear system of 2Nv + 3 equations, where Nv =
Lmax − Lmin + 1 is the number of pairs in the valence space.
The unknowns of this systems are the pairing gap �, the Fermi
energy λ, the number-fluctuation constant λ2, and, for k =
Lmin, . . . , Lmax, vk are the occupation amplitudes and εk are
the shifted single-particle energies. This system of equations
is completely determined by the single-particle energies ek ,
the number of paired levels Npair, the first and last levels 0 �
Lmin � Lmax in the valence space, and the seniority-pairing
strength G. The latter is obtained by using a new method based
on Ref. [74]. Specifically, to obtain an expression for G, we
assume that the spacing between the energy levels is constant

εk − λ̃ = k − Npair

ρ̃
. (16)

In this expression, λ̃ is the smooth Fermi energy of the
smoothed single-particle energy and g̃ is the smooth level
density obtained with the Strutinsky method. The pairing gap
� in Eq. (13) is approximated by an effective pairing gap

�̄ =
{

rmicBs/N1/3 for neutrons
rmicBs/Z1/3 for protons.

(17)

We then substitute the sum of Eq. (12) by an integral,

Lmax∑
k=Lmin

f (εk − λ) ≈ ρ̃

∫ y2

y1

f (x)dx, (18)

to obtain the following expression for G:

G = 2

ρ̃

[
arsinh

(
y2

�̄

)
− arsinh

(
y1

�̄

)]−1

, (19)

where

y1 = Lmin − Npair − 1
2

ρ̃
, (20)

y2 = Lmax − Npair + 1
2

ρ̃
. (21)

Note that these expressions differ from the one obtained in
Refs. [48,69], being shifted by 1/(2ρ̃ ). The expression of the
average pairing correlation plus quasiparticle energy Ẽp.c. is
then obtained by inserting these quantities into Eq. (110) of
Ref. [69].

We solve the Lipkin-Nogami equations (11)–(15) by using
a new method based on the analytical calculation of the full
Lipkin-Nogami Jacobian and the action of its inverse on any
vector coupled with a fifth-order numerical scheme. We set
multiple starting points to avoid local minima and find that
our method greatly enhances the success rate of the resolution
of the Lipkin-Nogami equations. Thus, the time required to
solve the Lipkin-Nogami equations using our method is faster
than in older work. This means that the calculation time for

034617-3



MARC VERRIERE AND MATTHEW RYAN MUMPOWER PHYSICAL REVIEW C 103, 034617 (2021)

our procedure is now negligible compared with the calculation
and diagonalization time of the Hamiltonian, thus allowing
for larger shape families or potential-energy surfaces to be
explored in the future. Our new method is described in detail
in Appendix B.

B. Novel approach to strongly damped nuclear motion

Many different methods have been developed to calculate
nascent fission-fragment yields. Most of these methods seek
to simplify the time evolution of the complex nuclear motion
subject to various assumptions, see Refs. [20,75] for recent
reviews. One of the most successful methods pursued over the
past ten years is the assumption of strongly damped nuclear
dynamics in which the Smoluchowski equations reduce to
Brownian-shape motion that may be described by a Metropo-
lis random walk [55,76]. This method has been used in a large
range of fission reactions using Markov chain Monte Carlo
(MCMC) sampling [56,57,77–79]. The primary drawback to
this method is the long calculation time (due to assimilation
of enough trajectories for sufficient statistics) required for
estimating the fission properties of a fissioning system whose
energy is slightly above the fission barrier. In what follows,
we briefly review the construction of the finite-temperature
PES and the MCMC sampling method. We then present our
new deterministic algorithm (DPS) for attaining scissioned
configurations under the assumption of strongly damped mo-
tion. In this work, we show that our deterministic algorithm is
completely equivalent to the standard one, used in Ref. [57].
Our new algorithm affords no statistical error associated with
its results and allows rapid simulation of fission reactions
with an excitation energy close to the energy of the fission
barrier.

1. The standard approach (Monte Carlo)

Following Ref. [57], the finite-temperature potential en-
ergy U (χ) for each point of the PES is obtained through the
insertion of a suppression factor S[E∗(χ)] in Eq. (1),

U (χ) = Emac(χ) + S[E∗(χ)]�Es+p(χ), (22)

�Es+p(χ) = �Eshell(χ) + �Epair (χ), (23)

S[E∗] = 1 + exp(−E1/E0)

1 + exp[(E∗ − E1)/E0]
, (24)

where E∗(χ) = E∗ − E (χ) is the local excitation energy and
E0 and E1 are two parameters that control the shell damping
term, as in Ref. [56]. A discrete random walk is then used on
the finite-temperature PES U (χ) to ascertain the scissioned
configurations for the given incident energy E∗.

A single trajectory in the standard MCMC random walk
follows the evolution of a path through the PES represented
by a sequence of contiguous steps. A trajectory begins at an
initial shape χinit and stops when an ending configuration
χend is reached. Ending configurations are taken to be the
scissioned shapes (e.g., the radius of its neck, if present, is
lower than a given parameter rneck).

In the MCMC procedure, a step is a move between a
shape χ and one of its D neighbors χk (k = 1, . . . , D) and
is denoted χ ⇒ χk . The determination of one step proceeds

FIG. 1. Graph of the Markov chain transitions determining one
step the standard MCMC random-walk method (without the red
transition, where χ halt

0 is a final node of the Markov chain). In our
novel algorithm, the red looping transition is added to transform χhalt

0

into an absorbing node so that an execution of the Markov chain
cannot terminate.

via intermediate moves along a Markov chain, which we call
transitions. The chain can be represented by a directed graph
with a set of nodes associated with each lattice site of the PES.
A particular node in the Markov chain is denoted by χ0, which
implicitly depends on the shape χ. Upon reaching this node,
it triggers a step to lattice site χ.

The subgraph of the Markov chain depicting a single step
in the lattice is presented in Fig. 1. A single step in a trajectory
can be decomposed into the procedure below.

(1) Start at a shape χ (node χ0). Set the transition proba-
bilities accordingly,

P
[
χ0 → χ

go
0

] =
{

0 χ is scissioned
1 otherwise, (25)

P
[
χ0 → χhalt

0

] = 1 − P
[
χ0 → χ

go
0

]
. (26)

In this case, make the trivial transition, χ0 → χ
go
0 or

χ0 → χhalt
0 . Stop the calculation if χhalt

0 is reached.
(2) Randomly choose one of the D neighbors χk (k =

1, . . . , D) using a discrete uniform distribution (tran-
sition χ

go
0 → Ik).

(3) Compare the finite-temperature potential energies
�U = U (χk ) − U (χ). Then, set

P [Ik → χk] =
{

exp
(−�U

T

)
if �U > 0

1 otherwise.
(27)

where T = [E∗(χ)/a]1/2 is the local effective temper-
ature and a is the level-density parameter taken to be
a = A/8 [57].

(4) Make the transition Ik → χk with probability
P [Ik → χk]. If the transition occurs, go to the node
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χ0(χk ) of the neighboring shape χk (χk → χ0(χk ))
and perform the step χ ⇒ χk in the lattice. Otherwise,
go back to χ

go
0 (transition Ik → χ

go
0 ) and repeat the

procedure from step 2.

This procedure defines all of the intermediate transitions
that determine one step in the lattice, differing slightly from
the standard interpretation, since it is impossible to step from a
lattice site to itself. The standard interpretation of the MCMC
algorithm can be recovered by also triggering the step χ ⇒ χ

any time a transition Ik → χ
go
0 is made. Since we are only

interested in determining the distribution of ending config-
urations, this subtle point does not impact outcomes, but is
necessary for the transformation required by the novel algo-
rithm proposed in the next section.

In previous work, the combination of trajectories cor-
responding to realizations of the full Markov chain are
simulated to produce the set of scissioned configurations.
Many trajectories have to be calculated to reduce the statistical
uncertainty and obtain a reasonable estimation of the probabil-
ity density function for the scissioned configurations.

2. Deterministic algorithm (without absorption)

In contrast to the above approach, we propose to directly
determine the evolution of the probability density function
for the configurations in the lattice according to the number
of steps in a trajectory associated with the MCMC random
walk. This transformation is analogous to the determination
of the Fokker-Plank equations associated with the Langevin
equations. In what follows, we use χ � ϕ to indicate the set
of all possible paths between χ and ϕ in the subgraph of the
Markov chain associated with one lattice site, plus possibly
the sites (χ0(χ′)) of the neighboring sites χ′.

We first determine the probabilities associated with any
step from a lattice site χ to a neighboring site χ′. This proba-
bility, P [χ ⇒ χ′], is equal to the probability P [χ0 � χ0(χ′)]
to reach the node χ0(χ′) from the node χ0 in the Markov
chain. Any path from χ0 to χ0(χ′) can be decomposed into
three independent parts: (i) χ0 → χ

go
0 , (ii) χ

go
0 → · · · →

χk (iii) χk → χ0(χ′). Using the so-called memoryless prop-
erty of the Markov chain and the triviality of the last
transition χk → χ0(χ′) (associated with probability 1), we
have

P [χ ⇒ χ′] = P
[
χ0 → χ

go
0

]× P
[
χ

go
0 � χk

]
. (28)

We focus now on the determination of the probability
P [χgo

0 � χk] to reach the node χk from χ
go
0 through any

path of the Markov chain of Fig. 1, from the node χ
go
0 . To

do so, let us notice that any path P between the nodes χ
go
0

and χk can be decomposed into two parts. First, P starts
with a loop from χ

go
0 to itself containing an even number

of transitions, denoted L(P ). Second, it ends with the two
transitions χ

go
0 → Ik → χk . Using the memoryless property

of Markov chains, this translates into the equation

P [P] = P [L(P )]
P [Ik → χk]

D
. (29)

Recall that D is the number of neighboring lattice sites. The
probability P [χgo

0 � χk] to reach the node χk from χ
go
0 is the

sum of the probabilities of all path P from χ
go
0 to χk ,

P
[
χ

go
0 � χk

] = C
P [Ik → χk]

D
, (30)

C =
∑
P

P [L(P )]. (31)

Any path starting at χ
go
0 has to pass through exactly one of the

nodes χk . Therefore, the sum over k = 1, . . . , D of Eq. (30)
adds up to one. This leads to

C =
[

D∑
k=1

P [Ik → χk]

D

]−1

. (32)

Alternatively, the expression of C can be obtained by using
again the memoryless transitions property to easily show that

the probability P [χgo
0

2N� χ
go
0 ] to reach χ

go
0 from itself after

2N transitions is

P
[
χ

go
0

2N� χ
go
0

] =
[

D∑
k=1

P
[
Ik → χ

go
0

]
D

]N

. (33)

Since it is impossible to reach χ
go
0 in an odd number of

transitions, we have directly

P
[
χ

go
0

2N+1� χ
go
0

] = 0. (34)

The coefficient C is the sum of all the closed loops passing
through χ

go
0 . Consequently,

C =
∞∑

N=0

[
D∑

k=1

P
[
Ik → χ

go
0

]
D

]N

. (35)

Equation (32) can directly be obtained by recognizing the
Taylor series of the function x 
→ 1/(1 − x) and using the
relation P [Ik → χ

go
0 ] + P [Ik → χk] = 1.

The probability P [χgo
0 � χk] in the Markov chain of Fig. 1

is directly obtained by inserting Eq. (32) into Eq. (30),

P
[
χ

go
0 � χk

] =
[

D∑
k=1

P [Ik → χk]

D

]−1
P [Ik → χk]

D
. (36)

The corresponding transition probability P [χ ⇒ χ′] from
a lattice site χ to a neighboring site χ′ is proportional
to P [Ik → χk]. Our derivation shows that, in the standard
random-walk method, there exists a parameter that correspond
to an energy threshold �Uthresh. = 0 MeV, on the energy dif-
ference �U = U (χk ) − U (χ0) below which a transition from
Ik to χk is certain to happen (with probability 1).

With the probability to reach χk from χ
go
0 well defined,

we now seek to calculate the probability distribution p(n)(χ)
after a fixed number of random-walk steps, n. Neglecting any
halting condition, this quantity can be obtained recursively at
the (n + 1)st iteration from the distribution p(n)(χ) by using
the relation

p(n+1)(χ) =
∑
χ′

p(n)(χ′)T (χ′,χ), (37)

where T (χ,χ′) = P [χgo
0 (χ)� χk (χ)]. Because the halting

condition is neglected, T (χ,χ′) is obtained from P [χ ⇒ χ′]
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by setting P [χ0 → χ
go
0 ] = 1 in Eq. (28). From this definition

it is clear that the probability distribution after n steps is thus
completely determined by the choice of the initial probability
distribution p(0)(χ).

3. Generalized deterministic algorithm (with absorption)

The deterministic algorithm consists of evaluating p(n)(χ)
iteratively through the use of Eq. (37). Rather than directly us-
ing Eq. (37) to compute our scission probability distribution,
we may generalize our procedure to allow for a distribution of
ending configurations. This amounts to adding an absorption
mechanism on top of the nuclear PES.

It is important to recognize that each MCMC trajectory
can have a completely different number of steps, while we
aim at determining the evolution of the probability density
of all the trajectories at the same time (requiring an equal
number of steps). Therefore, we add one site χhalt for each
site χ in our lattice. Each trajectory from an initial site and
reaching an ending configuration χend in the standard MCMC
algorithm can then be equalized in length by adding the steps
χend ⇒ χhalt

end ⇒ · · · ⇒ χhalt
end as many times as necessary, rep-

resented as node χhalt
0 in Fig. 1. Node χhalt

0 can be considered
an absorbing node and we interpret this action as reaching of
the (new) lattice site χhalt

end through the step χend ⇒ χhalt
end . Since

all sites χhalt are absorbing and only accessible from χ, we
have, for any two neighboring lattice sites χ1 and χ2,

P
[
χhalt

1 ⇒ χ2

] = 0, (38)

P
[
χhalt

1 ⇒ χhalt
2

] = δχ1,χ2
, (39)

P
[
χ1 ⇒ χhalt

2

] = δχ1,χ2
A(χ1), (40)

where

A(χ) = P
[
χ0 → χhalt

0

]
(41)

is the absorption field.
We let ā(n)(χ) denote the density of probability at the lattice

site χhalt after n random-walk steps in the PES. We now pro-
ceed to determine the evolution of the density of probability.
Invoking the memoryless property of Markov chains one last
time, we have

P [χ ⇒ χ′] = [1 − A(χ)]T (χ,χ′). (42)

Thus, the full recurrence relation on the p(n)(χ) and the ā(n)(χ)
now reads

p(n+1)(χ) =
∑
χ′

p(n)(χ′)[1 − A(χ′)]T (χ′,χ), (43)

ā(n+1)(χ) = ā(n)(χ) + p(n)(χ)A(χ), (44)

where the normalization of the distributions p(n)(χ) and
ā(n)(χ) now reads∑

χ

[p(n)(χ) + ā(n)(χ)] = 1. (45)

Finally, we introduce the probability distribution a(n)(χ) to
reach the configuration χ knowing that it is absorbed,

a(n)(χ) = ā(n)(χ)∑
χ′ ā(n)(χ′)

. (46)

Our deterministic algorithm thus proceeds by iteratively eval-
uating Eqs. (43) and (44). After n steps, the probability of
reaching a scissioned configurations (on an absorbed node)
is finally calculated with Eq. (46).

The above absorption mechanism used to simulate the
stopping of the calculation in the standard MCMC random
walk is analogous to the procedure used in Ref. [38] in case
of the absorption of the TDGCM + GOA wave function
for scissioned configurations. In this first work, we set the
absorption field A(χ) to 100% for scissioned configurations
[A(χ) = 1] and zero otherwise [A(χ) = 0]. This binary se-
lection ensures that our algorithm is formally equivalent to
the standard random-walk approach up to the statistical error
of the standard algorithm as well as a possible numerical error
due to the finite representation of real numbers in comput-
ers. Comparisons between the results obtained using the new
algorithm with the standard approach (that explicitly samples
many trajectories) are presented in Sec. III. We note that the
absorption field can in principle be configured in any number
of ways, including a distribution for various neck sizes, in-
stead of the sharp function used in this work. We plan to study
such possibilities in future work.

4. Convergence criteria of the new algorithm

Our novel method also affords the calculation of a conver-
gence criteria. We can use this quantity as an estimate of the
statistical uncertainty on calculated fission yields. To this end,
we assume that the 1-distance (the distance associated with
the 1-norm ||.||1) between two distributions a(n) and a(n+ j),
defined as

�
(n)
( j) =

∑
χ

|a(n+ j)(χ) − a(n)(χ)|, (47)

is an inverse-quadratic function

�
(n)
( j) ≈ 1

[c( j)n + d ( j)]2 , (48)

where j is an integer, c( j) and d ( j) are two real parameters
that are ultimately obtained using a fit procedure. The validity
of this assumption is discussed in Sec. III for j = 1000. The
convergence error at a step n can be introduced as the distance
between the distribution at step n and the distribution at infin-
ity

ε(n) = �
(n)
(∞). (49)

Using the subadditivity of the 1-distance (commonly referred
as the triangle inequality), we can determine the convergence
criteria,

ε(n) �
∞∑

k=0

�
(n+k j)
( j) . (50)

Inserting (48) into (50) gives

ε(n) �
∞∑

k=0

1

{[ jc( j)]k + [c( j)n + d ( j)]}2 . (51)
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A closed form of the right-hand side of this expression can be
obtained by resorting to the trigamma function defined as

φ(1)(z) = d2

dz2
ln �(z), (52)

which satisfies

φ(1)(z) =
∞∑

k=0

1

(k + z)2 . (53)

Employing these properties of the trigamma function, we fi-
nally obtain

ε(n) � ε
(n, j)
eff. , (54)

where

ε
(n, j)
eff. = 1

[ jc( j)]2 φ(1)

(
c( j)n + d ( j)

jc( j)

)
. (55)

We take ε
(n, j)
eff. as our convergence criteria because it is an

upper limit on the error ε(n) after n iterations.

C. Mass and charge yields of fission fragments

Most of the current mac-mic models used to estimate the
probability distribution associated with the fission-fragment
properties before prompt emissions resort to obtaining the
mass, Y (Af ), or charge, Y (Zf ), yields separately using the
relevant macroscopic shape parameter, e.g., the procedure of
Ref. [78]. While this method has been highly successful, see,
e.g., Refs. [55,76], it does not provide a means to calculate
the full fragment yield, Y (Zf , Af ) or, equivalently, Y (Zf , Nf ).
In the past, the full mass and charge yields have been ob-
tained through the direct analysis of systematics on known
experimental data [80], thus with low predictive power albeit
high-quality data, or using the Wahl systematics [81], e.g., in
Ref. [57], which introduces a free parameter σZ that controls
the dispersion in charge of the isobaric yields and presumes
the unchanged charge distribution (UCD) assumption that
relies on the ratio η ≡ Z

A = Zf
Af

. Another method, presented in
Ref. [82], aims at obtaining the full mass and charge yields but
relies on the addition of a sixth macroscopic shape parameter
in the PES. Without adding specific parameters, none of these
past approaches can predict the fission fragments’ charge
polarization, which is the experimentally observed deviation
from the UCD assumption.

In the following, we construct an approach to predict the
full probability distribution of the fission-fragment mass and
charge Y (Zf , Af ) directly from the quantum-mechanical wave
functions. This method directly probes the structure of the
nascent fragments, enabling the description of fine-structural
effects such as odd-even staggering and charge polarization
observed in experimental data. As shown in Sec. III A, our
projection technique is able to reproduce these phenomenon
without additional parameters.

We only consider here the nascent fragments in binary
fission. Therefore, Y (Zf , Af ) can be decomposed according
to the probability distribution YL(Zf , Af ) (normalized to 1)
associated with the mass and charge of only the left fragment,

Y (Zf , Af ) = YL(Zf , Af ) + YL(Z − Zf , A − Af ). (56)

The law of total probability enables the decomposition of
the probability distribution of the number of particles in the
left fragment YL(Zf , Af ) before prompt particle emission as
follows:

YL(Zf , Af ) =
∫

P [(Z, A)L = (Zf , Af ) | χ ]a(∞)(χ)dχ, (57)

where the integral iterates over all the scission shapes
parametrized by χ, a(∞)(χ) is the limit for n → ∞ of
the sequence of distributions introduced in Eq. (46) and
P [(Z, A)L = (Zf , Af ) | χ ] is the probability associated with a
left fragment of mass Af and charge Zf when the fissioning
system is in the shape χ.

The probability P [(Z, A)L = (Zf , Af ) | χ ] is extracted from
the microscopic state calculated to estimate the shell + pairing
correction for each coordinate χ of the PES after projection
on the good mass and charge of the total fissioning system.
Because all these states preserve the isospin, we can further
decompose

P [(Z, A)L = (Zf , Af ) | χ ] = P [NL = Nf | χ ]P [ZL = Zf | χ ],
(58)

where Nf is the number of neutrons in the left fragment.
Both factors in the right-hand side of Eq. (58) are calculated
through the particle-number projection-based technique on
the fragments mass and charge developed first in Ref. [83]
in the context of time-dependent mean-field calculations for
transfer reactions. This technique was first applied to fission
in Ref. [84] and adapted to the case of static mean-field cal-
culations in Ref. [85]. When applied to fission, this technique
gives the probabilities associated with the number of nascent
fragment neutrons (X = N , Xf = Nf ) and protons (X = Z ,
Xf = Zf ) using

P [XL = Xf | χ ] = 〈�(χ)|P̂(L)
Xf

P̂X |�(χ)〉
〈�(χ)|P̂X |�(χ)〉 , (59)

or, equivalently,

P [XL = Xf | χ ] = 〈�(χ)|P̂(L)
Xf

P̂(R)
X |�(χ)〉

〈�(χ)|P̂X |�(χ)〉 . (60)

A double projection is required, where P̂X=N,Z is the operator
restoring the good number of particles in the total system
while P̂(L)

Xf
is an operator projecting on Xf particles in the left

fragment. The definition of the latter relies on the position of
the neck along the symmetry axis. We define this quantity, in
the standard way, as the position of the minimum of the local
one-body density of the microscopic state in χ between the
two prefragments [40,86,87]. The projection-based method
to calculate the fragment distribution is already known to
describe the odd-even staggering of the charge distribution
of the fragments in the case of time-dependent mean-field
methods [84]. It is also able to give a nonzero probability
for the existence of fragments with an odd-number of par-
ticles [85]. A simple example to illustrate how a time-even
state can describe fragments with an odd number of particles
is given in Appendix C.
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TABLE I. Microscopic parameters associated with the Strutinsky
correction.

Parameter Value Units

Csr 1.0 MeV
Ccur 41 MeV

III. APPLICATION TO 233,235U(n, f )

We illustrate our model improvements in what follows
by showcasing the well-known neutron-induced fission of
two isotopes of uranium, 233,235U(n, f ). We also prove that
our implementation can reproduce the results of the discrete
random-walk method used in past work.

In Refs. [48,68,69,77–79,88], the authors implemented
shell-plus-pairing corrections through the resolution of the
Schrödinger equation using an axial harmonic-oscillator basis
with only Nsh = 12 shells. The limitation of this previ-
ous approach artificially introduces spurious contributions
of the continuum [71]. The use of the improved Strutinsky
method [70] allows us to remove these contributions and thus
use instead Nsh = 20 shells without any energy truncation.
In addition, we optimize the oscillator scaling factor b0 and
deformation q for each point of the PES by using a variational
principle such that the mean-field-plus-pairing energy of the
microscopic state is minimized.

The order of the Strutinsky method is p = 8, and the cor-
responding range is

γ = Csr
Ccur

A1/3
Bs, (61)

where the relative surface energy Bs(χ) is the ratio of the nu-
cleus surface at shape χ with the surface of the same nucleus
at spherical shape. We have used the same parameters as in
Ref. [69], listed in Table I.

The pairing correction is obtained using the Lipkin-
Nogami method. We have solved the Lipkin-Nogami (LN)
for each point of the PES using a pairing window of ±5
MeV around the Fermi surface. The only remaining parameter
is the LN effective-interaction pairing gap constant rmic =
3.2 MeV. The full LN equations are often numerically solved
by splitting them into two or more subsets of equations, solved
separately at each iteration. It adds overhead in the resolution
time and can also lead to spurious divergences. Instead, we
have developed a new method to solve these equations, pre-
sented in Appendix B.

The fragment probabilities at each scissioned configuration
χ are calculated using Eq. (60). The double-projection on the
numerator is calculated using the Pfaffian technique presented
in Refs. [89,90]. The determination of the integrals over the
gauge angles are determined through the Fomenko discretiza-
tion method [91]. The number nFom. of integration nodes is
determined for each isospin of each scissioned configuration
starting with nFom. = 30. We then check if the inequality
(where X has to be replaced by N or Z according to the
isospin)

P [XL = Xf | χ ] < 1.0 × 10−6 (62)

is satisfied for all Xf = �Xmean − nFom./2� + �X and Xf =
�Xmean + nFom./2� − �X for �X = 0, 1, 2. If the rela-
tion (62) is not satisfied, we add 10 to nFom. and test again
our criteria up to finding a suitable value of nFom..

The PES at a given excitation energy is obtained through
the finite-temperature method of Ref. [56] where the damping
of the shell-plus-pairing correction as in Eq. (22) invokes the
damping parameter S[E∗] defined in Eq. (24). The two pa-
rameters we have taken to define the damping coefficient are
E0 = 20 MeV and E1 = 15 MeV. As previously mentioned,
the excitation energy dependency of the temperature is taken
at the Thomas-Fermi approximation to be

T (χ) =
[

E∗(χ)

a

]1/2

, (63)

with the nuclear level-density parameter a = A/8. To obtain
an implementation equivalent to the state-of-the-art random
walk, we have set �Uthresh. = 0 MeV. Recall that this thresh-
old does not directly appear in the standard formalism of
the random walk and corresponds to the energy difference
�U between two neighboring lattices below which a transi-
tion Ik → χk is certain in the Markov chain of Fig. 1. The
potential-energy surface is calculated on a regular grid follow-
ing the work of Ref. [68]. Two points χ and χ′ are neighbors if
all the integer coordinates on the lattice differ by at most one
unit. Such a definition in five dimensions leads to a maximum
of 35 − 1 = 242 neighbors for each node of the grid.

Our initial distribution is chosen to be entirely on the lattice
site at the bottom of the first potential well of the PES. The
determination of this point is obtained as follows:

(1) We start at the origin of the lattice associated with
the smallest elongation, a maximal neck radius, and
spherical left and right bodies of the same volume.

(2) We iterate over the neighbors of the points, we select
the neighbor that is associated with the lowest energy,
and we reiterate up to reaching a local minimum χloc.

(3) We determine the minimum energy Esad. required to
reach scissioned configurations from χloc.

(4) We calculate the set C of all the configurations acces-
sible from χloc with an energy lower than Esad. and
define the bottom of the first potential well as the node
χg.s. ∈ C associated with the lowest energy Eg.s..

By using this procedure, we also obtain the saddle energy
Esad, as well as an effective barrier height EB = Esad − Eg.s..
A site of the lattice is a scissioned configuration if its corre-
sponding sharp macroscopic density has a neck radius rneck <

rsciss.. We have calculated the fragment probability distribution
for

rsciss = 1.75, 2.25, 2.75 fm (64)

and three different excitation energies E∗ such that

x = E∗ − EB = 0.1, 2.0, 4.0 MeV, (65)

for a total of nine fission calculations per nucleus.
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FIG. 2. Fragment charge yields obtained with our approach for
the reaction 233U(nth., f ) (a) at x = 0.1 MeV with different neck radii
and with rneck = 2.25 fm and (b) at different excitation energies. Our
results are compared with experimental data with thermal incident
neutron energies (Eneut. = 0.0253 eV) from Refs. [92,93].

A. Results

We have used our approach to calculate the fission-
fragment charge and mass probability distribution before
prompt emission for the reactions 233U(n, f ) and 235U(n, f ).
We highlight in Figs. 2 and 3 the charge yields of these
reactions, respectively. The most interesting aspect of these
calculations is the appearance of an odd-even staggering in the
fragment’s charge distributions. The odd-even staggering is
commonly attributed to pairing effects, since separating paired
particles is energetically costly, but also from structural effects
(see, e.g., Refs. [78,80,95,96] and references therein).

We see a strengthening of the odd-even staggering for
the smallest neck radius considered in our calculations. To
explain this phenomenon, already observed in Ref. [85], con-
sider a system with two clearly separated fragments where
the distance is great enough so that the interaction between
the fragments is minuscule. Neglecting pairing for the sake
of simplicity, the mean-field Hamiltonian can be diagonalized
in a particle basis of states that are localized in only one of
the fragments. Since we minimize the total binding energy,
each fragment must have a well-defined number of particles.
Preservation of time-reversal symmetry ensures each particle
state is associated with a time-reversal state with the same
energy, the same spatial distribution, and the same occupation
(Kramers degeneracy theorem). Since each fragment must
have a well-defined number of particles and each particle must
have a time-reversal partner, each fragment can only possess
an even number of particles, thus reducing the odd-proton
abundance. In conclusion, if (i) we assume the mean-field
approximation, (ii) we minimize the total binding energy of
the system, and (iii) we preserve the time-reversal symmetry

Zf
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FIG. 3. Fragment charge yields obtained with our approach for
the reaction 235U(nth., f ) (a) at x = 0.1 MeV with different neck
conditions, and (b) with rneck = 2.25 fm at different excitation ener-
gies. Our results are compared with experimental data with thermal
incident neutron energies (Eneut. = 0.0253 eV) from Ref. [94].

(as in our approach), then two separated fragments can only
have an even number of particles, leading to a strengthening of
the odd-even staggering of the fragments when the separation
distance is too large (conversely, neck radius too small).

Figures 2(b) and 3(b) exhibit very little variation in our
charge yields with excitation energy 0.1–4.0 MeV above the
fission barrier. Data in this energy range confirm a small
variation of the yields at low excitation energy [97,98]. In
this work, we determine our fragmentation probabilities for
each scissioned configuration, assuming zero-temperature mi-
croscopic states. Therefore, the energy dependence in our
current predictions only comes from the potential-energy
evolution along the collective variables, and discrepancies
could arise at higher incoming neutron energies. Despite
this approximation, the reactions studied in this work ex-
hibit an excellent quantitative agreement with thermal-neutron
experimental data for nearly all proton numbers. The agree-
ment is particularly good when the scission criteria is set to
rneck = 2.25 fm. We retain this value for the remainder of our
results.

As previously mentioned, our approach enables the deter-
mination of the full fragment yields Y (Zf , Af ). We first present
our charge yields Y (Zf |Af ) for different fixed fragment masses
Af ,

Y (Zf |Af ) = Y (Zf , Af )

Y (Af )
, (66)
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FIG. 4. Isobaric fragment charge yields (dashed blue lines) and
the independent charge yields (solid orange lines), after prompt
neutron emission, obtained with our approach for the reaction
233U(nth., f ) with a neck condition zneck = 2.25 fm and an excitation
energy above the barrier of x = 0.1 fm. Each curve is normalized
at the fixed A to 100% and the fragment probability associated with
each of the masses is listed in parentheses. We compare our results
with experimental independent yields (dashed black curve) from
Refs. [92,93].

for the reaction 233U(n, f ) in Fig. 4 and for the reaction
235U(n, f ) in Fig. 5. We approximate independent yields
(solid orange lines) from our calculated fragment yields oper-
ating under the assumption that the prompt neutron emission
multiplicity distribution, Pν (Af ), depends on the mass of the
fragments only. To estimate Pν (Af ), we first fit the parameter
p of the probability density function of the binomial random
variable B(N = 5, p) on the experimental distribution to emit
ν neutrons from any fragment from Ref. [99], as suggested in
Ref. [100]. We then shift this distribution for each fragment
mass such that the expected value of emitted neutrons is equal
to ν̄(Af ) from Refs. [101,102] to obtain Pν (Af ). This method is
easy to implement and fast, albeit simple; providing a means
for comparison with experimental independent yield data. The
presented theoretical yields correspond to an excitation energy
x = 0.1 MeV above the barrier. As previously mentioned,
our calculations show a slow evolution of the yield as a
function of excitation energy so the other results at higher
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FIG. 5. Same as Fig. 4, where the experimental independent
yields are this time taken from Ref. [94].

excitation energy will be qualitatively similar. In these two
figures, the fragment isobaric yields are closer to experimen-
tal data than the independent ones (generally shifted toward
a higher charge number than experimental data). Possible
explanations for this discrepancy include the assumption of
strongly damped motion, or a lack of optimization in our
mac-mic model parameters. If the latter of these hypotheses
is true, it reinforces the need to optimize model parameters in
conjunction with improvements to the physics of the model.

Figures 6 and 7 present the full fragment mass and charge
distribution we have obtained using our approach for the
respective reactions 233U(nth., f ) and 235U(nth., f ). The main
feature in these results is the emergence of a charge polariza-
tion of the fission fragments. Our results show a deviation of
the mean primary charge

�Zf (Af ) = ZUCD
f − Z̄f (Af ), (67)

where Zf (Af ) is the average number of charge obtained in our
approach, and ZUCD

f (Af ) is the UCD value. These quantities
are given by

Z̄f (Af ) =
∑

Zf
Zf × Y (Zf , Af )∑
Zf

Y (Zf , Af )
, (68)

ZUCD
f (Af ) = ηAf = Z

A
Af . (69)
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FIG. 6. Fragment mass and charge yields, before prompt neutron
emission, obtained with our approach for the reaction 233U(nth., f )
with a neck condition zneck = 2.25 fm. Each panel shows the yield
with different excitation energies above the barrier. The alignment of
the fragments (blue lines) is obtained through a linear fit of Z̄f (Af ).
The green line corresponds to the alignment the fragments under the
UCD approximation.

Experimentally, �Zf (Af ) has been measured to be �Zexpt
f ≈

−0.6 ± 0.2 for the light fragments having Af = 80, . . . , 105
in the case of the reaction 235U(n, f ) at thermal-neutron en-
ergies [94,103]. Figure 8 shows the deviation �Zf (Af ) that
we obtain with our approach. It shows a value of �Zf (Af )
between −0.5 and −1.2 for the light fragments. Additionally,
our approach is able to qualitatively reproduce the overall
shape of the neutron excess curves of experimental data ob-
tained in other fissioning systems [104,105].

Several explanations of the physical origin of the charge
polarization of the fission yields before prompt neutron emis-
sion have been proposed in the literature. For example, in
Ref. [106], the authors propose three possible origins: (i) from
the level density of the fragments, (ii) from the Coulomb
interaction between the fragments, and (iii) from the asym-
metry energy. No experimental data were available at the time
regarding the charge polarization of the fragment yields. In
Ref. [104], the authors compare their experimental results
with a scission-point liquid drop model (LD-SP) able to repro-
duce the smooth trend of the experimental charge polarization,
which leads to a possible decomposition of the charge polar-
ization of the primary yields into a smooth component, whose
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FIG. 7. Fragment mass and charge yields, before prompt neutron
emission, obtained with our approach for the reaction 235U(nth., f )
with a neck condition zneck = 2.25 fm. Each panel shows the yield
with different excitation energies above the barrier. The alignment of
the fragments (blue lines) is obtained through a linear fit of Z̄f (Af ).
The green line corresponds to the alignment the fragments under the
UCD approximation.

origin lies in the asymmetry energy, as well as a sharp part,
coming from microscopic shell and pairing effects.

B. Validity of the convergence criteria

To analyze the convergence properties of our new al-
gorithm, we calculate the probability distributions of the
scissioned configurations a(n)(χ) for all steps, n � nmax =
150 000, for the reaction 233U(n, f ). From this calculation, we
can extract the probability to reach scission after n iterations:

P sciss.
n =

∑
χ

ā(n)(χ). (70)

The evolution of this quantity with increasing n is shown in
Fig. 9. As expected, the lower excitation energy (red curve)
is significantly below the run with higher excitation energy
(green curve). For the same range of iterations, the evolution
of the inverse square root of �

(n)
(1000) is presented in Fig. 10.

Recall that �
(n)
j is the convergence error given by Eq. (47).

The inverse-quadratic regime for �
(n)
(1000) is reached around

n ≈ 20 000 iterations where the ratio of paths that are reaching
scission is 3.0 × 10−5% for x = 0.1 MeV and 0.096% for
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FIG. 8. Deviation of Z̄ from the unchanged charge distribution
(UCD) approximation in our calculation, for each fragment charge
Z and different excitation energies above the barrier Ex . Our re-
sults for the reaction 235U(n, f ) is compared with experimental
data from Ref. [94]. We see a substantial deviation from the UCD
approximation.

x = 2.0 MeV. In fact, the convergence seems to be at least
quadratic, meaning that our convergence criteria is overesti-
mating the error.

To further validate our convergence criteria, ε
(n,1000)
eff. , we

estimate it through a fit on the data applicable in the range
of iterations n0, . . . , n1. We compare our convergence criteria
against data through the calculation of the relative error of the
convergence criteria using j = 1000

Dn0,n1 =
[
ε

(n0, j)
eff.

∣∣n1

n0
− ε

(nmax+1, j)
eff.

∣∣n1

n0

]−∑ nmax−n0
j

k=0 �
(n0+ jk)
( j)

ε
(n0, j)
eff.

∣∣n1

n0
− ε

(nmax+1, j)
eff.

∣∣n1

n0

,

(71)

FIG. 9. Evolution of the scission probability according to the
number of MCMC random-walk steps, determined with our novel
algorithm DPS for the reaction 233U(n, f ).

where ε
(n, j)
eff. |n1

n0
corresponds to the estimation of our conver-

gence criteria using a fit between n0 and n1. The evolution
of Dn0,n1 according to the range used for the fit is presented
Fig. 11 for which n0 > 5000 and n1 − n0 � 5000. The relative
error Dn0,n1 associated with our convergence criteria between
the iterations n0 and n1 is below two percent after only ten
thousand iterations in both cases. Dn0,n1 is greater than zero
almost everywhere, which means that our criteria slightly
overestimates the convergence error.

C. Comparison with the Metropolis implementation

We compare our new calculations with the proposed algo-
rithm to past work in order to show that we can reproduce
these efforts within the context of our more general method-
ology. We use the implementation of a discrete random walk
(DRW) as in Ref. [57] as the baseline FRLDM mass-yield
calculations. We perform these calculations for the reaction

FIG. 10. Inverse square root of the evolution of the distance
between successive probability distributions of the scissioned con-
figurations for the reaction 233U(n, f ). To keep a readable graph, we
display only one point over four. A linear fit of the data is presented
for comparison purposes.
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(a)

(b)

FIG. 11. Relative error Dn0,n1 , defined by Eq. (71), between our
convergence criteria and the exact convergence error, for each inter-
val n0, . . . , n1 of fitted data for the reaction 233U(n, f ) at an excitation
energy above the barrier of (a) x = 0.1 MeV and (b) x = 2.0 MeV.

233U(n, f ) at an excitation energy of x ≈ 4 MeV above the
barrier; noting that this value takes into account differences
between the potential-energy surface used in Ref. [57] and
the potential-energy surface of this work. The starting point
of the DRW calculation is the ground state as chosen by the
procedure of Ref. [57]. The biased potential is set to zero in
the DRW calculation and we set the scission neck radius to
be 2.25 fm. We accumulate 100 000 scissioned configurations
for this comparison. With these parameters, we have nearly
identical inputs as our new results shown in Sec. III A.

While the older mass yields rely only on the mass asym-
metry coordinate αg, it is not sufficient to compare only this
variable at scission because there could be changes in the
distribution of other coordinates. Figure 12 shows the distri-
bution of the scissioned configurations in the full collective
coordinate lattice space, (i, j, k, l, n), between the standard
random-walk method and the method presented in this work.
Despite the statistical versus deterministic aspect of these
two approaches, both algorithms are in exceedingly good
agreement. The absolute error between the two approaches
is shown in Fig. 13. We find that the statistical nature of the
DRW algorithm leads to a maximum of ≈2% error in the

FIG. 12. Probability distributions to obtain a scissioned configu-
ration associated with each integer index (i, j, k, l, n) as defined in
Ref. [68] estimated with state-of-the-art random walk with the code
DRW (blue) and with this work (orange).

distribution of the scission neck radius, while the statistical
error in αg is the lowest of all the coordinates, on the order of
0.1%. These two figures show that we are successfully able
to reproduce past work with our new technique and that older
works indeed have quantitatively very good estimates of the
mass yields within the context of FRLDM so long as a large
number of fission events are calculated.

FIG. 13. Absolute error between the probability distributions
presented in Fig. 12.
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IV. CONCLUSION

With this work, we have improved the quality and pre-
dictive power of the mac-mic method in several areas. First,
we have enhanced the quality of the nuclear PES by re-
moving spurious continuum effects in our five-dimensional
finite-range model. Furthermore, our new resolution proce-
dure of the Lipkin-Nogami equations enables the description
of pairing effects with very high accuracy. We refer to
these improvements colloquially as the “enhanced finite-range
liquid-drop model,” or eFRLDM for short. Second, our new
deterministic algorithm, named DPS, completely removes
statistical uncertainties when computing the fission-fragment
distribution of a particular nucleus. DPS enables the starting
point of our calculation to be located at the ground state (easily
identifiable for all nuclei) without the requirement of includ-
ing a biased potential that artificially tilts the PES. We have
defined a high-accuracy convergence criterion associated with
our algorithm that affords the ability to monitor the error as-
sociated with the results obtained. Last but not least, we have
generalized the particle number projection technique intro-
duced for independent quasiparticle states in Refs. [83,84] and
calculated scissioned configurations with it. This projection
technique allows for the calculation of the coupled fragment
charge and mass yield, Y (Z, A).

Our first eFRLDM + DPS results are presented for the
pre-neutron fission fragments probability distributions of the
reactions 233,235U(n, f ) at different excitation energies. Our
method can reproduce the odd-even staggering in the charge
yields as well as the charge polarization of the fragments
without any additional free parameters in the model. We find
a deviation from the UCD approximation of �Z f ≈ −1.0
charge units, twice the experimentally obtained value. Our
results show a remarkable quantitative agreement with exper-
imental data for charge yields and isobaric charge yields. We
further highlight the capacity to reproduce past work within
the context of our new methodology.

Looking forward, our description of the temperature
dependence of the PES is treated from a macroscopic per-
spective in this work. Since microscopic effects are relevant,
especially at low incident energies, it might change the relative
contribution of different saddles and impact our results. Also,
in this work, we have focused primarily on pre-neutron frag-
ments yields. However, due to the timescale of prompt particle
emission, there are no such experimental data to compare di-
rectly. Hence, we can only compare with post-neutron yields,
which induces further assumptions and models. A next step in
this latter direction is therefore to pursue simulating the deex-
citation of the nascent fragments. Improvements can be made
to the description of microscopic temperature dependence, for
example, by including finite-temperature effects directly into
the microscopic states at each point of the PES, and this will
assist in addressing the excitation-energy dependence of our
yield predictions. Yet another planned improvement is to refit
the parameters of the model to account for the changes in the
size of the basis and Strutinsky method.

The eFRLDM + DPS approach developed in this work
is an ideal tool for large-scale precision calculations of
fission-fragment distributions required to model a range of

phenomena, especially in astrophysical scenarios where it is
important to obtain both charge and mass yields simultane-
ously to determine the relative abundances of lighter species.
In addition to upcoming model improvements, we plan to
study the application of our yields in a series of future efforts.
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APPENDIX A: FINITE-RANGE LIQUID DROP
MODEL (FRLDM)

We group here the main formulas and parameters that
define our model that we use to calculate the nuclear potential-
energy surface. The macroscopic liquid-drop energy for
even-even nuclei is

Emac(χ) = MHZ + MnN − av(1 − κvI2)A

+ as(1 − κsI
2)B1(χ)A2/3 + a0A0BW(χ)

+ c1
Z2

A1/3
B3(χ) − c4

Z4/3

A1/3

+ f (kf rp)
Z2

A
− ca(N − Z )

+W |I|BW(χ) − aelZ
2.39. (A1)

In this expression, A, Z , N are respectively the number of
nucleons, protons, and neutrons, and I is the relative neutron
excess,

I = N − Z

A
. (A2)

We note that the pairing term is zero for even-even nuclei, and
thus does not appear in the formula.

We shift globally the energy the PES such that the energy
of the spherical point is zero. In this case, only the shape-
dependent terms contribute to the PES. There are four such
terms in our approach:
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(1) the surface energy, calculated assuming a finite-range
Yukawa-plus-exponential nuclear interaction with no
folding [107];

(2) the Coulomb term, defined with a Yukawa folding of
the sharp macroscopic density [108];

(3) the A0 energy from Ref. [48];
(4) the Wigner term from Ref. [48].

By setting

σa = |r − r′|
a

(A3)

and letting � represent the shape of the liquid drop whose vol-
ume is held constant and equal to 4

3πAr3
0 , the shape-dependent

energies are the relative surface energy associated with a
Yukawa-plus-exponential finite-range two-body interaction,

B1(χ) = − A−2/3

8π2r2
0a4

∫∫
V

[σa − 2]
e−σa

σa
drdr′, (A4)

the relative Coulomb energy of a folded-Yukawa macroscopic
density,

B3(χ) = 15A−5/3

32π2adenr5
0

∫∫
V

drdr′

σaden

[
1 −

(
1 + σaden

2

)
e−σaden

]
,

(A5)
and the shape dependency of the A0 and Wigner terms is
defined as

BW(χ) =
{(

1 − S3
S1

)2
ad + 1 if there is a neck

1 otherwise.
(A6)

In the last expression, S1 is the area of the maximum cross
section of the smaller one of the end bodies and S3 is the area
of the geometric shape χ at the neck location. The definition
of BW is slightly different than in Refs. [48,57] where the
condition is only relative to the MQS parameter σ2. However,
σ2 < 0 does not imply the presence of a neck, defined as
the existence of a local minimum in the sharp macroscopic
density along the z axis. Defining l1, l2, and l3 as the respective
centers of the left, middle, and right bodies of the MQS shape,
in the case where l2 � l1 or l3 � l2, the shape cannot exhibit a
neck whatever the sign of σ2. In this situation, BW defined as
in older work is not continuous at σ2 = 0. Our new definition
prevents this situation.

The model parameters we have used for the calculation
of the PES are often referred to as FRLDM2002 which corre-
spond to the model parameters introduced in Ref. [69] with
additional corrections of Ref. [88]. We present here only the
parameters having an influence on the shape-dependent terms
of the PES. The values of the fundamental constants we have
used, taken from [88], are presented in Table II. Table III
references the parameters associated with the macroscopic
part of the energy, taken from Ref. [69]. Table IV reports the
macroscopic parameters taken from Ref. [88].

The parameters associated with the potential V (r; χ) de-
fined in Eq. (2) are listed in Table V.

TABLE II. Truncation of the fundamental constants.

Parameter Value Units

e2 1.4399764 MeV fm
mamu 931.4943335 MeV/c2

mnuc 1.007970689 amu
mn 1.008664891 amu
mp 1.007276487 amu

APPENDIX B: RESOLUTION
OF THE LIPKIN-NOGAMI EQUATIONS

When using a seniority-pairing interaction, the Lipkin-
Nogami equations associated with a valence space of Nv

energy levels are the set of 2Nv + 3 nonlinear equations (11)–
(15) with the same number of unknowns vk , εk , �, λ, and λ2.
Some of these equations are associated with high derivatives.
To reduce the amplitude and the number of nonzero deriva-
tives, we substitute uk , vk , and εk by the variable xk and θk

according to

uk = cos (θi ), (B1)

vk = sin (θi ), (B2)

xk = εk − λ. (B3)

The Lipkin-Nogami equations can then be rewritten and reor-
ganized as

F(p) = 0, (B4)

where, setting k̄ = k − Lmin,

F2Nv (p) = Lmin − Npair +
Lmax∑

k=Lmin

sin2(θk ), (B5)

F2Nv+2(p) =
⎡
⎣ Lmax∑

k=Lmin

1√
x2

k + �2

⎤
⎦− 2

G
, (B6)

F2k̄+1(p) = 1

2

⎡
⎣1 − xk√

x2
k + �2

⎤
⎦− sin(θk )2, (B7)

F2k̄ (p) = (4λ2 − G) sin(θk )2 + ek − xk − λ, (B8)

F2Nv+1(p) = A(θ)λ2 − G

4
B(θ), (B9)

TABLE III. Part of the macroscopic parameters used in our ap-
proach to describe the fission process from Ref. [69].

Parameter Value Units

r0 1.16 fm
a 0.68 fm
aden 0.70 fm
W 30.0 MeV

034617-15



MARC VERRIERE AND MATTHEW RYAN MUMPOWER PHYSICAL REVIEW C 103, 034617 (2021)

TABLE IV. Part of the macroscopic parameters used in our ap-
proach to describe the fission process from Ref. [88].

Parameter Value Units

ad 0.9
as 21.33000 MeV
κs 2.378 MeV
a0 2.04000 MeV

where the notations

A(θ) =
[

Lmax∑
k=Lmin

cos(θk )2 sin(θk )2

]2

−
Lmax∑

k=Lmin

cos (θk )4 sin (θk )4, (B10)

B(θ) =
[

Lmax∑
k=Lmin

cos(θk )3 sin(θk )

][
Lmax∑

k=Lmin

cos(θk ) sin(θk )3

]

−
Lmax∑

k=Lmin

cos(θk )4 sin(θk )4, (B11)

and

p = (
θLmin , xLmin , . . . , θLmax , xLmax , λ, λ2,�

)
. (B12)

The analysis of the dependencies of each equations leads
to a maximum of 10Nv + 2 nonvanishing elements in the
Jacobian matrix JF (p). Also, JF (p) is block-arrowhead, which
means that

JF =
(

A B
C D

)
, (B13)

TABLE V. Microscopic parameters associated with the poten-
tial (2).

Parameter Value Units

Vs 52.5 MeV
Va 48.7 MeV
Aden 0.82 fm
Bden 0.56 fm2

apot 0.8 fm
kp 0.025
lp 28.0
kn 0.01875
ln 31.5
a1 15.677 MeV
a2 22.00 MeV
J 35.0 MeV
L 99.0 MeV
Q 25.0 MeV
K 300.0 MeV

where A is a block-diagonal matrix. In our case, the blocks of
A are two-dimensional matrices,

Ak̄ =
( ∂F2k̄

∂θk

∂F2k̄
∂xk

∂F2k̄+1

∂θk

∂F2k̄+1

∂xk

)
. (B14)

The block-column matrix B and row-column matrix C are re-
spectively associated with the following (2 × 3)-dimensional
and (3 × 2)-dimensional blocks

Bk̄ =
(

∂F2k̄
∂λ

∂F2k̄
∂λ2

0

0 0 ∂F2k̄+1

∂�

)
, (B15)

Ck̄ =

⎛
⎜⎜⎝

∂F2Nv
∂θk

0
∂F2Nv+1

∂θk
0

0 ∂F2Nv+2

∂xk

⎞
⎟⎟⎠. (B16)

In the following, we propose a method to solve the
Lipkin-Nogami equations and, more generally, any system of
equations associated with a block-arrowhead Jacobian matrix
at each point p based on generalizations of the iterative New-
ton method. In our case, we use the cubic and the fifth-order
iterative methods developed respectively by Homeier [109]
and by Sharma and Gupta [110]. The idea of these methods is
to improve the convergence properties of the Newton scheme
by evaluating the Jacobian at different p. For example, in the
Sharma and Gupta scheme, one step from iteration i to i + 1
is

x(i) ← p(i) − 1
2 JF (p(i) )−1F(p(i) ), (B17)

y(i) ← p(i) − JF (x(i) )−1F(p(i) ), (B18)

p(k+1) ← y(i) − [aJF (x(i) )−1 + bJF (y(i) )−1]F(y(i) ), (B19)

where the fifth-order convergence is obtained when a = 2 and
b = −1. The Newton scheme is recovered by doing only the
first step and p(i+1) ← x(i), while the two first steps are present
in the Homeier scheme and p(i+1) ← y(i).

The block-wise inversion theorem gives the inverse of the
Jacobian matrix as

JF (p)−1 =
(

A−1 + IM −IT −1

−M T −1

)
, (B20)

where

I = A−1B, (B21)

T = D − CI, (B22)

M = T −1CA−1. (B23)

Note that it is assumed that A and T are invertible. When
it is not the case, we slightly perturb the diagonal ele-
ments of the noninvertible matrix. This method requires the
inversion of the Nv two-dimensional matrices Ak̄ and one
three-dimensional matrix T . However, the procedure gives a
dense matrix. Instead, we directly calculate the four vectors

a(i) = JF (p(i) )−1F(p(i) ), (B24)

b(i) = JF (x(i) )−1F(p(i) ), (B25)

c(i) = JF (x(i) )−1F(y(i) ), (B26)

d (i) = JF (y(i) )−1F(y(i) ), (B27)
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such that

x(i) ← p(i) − 1
2 a(i), (B28)

y(i) ← p(i) − b(i), (B29)

p(k+1) ← y(i) − [ac(i) + bd (i)]. (B30)

In the following, we note e = a(i), b(i), c(i) or d (i) and f =
F(p(i) ) or F(y(i) ) according to the equations (B24)–(B27)
considered. By injecting Eq. (B20) into Eqs. (B24)–(B27), we
obtain

e0 = A−1 f 0 + IM f 0 − IT −1 f 1, (B31)

e1 = −M f 0 + T −1 f 1, (B32)

where

e =
(

e0

e1

)
, f =

(
f 0
f 1

)
, (B33)

e0 and f 0 are vectors of dimension 2Nv, and e1 and f 1 are
vectors of dimension 3. The expression of e1 appears in the
expression of e0. Thus, once e1 is obtained by using Eq. (B32),
e0 can be obtained through the expression

e0 = A−1 f 0 − Ie1. (B34)

Lastly, our convergence criteria is set to εLN(p) < 10−10,
where, using the aforementioned functions Fk ,

εLN(p) = max
k

|Fk (p)|. (B35)

APPENDIX C: NONZERO PROBABILITY FOR ODD
NUMBER OF PARTICLES

At first sight, the possibility to obtain a nonzero probabil-
ity associated with odd-number of particles in the fragments
distribution could seem to be a paradox in the case of static
mean-field calculations in the case of even-even systems
since:

(1) the state describing the fissioning system is time-even;
(2) the operators P̂X and P̂(L)

Xf
are time-even;

(3) a state describing odd-number fragments cannot be
time-even.

However, this paradox is only apparent and can be solved
by noticing that the projection operators are both acting on
the full X -body wave function (for each isospin). Even in the
case where Xf is odd, the state P̂(L)

Xf
P̂X |�(χ)〉 contains an even

number of particles: Xf in the left fragment and X − Xf in the

right one. It is thus time-even. It can easily be seen from a
simple example of a time-even state having only two particles

|�〉 = â†
i â†

ī
|0〉, (C1)

where â†
i is the creation operator of a particle in state i, ī is

the time-reversal state of i. Both states can be decomposed in
a similar way as in Refs. [83,85] as

â†
i = α

(L)
i â(L)†

i + α
(R)
i â(R)†

i , (C2)

â†
ī

= α
(L)�
i â(L)†

ī
+ α

(R)�
i â(R)†

ī
, (C3)

where â(L)†
k and â(R)†

k are respectively the left and right parts
of â†

k for k = i, ī. The creation operators on the left commute
with those on the right due to the complete separation of
their spatial domain, and each of them commute with their
time reversal. Therefore, by injecting Eqs. (C2) and (C3) into
Eq. (C1) and developing the resulting expression, we obtain

|�〉=α
(L)
i α

(L)�
i â(L)†

i â(L)†
ī

|0〉+ (α(L)
i α

(R)�
i â(L)†

i â(R)†
ī

+ α
(R)
i α

(L)�
i

× â(R)†
i â(L)†

ī

)|0〉 + α
(R)
i α

(R)�
i â(R)†

i â(R)†
ī

|0〉. (C4)

The three terms are orthogonal to each other and are all time-
even. The first one corresponds to a state with two particles
on the left side and zero on the right side, the second one
corresponds to one particle on each side, and the last one
corresponds to two particles on the right side and zero on the
left side. Therefore, even though |�〉 is time-even and P̂(L)

1 is
time-even, we have a nonzero probability to have odd-number
fragments when the state i spreads in both the left and right
domains:

P [XL = Xf ] = 〈�|P̂(L)
Xf

|�〉
〈�|�〉 = 2

∣∣α(L)
i α

(R)
i

∣∣2. (C5)

However, as illustrated in Ref. [85] in the case of static
time-even Bogoliubov states with an even-number of particles
and as demonstrated in Sec. III A, the probability associated
with odd-number fragments collapses to zero as soon as the
fragments are separated enough and do not interact anymore.
This is a direct consequence of the finite-range character of
the nuclear interaction and the minimization of the energy: if
two subsystems S1 and S2 of a system S do not interact with
each other, the energy of the total system is the sum of the
energies of both subsystems and thus, the state that minimize
the energy of S is the product of the states minimizing each
subsystems.
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