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Relativistic mean-field corrections for interactions of dark matter particles with nucleons

X. G. Wang and A. W. Thomas
ARC Centre of Excellence for Dark Matter Particle Physics and CSSM, Department of Physics, University of Adelaide,

South Australia 5005, Australia

(Received 20 December 2020; accepted 25 February 2021; published 5 March 2021)

We investigate the interactions of weakly interacting massive particles (WIMPS) with nucleons in nuclear
medium by taking into account the effect of nuclear dynamics. We derive the nonrelativistic effective operators
starting from the relativistic mean-field approximation. Certain interactions receive non-negligible corrections,
which may significantly change the sensitivities of the WIMP-nucleus scattering cross section to these effective
operators.
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I. INTRODUCTION

Understanding the nature of dark matter (DM) is one of the
most important challenges facing modern physics and astron-
omy. While its existence has been confirmed in a multitude of
ways [1,2], its nature remains a complete mystery. Initial ex-
citement, motivated by the concept of supersymmetry (SUSY)
[3,4], about the so-called “WIMP (weakly interacting massive
particle) miracle” [5–7] has cooled a little as direct searches
around the world have placed ever more stringent limits on
the mass and couplings of such particles [8–12]. Nevertheless,
whether or not their origin lies in SUSY, WIMPs remain
one of the most promising dark matter candidates and it is
crucial to pursue any avenue that might provide a significant
constraint on the nature of these particles. Such tests range all
the way from the effect of captured WIMPs on the properties
of neutron stars [13–16] to remarkable experiments designed
to directly observe their interactions with matter [8,17]. The
latter will be our focus here.

Direct detection searches for WIMP are designed to
observe the nuclear recoil events caused by their weak
interactions with nuclei in detectors [7,18,19] located deep un-
derground to reduce backgrounds from cosmic rays. Annual
modulation of the count rate in direct detection experiments is
a powerful signature for dark matter [20]. While such modula-
tion has been observed by the DAMA/LIBRA Collaboration
[21–23], other experiments have given null results. In a tan-
talizing hint of a signal, the Xenon1T Collaboration recently
reported a 3.5σ excess of electron recoil events [24]. However,
the PandaX-II Collaboration has observed a similar event rate,
which is also consistent with the background-only hypothesis
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[25]. Recent reviews of the theoretical and experimental status
of direct detection can be found in Ref. [20].

In earth-bound experiments the WIMPs are expected to hit
a nuclear target with a velocity of a few hundred kilometres
per second, or ∼10−3c. As a consequence, the interaction with
a nuclear target necessarily involves low momentum transfer.
Both because of this relatively low momentum transfer and the
fact that the most sophisticated treatments of nuclear structure
tend to be nonrelativistic, the theoretical treatment of WIMP-
nucleon interactions tends to involve nonrelativistic effective
field theory. The effective operators were constructed for dark
matter of spin 0 and 1/2 [26–28].

In such an approach the relativistic Lagrangian density
describing the interaction between WIMPs and quarks and
gluons is replaced by the most general set of Galilean
invariant operators for WIMP-nucleon interactions, includ-
ing the standard spin-independent and spin-dependent ones.
These are obtained by nonrelativistic reduction of the
relativistic interactions for a free nucleon. After embed-
ding these operators into nuclei, the WIMP-nucleus cross
section can be written in terms of six independent nu-
clear response functions [28]. This framework has been
widely used in phenomenological analyses of direct detection
data [29–31].

While the most familiar treatments of nuclear structure
are nonrelativistic, the underlying theory must, of course, be
relativistic. This may become important when we consider
interactions of a WIMP with a nucleon bound in a nucleus,
because the nuclear dynamics, notably the relativistic mean
fields, may modify the effective operators which are to be
sandwiched between appropriate nonrelativistic wave func-
tions [32]. In particular, as observed in the context of pion
production on nuclei, one must take special care with certain
interactions when the leading contribution from a relativistic
coupling involves the small component of the nucleon wave
function [32–34]. Here we pay special attention to the non-
relativistic reduction of elastic WIMP-nucleon interactions in
a nuclear medium in which there are strong Lorentz scalar
and vector potentials. This analysis can also be applied to the
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case of arbitrary dark matter spin [35], as well as inelastic
scatterings [36].

In Sec. II, we show the effect of nuclear dynamics on the
nucleon wave functions. The modified effective operators in
nonrelativistic limit are given in Sec. III. We conclude with
some remarks on the potential significance of the results pre-
sented here in Sec. IV.

II. NUCLEON WAVE FUNCTION IN MEDIUM

The relativistic theory of nucleons interacting via the
exchange of scalar and vector bosons in the mean-field ap-
proximation was initiated by Walecka [37] and has since been
developed extensively [38–40]. In a nuclear medium, we as-
sume that the wave function of a nucleon bound by Lorentz
scalar and vector mean fields satisfies the relativistic Dirac
equation

γ 0[−i�γ · ∇ + mN + Vs + γ 0Vv]ψ (�x) = Eψ (�x), (1)

where Vs corresponds to an attractive Lorentz scalar potential
and Vv the repulsive fourth component of a four-vector. Phe-
nomenologically these potentials are usually described by the
exchange of σ and ω mesons, respectively. Although model
dependent, there is a consensus that these potentials must be
large (i.e., as much as 30–40% of the mass of the nucleon) and
of opposite sign [41,42].

We write

ψ =
(

u
v

)
, (2)

where u and v are the large and small two-component wave
functions, respectively, which satisfy

�σ · �pv + (mN + Vs + Vv )u = Eu, (3)

�σ · �pu − (mN + Vs − Vv )v = Ev. (4)

Using the above equations, we find

v = 1

E + mN + Vs − Vv
�σ · �pu = 1

2m̃N
�σ · �pu, (5)

where

m̃N = mN [1 + (B + Vs − Vv )/2mN ] (6)

with B = E − mN the binding energy (B < 0). The small
component of bound nucleon wave function receives a large
correction compared with the free nucleon case, because of
the appearance of the combination (Vs − Vv ), since at nuclear
matter density this is typically larger than half of the mass of
the nucleon.

After eliminating the small component by the replacement
in Eq. (5), the large component wave function u(�x) satisfies
the nonrelativistic Schrodinger equation,[

1

2m̃N
p2 + (Vs + Vv ) − 1

2m̃2
N

1

r

dm̃N

dr
�σ · �l − 1

4m̃2
N

∇2m̃N

]
u(�x)

= Bu(�x), (7)

which contains a spin-orbit interaction. If we expand 1/m̃N to
the first order,

1

m̃N
= 1

mN

(
1 − B + Vs − Vv

2mN

)
, (8)

then Eq. (7) becomes[
1

2mN
p2 + (Vs + Vv ) + 1

2mN

(
V 2

s − V 2
v

) + B

mN
Vv

− 1

4m2
N

1

r

d (Vs − Vv )

dr
�σ · �l − 1

8m2
N

∇2(Vs − Vv )

]
u(�x)

= Bu(�x), (9)

from which one can define the effective potential [43]

Veff = Vs + Vv + V 2
s − V 2

v

2mN
+ B

mN
Vv. (10)

III. NONRELATIVISTIC WIMP-NUCLEON OPERATORS
IN MEDIUM

In the case of elastic scattering of a WIMP with mass
mχ from a nucleon with mass mN , we take the incoming
(outgoing) momentum of χ to be p (p′) and of N to be k (k′).
Galilean invariant combinations of momentum are those made
from the momentum transfer �q and relative incoming velocity
�v,

�q = �p′ − �p, �v = �vχ,in − �vN,in. (11)

It is common to introduce the related quantity

�v⊥ = �v + �q
2μχN

= 1

2

( �p
mχ

+ �p′

mχ

− �k
mN

− �k′

mN

)
, (12)

which satisfies �v⊥ · �q = 0 by the energy-conservation condi-
tion. μχN is the WIMP-nucleon reduced mass.

Following the procedure in Ref. [28], we rederive the non-
relativistic reductions of the various relativistic interactions.
To leading order in p/mχ and k/mN , the effective operators
can be obtained from those for a free nucleon, with mN being
replaced by m̃N .

As an approximation, we can simply neglect the binding
energy B in Eq. (6). The explicit form of the effective op-
erators are listed in the third column of Table I, with the
corrections being separated from the free nucleon results. The
nonrelativistic analog of invariant amplitudes can be obtained
from the matrix elements of these operators between the wave
functions u† and u. In the absence of the potentials, these
operators reduce to those for a free nucleon given in Ref. [28].

Another useful approximation is to rewrite Eq. (6) as

m̃N = m∗
N + B − (Vs + Vv )

2
, (13)

where m∗
N = mN + Vs is the nucleon effective mass commonly

used in nuclear dynamics. By neglecting the small quantity
B − (Vs + Vv ), the corresponding nonrelativistic operators are
shown in the fourth column of Tab I, where �v∗⊥ is defined by
Eq. (12) with mN → m∗

N .
Taking the vector-tensor coupling, case 6, as an exam-

ple, we see that the correction induced by the relativistic
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1
χ̄

χ
N̄

N
1 χ

1 N
1 χ

1 N
2

iχ̄
χ

N̄
γ

5
N

i
�q m
N

·� S
N

1
1+

(V
s−

V
v

)/
2m

N
i

�q m
∗ N

·� S
N

3
iχ̄

γ
5
χ

N̄
N

−i
�q m
χ

·� S
χ

−i
�q m
χ

·� S
χ

4
χ̄

γ
5
χ

N̄
γ

5
N

−(
�q m
χ

·� S
χ

)(
�q m
N

·� S
N

)
1

1+
(V

s−
V

v
)/

2m
N

−(
�q m
χ

·� S
χ

)(
�q m
∗ N

·� S
N

)

5
χ̄

γ
μ
χ

N̄
γ

μ
N

1 χ
1 N

1 χ
1 N

6
χ̄

γ
μ
χ

N̄
iσ

μ
α

qα m
M

N
�q2

2m
N

m
M

1 χ
1 N

+
2(

�q m
χ

×
� S χ

+
i �v⊥

)·
(

�q m
M

×
� S N

)
�q2

2m
∗ N

m
M

1 χ
1 N

+
2(

�q m
χ

×
� S χ

+
i �v∗⊥

)·
(

�q m
M

×
� S N

)

−[
�q2

2m
N

m
M

1 χ
1 N

−
2i

� k′ +
� k

2m
N

·(
�q m
M

×
� S N

)]
V

s−
V

v

2m
N

[1
+(

V
s−

V
v

)/
2m

N
]

7
χ̄

γ
μ
χ

N̄
γ

μ
γ

5
N

−2
� S N

· �v
⊥

+
2i

� S χ
·(

� S N
×

�q m
χ

)−
� S N

·� k′ +
� k

m
N

V
s−

V
v

2m
N

[1
+(

V
s−

V
v

)/
2m

N
]

−2
� S N

· �v
∗⊥

+
2i

� S χ
·(

� S N
×

�q m
χ

)

8
χ̄

iγ
μ
χ

N̄
σ

μ
α

qα m
M

γ
5
N

2i
�q m
M

·� S
N

2i
�q m
M

·� S
N

9
χ̄

iσ
μ

ν
q ν m

M
χ

N̄
γ

μ
N

−
�q2

2m
χ

m
M

1 χ
1 N

−
2(

�q m
M

×
� S χ

)·
(

�q m
N

×
� S N

+
i �v⊥

)
−

�q2

2m
χ

m
M

1 χ
1 N

−
2(

�q m
M

×
� S χ

)·
(

�q m
∗ N

×
� S N

+
i �v∗⊥

)

+2
(

�q m
M

×
� S χ

)·
(

�q m
N

×
� S N

−
i� k′ +

� k
2m

N
)

V
s−

V
v

2m
N

[1
+(

V
s−

V
v

)/
2m

N
]

10
χ̄

iσ
μ

ν
q ν m

M
χ

N̄
iσ

μ
α

qα m
M

N
4(

�q m
M

×
� S χ

)·
(
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)
4(
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(
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)
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iσ
μ

ν
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M
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γ

μ
γ

5
N

4i
(
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×
� S χ

)·
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4i
(
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×
� S χ

)·
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12
iχ̄

iσ
μ

ν
q ν m

M
χ

N̄
iσ

μ
α

qα m
M

γ
5
N

−[
i

�q2

m
χ

m
M

−
4 �v

⊥
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×
� S χ

)]
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�q m
M

·� S
N
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m
χ

m
M

−
4 �v

∗⊥
·(

�q m
M

×
� S χ
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mean-field potentials typically involves a factor 1/[1 + (Vs −
Vv )/2mN ]. As the scalar interaction is attractive and the
vector interaction repulsive, this results in a boost for the
effective interaction. In quantum hadrodynamics (QHD), the
typical values of the potentials are Vs ≈ −400 MeV and Vv ≈
350 MeV [44], respectively, while the quark meson coupling
(QMC) model gives smaller results, Vs ≈ −190 MeV and
Vv ≈ 130 MeV [42]. As a result, the corrections to some of
these interactions will be as large as 21–66%, which may sig-
nificantly change the sensitivities of WIMP-nucleus scattering
cross section to the effective operators, compared with the free
nucleon results.

IV. CONCLUSION

The existence of strong Lorentz scalar and vector mean
fields in atomic nuclei leads to corrections to some of the non-

relativistic effective interactions which determine the cross
section for dark matter scattering. This is only potentially
important when the combination (Vs − Vv )/2mN makes an
appearance and then it can lead to a correction as large as
21–66%, depending where in the nucleus the interaction takes
place. In a nucleus with N 
= Z , the isovector interaction has
a Lorentz vector from which will increase the strength of the
interaction with neutrons and decrease it for protons. This may
well be significant in relating the results of experiments on
different nuclear targets once a dark matter signal is found.
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