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The properties of toroidal hyperheavy even-even nuclei and the role of toroidal shell structure are extensively
studied within covariant density functional theory. The general trends in the evolution of toroidal shapes in the
Z ≈ 130–180 region of the nuclear chart are established for the first time. These nuclei are stable with respect
to breathing deformations. The most compact fat toroidal nuclei are located in the Z ≈ 136, N ≈ 206 region of
the nuclear chart, but thin toroidal nuclei become dominant with increasing proton number and toward proton
and neutron drip lines. The roles of toroidal shell structure, its regularity, supershell structure, and shell gaps
as well as the role of different groups of the pairs of the orbitals in its formation are investigated in detail.
The lowest in energy solutions at axial symmetry are characterized either by large shell gaps or low density
of the single-particle states in the vicinity of the Fermi level in at least one of the subsystems (proton or
neutron). Related quantum shell effects are expected to act against the instabilities in breathing and sausage
deformations for these subsystems. The investigation with a large set of covariant energy density functionals
reveals that substantial proton Z = 154 and 186 and neutron N = 228, 308, and 406 spherical shell gaps exist in
all functionals. The nuclei in the vicinity of the combination of these particle numbers form the islands of stability
of spherical hyperheavy nuclei. The study suggests that the N = 210 toroidal shell gap plays a substantial role
in the stabilization of fat toroidal nuclei.
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I. INTRODUCTION

The studies of the nuclei at the limits are guided by human
curiosity, by the need to understand new physical mechanisms
governing nuclear systems in these extreme conditions, and by
the demand for nuclear input in nuclear astrophysics. A num-
ber of questions related to the physics at the limits emerge:
What are the limits of the existence of nuclei? What are the
highest proton numbers Z at which the nuclear landscape and
periodic table of chemical elements cease to exist? What are
the positions of proton and neutron drip lines? What types of
nuclear shapes dominate these extremes of nuclear landscape?
They look deceivable simple but unique answers on most of
them are extremely difficult.

Recent systematic investigations of hyperheavy (Z � 126)
nuclei performed in Refs. [1–3] have allowed to shed some
light on these questions. Emerging new physics is summarized
in Figs. 1 and 2. The increase of Coulomb interaction with
increasing proton number Z leads to the fact that compact
nuclear shapes such as spherical, prolate, and oblate (fur-
ther ellipsoidal-like shapes) become either unstable against
fission or energetically unfavored in hyperheavy nuclei with
high Z values (see Fig. 1). As a consequence, the lowest in
energy solutions in such nuclei are characterized by noncom-
pact toroidal shapes.1 As illustrated in Fig. 2, the boundary
between ellipsoidal-like and toroidal shapes depend on the

1Toroidal nucleus is represented by a thin cylinder which has the
ends joining together [5].

combination of proton and neutron numbers. However, spher-
ical shapes can be stable against fission in some hyperheavy
nuclei (see Refs. [1,2] and Fig. 1). Although these states are
highly excited with respect to the lowest in energy states with
toroidal shapes (as obtained in axial calculations), they will
become the ground states if toroidal states are not stable with
respect to multifragmentation.

The state-of-the-art view on the nuclear landscape born out
in Refs. [1,2] is shown in Fig. 2. Well-known nuclear structure
with pronounced spherical shell gaps at particle numbers 8,
20, 28, 50, 82 (and N = 126) leading to the bands (shown
by gray color) of spherical nuclei in the nuclear chart along
the vertical and horizontal lines with these particle numbers
is seen for proton numbers below Z ≈ 120. With increasing
proton number, these classical features disappear and only
toroidal shapes are calculated as the lowest in energy in
axial relativistic Hartree-Bogoliubov (RHB) approach. This
region (shown in white color in Fig. 2) is penetrated only
by three islands (shown in gray color) of potentially stable
spherical hyperheavy nuclei; note that spherical minima are
highly excited with respect to the minima corresponding to
toroidal shapes. Thus, the richness of nuclear structure seen in
experimentally known part of nuclear landscape is replaced by
more uniform structure of the nuclear landscape in the region
of hyperheavy nuclei dominated by toroidal and spherical
nuclei. Figure 2 also reveals a substantial increase (equal to
the area between extrapolated two-proton drip line for ellip-
soidal shapes and the two-proton drip line for toroidal shapes)
of nuclear landscape caused by the shift of two-proton drip
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FIG. 1. Schematic illustration of the physics of hyperheavy nu-
clei. Solid black line shows the deformation energy curve of the
466156 nucleus obtained in axial relativistic Hartree-Bogoliubov
(RHB) calculations with covariant energy density functional (CEDF)
DD-PC1 in Ref. [1]. Open red circles indicate selected points on
this curve for which neutron density distributions ρn are shown. The
density distributions in the minima A and B (C, E, and F) are shown
in the plane which is perpendicular (along) the axis of symmetry. The
density color map starts at ρn = 0.005 fm−3 and shows the densities
in fm−3. The density profiles reflect their relative sizes with respect
of the spherical shape in the minimum D. See Fig. 9 in the present
paper and Fig. 2 in Ref. [2] for these density profiles in their actual
sizes.

line toward more proton-rich nuclei on transition to toroidal
shapes. This transition drastically modifies the underlying
single-particle structure and as a consequence lowers the en-
ergy of the Fermi level for protons (see Ref. [3]).

It is necessary to recognize that the physics of toroidal
shapes plays an important role in classical and quantum
physics, chemistry, and biology. There are numerous exam-
ples but let us mention only some of them. Stable toroidal
structures (micelles) play an important role in the amphiphilic
polymers in large parts of the parameter space spanned by
the degree of amphiphilicity, the temperature, the density, and
the molecular stiffness with respect to bending [6]. The wave
propagation on the surface of the torus represents a vivid
example of light behavior on curved surface of manifolds
with interesting topologies and has potential applications in
photonic structures [7]. The stability of toroidal drop freely
suspended in another fluid and subjected to an electric field
has been studied in Ref. [8]; this feature can play a role in a
number of phenomena and applications such as thunderstorm
formation, microfluids, bioimaging, and effective drug deliv-
ery. Biology finds the toroidal shape at the cellular level when
the reproduction of cells up to the 16th cell division creates a
hollow torus called the morula [9]. On a more microsocopic
level, the DNA2 toroids are formed from individual DNA
molecules of individual lengths [10].

2DNA stands for deoxyribonucleic acid, the molecule that contains
the genetic code of organisms.

The question of potential stability of toroidal nuclei was
first raised by Wheeler (see references in Ref. [5]). Later,
the toroidal shapes in atomic nuclei have been investigated
in a number of the papers (see, for example, Refs. [5,11–
16] and references quoted therein). However, in an abso-
lute majority of the cases, such shapes correspond to highly
excited states either at extreme values of angular momen-
tum in the nuclei across the nuclear landscape [13,14,17] or
at spin zero in superheavy elements [12,15]. In the former
case, calculated angular momenta at which toroidal shapes
appear substantially exceed the values of angular momentum
presently achievable at the state-of-art experimental facilities
[18]. So far, only the experimental excitation function for
the 7α de-excitation of 28Si nuclei, revealing the resonance
structures, may indicate the population of toroidal high-spin
isomers [19]. In the latter case, such states are unstable in
superheavy nuclei against returning to the shape of spherelike
geometry (Ref. [15]). This is similar to shrinking instability
of uncharged toroidal droplets which are unstable due to sur-
face tension and transform into spherical droplets [20]. The
situation is different in atomic nuclei since this shrinking in-
stability is counteracted by Coulomb repulsion of the protons
which increases with proton number Z . Thus, toroidal shapes
become the lowest in energy solutions in hyperheavy nuclei
with Z > 130 [1,2,11].

The present paper extends our previous investigations of
hyperheavy nuclei reported in Refs. [1,2] and focuses on a
number of issues which have not been studied so far. The
presence of local minima A, B, C, and D in deformation
energy curve of the 466156 nucleus (see Fig. 1) is clearly
due to the shell effects. So far, the underlying single-particle
structure has been investigated only for spherical shapes and
only for four covariant energy density functionals (see Sec. V
in Ref. [2]). To estimate theoretical uncertainties in the pre-
dictions of shell closures in hyperheavy nuclei at spherical
shape, we perform such studies with the 10 most widely used
CEDFs. This also allows us to compare respective spherical
shell gaps, leading to the islands of potentially stable spheri-
cal hyperheavy nuclei, with the ones seen in experimentally
known nuclei as well as with those predicted for spherical
superheavy nuclei. In addition, for the first time we perform
the detailed investigation of the single-particle structure of
hyperheavy toroidal nuclei.

The analysis of the single-particle structure presented in
Figs. 5 and 8 of Ref. [2] indicates the presence of large
spherical shell gaps at Z = 186 and N = 406. However, the
investigations of Ref. [2] have been restricted to the Z � 180
nuclei. Thus, to better map this region of potentially stable
spherical hyperheavy nuclei, to investigate the potential role
of these shell gaps, and to search for other regions of po-
tentially stable spherical hyperheavy nuclei, we extended the
calculations mapping the nuclear landscape from Z = 180 to
Z = 210.

Finally, because of numerical limitations, the studies of
toroidal shapes in hyperheavy nuclei have been with a single
exception restricted to the Z � 138 nuclei in Refs. [1,2]. Thus,
we performed detailed investigation of toroidal shapes corre-
sponding to the lowest in energy solution at axial symmetry
in extremely large basis for isotopic chains with Z = 136,
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FIG. 2. The distribution of ellipsoidal and toroidal shapes in the nuclear landscape obtained in the RHB calculations with CEDF DD-PC1.
The nuclei with ellipsoidal shapes are shown by the squares, the color of which indicates the equilibrium quadrupole deformation β2 (see color
map). Note that ellipsoidal shapes with the heights of fission barriers smaller than 2.0 MeV are considered as unstable (see the discussion in
Sec. III of Ref. [4] and Sec. XI of Ref. [2]). Two-proton and two-neutron drip lines for toroidal nuclei are shown by solid black lines. White
region between them (as well as the islands inside this region shown in gray) corresponds to the nuclei which have toroidal shapes in the lowest
in energy minimum for axial symmetry (LEMAS). The islands of relatively stable spherical hyperheavy nuclei in the Z > 130 nuclei, shown
in light gray color, correspond to the solutions which are excited in energy with respect of the LEMAS corresponding to toroidal shapes. Note
that in the same nucleus two-neutron drip lines for spherical and toroidal shapes are somewhat different. This is the reason why some islands
of stability of spherical hyperheavy nuclei extend beyond the two-neutron drip line for toroidal shapes. The extrapolation of the two-proton
drip for ellipsoidal shapes, defined from its general trends seen in the Z < 120 nuclei, is displayed by thick orange dashed lines. Similar
extrapolation for two-neutron drip line of ellipsoidal shapes is close to the two-neutron drip line of toroidal shapes (see Fig. 1 in Ref. [3]); thus,
it is not shown. Partially based on Fig. 24 of Ref. [2].

146, 156, 166, and 176. This allows us to better understand
their evolution with particle numbers and to get some under-
standing about their potential stability with respect of different
types of distortions.

The paper is organized as follows. The details of theoretical
calculations are discussed in Sec. II. Section III is devoted
to the analysis of the role of shell structure and large shell
gaps at spherical shape. The distribution of the shapes of
toroidal hyperheavy nuclei across the nuclear landscape and
major features of their shell structure are discussed in Sec. IV.
Finally, Sec. V summarizes the results of our work.

II. THE DETAILS OF THE THEORETICAL
CALCULATIONS

The investigations of the properties of hyperheavy even-
even nuclei are performed within the axial reflection sym-
metric Hartree-Bogoliubov (RHB) framework (see Ref. [21]).
Unless specified otherwise, the calculations are performed
with the DD-PC1 covariant energy density functional [22].
This functional is considered to be one of the best CEDFs
today based on systematic and global studies of different
physical observables related to the ground-state properties and
fission barriers [21,23–28].

The constrained calculations in the RHB code perform the
variation of the function

ERHB + C20

2
(〈Q̂20〉 − q20)2, (1)

where ERHB is the total energy and 〈Q̂20〉 denotes the expecta-
tion value of the mass quadrupole operator,

Q̂20 = 2z2 − x2 − y2. (2)

Here q20 is the constrained value of the multipole moment,
and C20 is the corresponding stiffness constant [29]. In order
to provide the convergence to the exact value of the desired
multipole moment, we use the method suggested in Ref. [30].
Here the quantity q20 is replaced by the parameter qeff

20 , which
is automatically modified during the iteration in such a way
that we obtain 〈Q̂20〉 = q20 for the converged solution. This
method works well in our constrained calculations.

The β2 quantity is extracted from the quadrupole moments:

Q20 =
∫

d3rρ(r) (2z2 − x2 − y2), (3)

via

β2 =
√

5

16π

4π

3AR2
0

Q20, (4)
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where R0 = 1.2A1/3. The β2 values have a standard meaning
of the deformations of ellipsoid-like density distributions only
for |β2| � 1.0 values. At higher β2 values, they should be
treated as dimensionless and particle normalized measures of
the Q20 moments. This is because of the presence of toroidal
shapes at large negative β2 values and necking degree of
freedom at large positive β2 values.

For each nucleus under study, the deformation energy
curves are calculated in the −5.0 < β2 < 3.0 range; such
large range is needed for a reliable definition of the type of
shape (toroidal or ellipsoidal) representing the lowest in en-
ergy minimum for axial symmetry (LEMAS). Two truncation
schemes are used in the calculations based on the analysis
presented in Sec. III of Ref. [2] and additional analysis per-
formed in this paper. All states belonging to major shells up
to NF = 30 fermionic shells for the Dirac spinors are taken
into account when detailed analysis of toroidal shapes in the
Z = 136–176 region and their underlying shell structure is
performed. Note that these calculations are extremely time-
consuming. As discussed in detail in Sec. III of Ref. [2] on
the example of the 466156 nucleus and verified by a similar
analysis of a pair of the Z = 176 nuclei, this basis provides
sufficient numerical accuracy of the calculations of toroidal
shapes. However, the analysis of numerical convergence in
the 616210 nucleus reveals that the description of higher Z
nuclei requires even large NF for a proper description of
LEMAS corresponding to toroidal shapes. These facts were
the reasons why we perform detailed study of toroidal shape
only up to Z = 176 and for Z > 176 nuclei we focus mainly
on ellipsoidal-like shapes, which require smaller basis as
compared with toroidal shapes (see Sec. III of Ref. [2] for
a detailed comparison of numerical convergence for toroidal
and ellipsoidal-like shapes). To save computational time, the
extension (as compared with the results presented in Ref. [2])
of nuclear landscape to the Z = 182–210 region is performed
with NF = 26; this truncation scheme allows an accurate de-
scription of spherical and ellipsoidal shapes, and a reliable
definition of toroidal shapes as corresponding to LEMAS,
but does not provide an accurate enough description of their
energies and shapes in LEMAS.

To avoid the uncertainties connected with the definition
of the size of the pairing window [40], we use the separable
form of the finite-range Gogny pairing interaction introduced
in Ref. [41]. Its matrix elements in r space have the form

V (r1, r2, r′
1, r′

2)

= −Gδ(R − R′)P(r)P(r′) 1
2 (1 − Pσ ), (5)

with R = (r1 + r2)/2 and r = r1 − r2 being the center of mass
and relative coordinates. The form factor P(r) is of Gaussian
shape,

P(r) = 1

(4πa2)3/2
e−r2/4a2

. (6)

The parameters of this interaction have been derived by a
mapping of the 1S0 pairing gap of infinite nuclear matter to
that of the Gogny force D1S. The resulting parameters are:
G = 728 fm3 and a = 0.644 fm [41]. This pairing provides a
reasonable description of pairing properties in heaviest nuclei

in which pairing properties can be extracted from experimen-
tal data [21,42,43].

III. SPHERICAL HYPERHEAVY NUCLEI:
THE ROLE OF SHELL STRUCTURE

Hyperheavy nuclei are stabilized by shell effects, i.e., by
the large shell gap(s) or at least a considerably reduced density
of the single-particle states in the vicinity of the Fermi level.
To better understand the impact of shell gaps on the under-
lying structure of spherical nuclei in the context of global
description of nuclear structure, Fig. 3 shows their evolution
across nuclear chart. It starts from well known gaps in doubly
magic 56Ni, 100,132Sn and 208Pb nuclei and extends to the
gaps in the hyperheavy nuclei. In addition, it provides the
evaluation of theoretical uncertainties in their predictions by
comparing the results obtained with ten most widely used
CEDFs.

Figures 3(a) and 3(b) show that the average sizes of pro-
ton Z = 154, 186 and neutron N = 228, 308, and 406 gaps
obtained in the calculations are larger than those (Z = 120
and N = 184) in classical region of superheavy nuclei.3 This
suggests that spherical hyperheavy nuclei may be more stable
as compared with spherical superheavy nuclei (see the discus-
sion of fission barriers in Refs. [1,2]). It is also interesting that
theoretical uncertainties in the sizes of shell gaps in hyper-
heavy nuclei are smaller than those in experimentally known
nuclei and in classical region of superheavy nuclei.

The absolute values of shell gaps do not tell full story about
their potential stabilizing effect since the single-particle level
density increases with mass number A. This is a reason why
scaled shell gap �EgapA1/3 provides a better measure (see
discussion in Sect. III of Ref. [23]). Scaled proton and neutron
shell gaps are shown in Figs. 3(c) and 3(d). One can see that
scaled proton Z = 154 and 186 shell gaps are significantly
larger than scaled Z = 120 shell gap in superheavy nuclei and
that they are close to the scaled Z = 82 shell gap in 208Pb
[see Fig. 3(c)]. In contrast, scaled N = 228, 308, and 406 shell
gaps are on average only slightly larger than scaled N = 184
gap in superheavy nuclei but they are smaller by a factor of
approximately two than scaled N = 126 shell gap in 208Pb
[see Fig. 3(d)].

Large uncertainties in the predictions of the Z = 120 and
N = 184 shell gaps and softness of potential energy surfaces
leads to substantial differences in the predictions of ground-
state properties of superheavy nuclei (see Ref. [23]). For many
nuclei, it is even impossible to reliably predict whether the
ground state will be spherical or oblate [23]. The situation
is different in hyperheavy nuclei where for ellipsoidal type
shapes only potentially stable spherical minima appear in the
calculations because of larger scaled spherical shell gaps seen
in Figs. 3(c) and 3(d).

Figure 4 presents the extension of the map of the heights
of fission barriers around spherical shapes from the earlier

3Note that the central nucleus of the Z ≈ 138, N ≈ 230 island of
stability of spherical hyperheavy nuclei does not really show Z =
138 shell gap in proton spectra (see discussion in Sec. V of Ref. [2]).
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FIG. 3. [(a), (b)] Calculated proton (π ) and neutron (ν ) shell gaps �Egap in the doubly magic 58Ni, 100,132Sn, and 208Pb nuclei and shell-
closure superheavy 304120 and hyperheavy 366138, 462154, and 592186 nuclei. Note that last three nuclei are located in the centers of the islands
of stability of spherical hyperheavy nuclei. Particle numbers corresponding to shell gaps are indicated. Ten most widely used CEDFs, namely,
NL1 [31], NL3 [32], NL3* [33], FSUGold [34], DD-ME2 [35], DD-MEδ [36], DD-PC1 [22], PC-PK1 [37], PC-F1 [38], and TM1 [39] are
employed in the calculations. The average (among the 10 used CEDFs) size of the shell gap is shown by a solid circle while the gaps obtained
for individual functionals are summarized in Table I. Thin and thick vertical lines are used to show the spread of the sizes of the calculated
shell gaps; the tops and bottoms of these lines correspond to the upper and lower shell gaps among the considered set of CEDFs. Thin lines
show this spread for all employed CEDF’s, while thick lines are used for the subset of four globally tested CEDFs (NL3*, DD-ME2, DD-PC1,
and PC-PK1). [(c), (d)] The same as in panels (a) and (b) respectively, but with the sizes of the shell gaps and the spreads in their predictions
scaled with mass factor A
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FIG. 4. The fission barrier heights EB [in MeV] as a function of proton and neutron numbers. Only the nuclei with fission barriers higher
than 2 MeV are shown. Partially based on the results presented in Fig. 6(a) of Ref. [1].
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TABLE I. The heights of the fission barriers EB and the sizes
�E of spherical N = 406 (�EN=406) and Z = 186 (�EZ=186) shell
gaps in the 592186 nucleus obtained with indicated CEDFs. The
functionals are ordered in such a way that EB is decreasing.

CEDF EB[MeV] �EN=406 [MeV] �EZ=186 [MeV]

FSUGold 10.66 1.84 2.17
DD-ME2 7.73 2.11 2.43
DD-MEδ 7.72 1.98 2.68
DD-PC1 7.59 1.93 2.45
PC-PK1 4.35 1.61 2.37
NL3 4.28 1.43 2.15
PC-F1 3.87 1.41 2.45
TM1 3.86 1.38 2.29
NL3* 3.59 1.45 2.37
NL1 1.27 1.27 2.34

published range of Z = 120–180 (see Fig. 6(a) in Ref. [1])
to the range of proton numbers from Z = 120 up to Z = 210.
The value of the fission barrier height EB is defined as the
lowest value of the barriers located on the oblate and prolate
sides with respect to spherical state in the deformation energy
curves obtained in axial RHB calculations. One can see that
the island of spherical hyperheavy nuclei previously labeled
as the “Z ≈ 174, N ≈ 410 island” in Ref. [1] has been con-
siderably extended up to Z ≈ 206. In a given isotope chain of
this island, the maximum of fission barriers heights is located
at N = 406. The highest fission barriers with the heights be-
tween ≈7.5 and ≈8.5 MeV are found in the Z = 186, 184,
182, and 180 isotopic chains. They are higher than those
obtained in the classical region of superheavy nuclei (see
Ref. [24]). Based on these results for fission barriers and for
the sizes of the Z = 186, N = 406 spherical shell gaps, we
relabel this island as the “Z ≈ 186, N ≈ 406 island of spher-
ical hyperheavy nuclei.” The extension of upper boundary of
nuclear landscape from Z = 180 to Z = 210 does not reveal
other islands of spherical hyperheavy nuclei.

Similar to the results presented in Fig. 6 of Ref. [1], the
size of the Z ≈ 186, N ≈ 406 island of spherical hyperheavy
nuclei and the stability of the elements in it are expected to
depend strongly on the employed functional. We have not
attempted to map this region with other than DD-PC1 func-
tionals but some insight on this issue can be obtained from
the analysis of the heights of fission barrier EB of the cen-
tral nucleus (592186) of this region calculated with different
functionals. These results are summarized in Table I. The
FSUGold and next three functionals (DD-ME2, DD-MEδ, and
DD-PC1) produce the highest calculated fission barriers: at
10.66 MeV for FSUGold and clustered around EB ≈ 7.7 MeV
for other three functionals. These barriers are higher than
those produced in the covariant density functional theory
(CDFT) framework in the classical region of superheavy nu-
clei (see Fig. 10 in Ref. [24]). These functionals are also
expected to produce the island of spherical hyperheavy nuclei,
which is comparable in size to that shown in Fig. 4. The
next five functionals (PC-PK1, NL3, PC-F1, TM1, and NL3*)
produce the cluster with EB ≈ 4 MeV (see Table I); this value
is not far away from what is obtained in the Z ≈ 116, Z ≈ 180

region of superheavy nuclei (see Fig. 10 in Ref. [24]). For
these functionals, the Z ≈ 186, N ≈ 406 island of stability of
spherical hyperheavy nuclei is expected to be substantially
smaller than the one shown in Fig. 4. Finally, the lowest fission
barrier is produced by the NL1 functional; its value indicates
the instability of spherical hyperheavy nuclei. However, the
predictions of this functional have to be considered as least
reliable because of well-known problems in its isovector prop-
erties (see Ref. [32]).

The difference in the predictions of EB is in part related
to the fact that the first group of functionals predicts the
Z = 186 and N = 406 shell gaps, which are on average larger
by ≈0.1 MeV and ≈0.5 MeV, respectively, than those pro-
duced by the second group of CEDFs (see Table I). Note also
that the nuclear matter properties and the density dependence
are substantially better defined for density-dependent (DD*)
functionals as compared with nonlinear (NL* and TM1) and
point-coupling (PC-PK1 and PC-F1) ones [25]. As a conse-
quence, in general, they are expected to perform better for
large extrapolations from known regions.

Note that the axial RHB calculations for deformation en-
ergy curves in the vicinity of spherical minimum indicate
nearly symmetric barriers with saddles at β2 ≈ ±0.2 [sim-
ilar to Fig. 17(b) below]. The experience in actinides and
superheavy nuclei tells us that octupole deformation in fission
barrier area typically does not develop for such low defor-
mations [4,26,44] [corresponding to inner fission barrier in
actinides and superheavy nuclei] and this result has been con-
firmed in octupole deformed RHB calculations with CEDF
DD-PC1 for spherical minimum of several hyperheavy nuclei
in Ref. [2]. The results presented in Fig. 5 for the 592186
nucleus are in line with these expectations; the saddle of
fission barrier is located at β3 = 0.0 and octupole deformation
does not affect the spherical minimum in the calculations with
DD-PC1 and NL3* functionals.

The analysis of Ref. [2] indicates that the impact of tri-
axial deformation on the fission barriers around the spherical
minima is relatively modest. This is the consequence of the
topology of potential energy surfaces, which is similar to those
of volcanos (see Fig. 6). The central area around the spherical
minimum is similar to a caldera, the rim of which is repre-
sented by the fission barrier. The area beyond the rim (fission
barrier) is a steep downslope as a function of quadrupole
deformation β2. The saddles of axial fission barriers (on oblate
and prolate sides of spherical minimum) are located at modest
quadrupole deformation of β2 ≈ 0.2. As a result, the distance
between these two saddles in the (β2, γ ) plane plane is rela-
tively small, so that large changes in binding energy due to
triaxiality for nearly constant β2 values could not develop.
As a consequence, the lowest fission barrier around spheri-
cal minimum obtained in axial RHB calculations is a good
approximation to the barrier obtained in the triaxial relativis-
tic Hartree-Bogoliubov (TRHB) calculations. For example,
this is a case in the calculations with CEDF DD-PC1 [see
Fig. 6(a)]. Even if the saddle of fission barrier is located at
γ �= 0◦ and γ �= 60◦, the energy lowering in fission barrier
height as compared with the lowest fission barrier at these γ

values is rather modest. For example, in the calculations with
the NL3* functional, the saddle of the fission barrier, located
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FIG. 5. Potential energy surfaces of the 592186 nucleus obtained in the reflection asymmetric (octupole deformed) RHB calculations with
indicated CEDFs. The energy difference between two neighboring equipotential lines is equal to 1.0 MeV. Spherical minimum is indicated by
a circle and the saddle point of the barrier around spherical minimum by solid black square. The color maps show the excitation energies (in
MeV) with respect to the energy of the deformation point with largest (in absolute value) binding energy. The calculations are performed with
NF = 20. Note that the topology of potential energy surfaces is almost the same in the calculations with NF = 20 and NF = 26. Thus, to save
computational time these figures are plotted with NF = 20.

at γ = 22◦, is lower than the fission barrier at γ = 0◦ by only
50 keV [see Fig. 6(b)]. Note also that the TRHB results clearly
indicate that spherical minimum of the nucleus under study is
relatively stable with respect to triaxial distortions.

Although the detailed studies have only been performed
with two functionals, representing one of the highest (DD-
PC1) and one of the lowest (NL3*) fission barriers obtained
in the calculations (see Table I), it is reasonable to expect that
similar situation will hold also for other functionals. This is
because of the similarity of the underlying shell structure.
Thus, one conclude that the impact of triaxiality and oc-
tupole deformation on EB of spherical hyperheavy nuclei is
either very small or nonexistent (see also the discussion in
Refs. [1,2]).

The density distributions at spherical shape for the nuclei
representing the centers of the islands of spherical hyper-
heavy nuclei have been compared and discussed in Sec. IV of
Ref. [2]. However, the Z ≈ 186, N ≈ 406 island (and, in par-

ticular, doubly magic 592186 nucleus corresponding to large
shell gaps at Z = 186 and N = 406) has not been completely
covered in that study because of the restriction to the Z � 180
nuclei. To fill this gap in our knowledge, Fig. 7 compares
proton and neutron density distributions of the 584174 nucleus
(studied in Ref. [2]) with those of doubly magic 592186 one.
Neutron densities of these two nuclei are very similar; they
are slightly larger for the 584174 nucleus because of the occu-
pation of the 2 j13/2 orbitals by four additional neutrons. The
differences are more visible for proton densities because 12
additional protons in the doubly magic 592186 nucleus (eight
in the 2g7/2 and four in 1 j13/2 orbitals) occupy the orbitals
which fill the density either in surface region (the 1 j13/2 or-
bitals) or in-between central and surface regions (the 2g7/2

orbitals) (see Ref. [45]). The increase of the Coulomb repul-
sion in the Z = 186 nucleus as compared with the Z = 174
one also plays a role in an enhancement of proton density
near the surface. As a consequence, the semibubble structure
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FIG. 6. The same as in Fig. 5 but for potential energy surfaces obtained in triaxial RHB calculations.
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FIG. 7. Proton and neutron densities of the 584174 and 592186 nu-
clei. The figure is based on the results of spherical RHB calculations.

becomes more pronounced in the proton densities of the
592186 nucleus as compared with the 584174 one.

IV. TOROIDAL NUCLEI

A. Distribution of shapes of toroidal nuclei
across the nuclear landscape

In our calculations, the truncation of basis is performed
in such a way that all states belonging to the major shells
up to NF fermionic shells for the Dirac spinors are taken
into account. Accurate calculations of LEMAS require ex-
tremely large fermionic basis and its size, defined by NF ,
increases with the raise of proton and neutron numbers (see

discussion in Sec. III of Ref. [2]). As a result, the β2 values
(and, thus, respective density distributions) of the lowest in
energy toroidal states have only been partially mapped in
the Z = 122–138 region (see Fig. 3 in Ref. [1]) in the axial
RHB calculations with NF = 26. For higher Z nuclei, existing
calculations only confirm that the lowest in energy solutions
have always toroidal shapes (see the discussion of Fig. 3 in
Ref. [2]) but do not provide accurate β2 values.

To fill this gap in our knowledge, additional calculations
are performed in the NF = 30 basis which provides quite
accurate description of toroidal shapes in the Z � 140 hy-
perheavy nuclei (see Sec. III in Ref. [2]). Such calculations
are extremely time-consuming even in axial RHB framework
and thus they are carried out only for restricted set of nuclei
displayed in Fig. 8. These are Z = 136, 146, 156, 166, and 176
nuclei. Apart of few regions, the calculations are performed in
step of �N = 10 to save computational time. Despite these
limitations, they allow us to understand the general features
of the distribution of toroidal shapes as well as the evolu-
tion of underlying single-particle structure across the nuclear
chart.

The results of these calculations are presented in Fig. 8.
To facilitate the discussion, we are using here the definitions
of tori as thin and fat employed in the physics of toroidal
liquid droplets [46]. Large (small) ratios of the radius R of
toroid (called the “major radius” in some publications; see, for
example, Ref. [5]) to the radius d of its tube (called the “minor
radius” in Ref. [5]) correspond to thin (fat) tori. The lowest
β2 values (β2 ≈ −2.2) are obtained in the Z ≈ 136, N ≈ 206
region (see Fig. 8) and these nuclei can be defined as fat
toroidal nuclei because of small aspect ratio R/d . The abso-
lute β2 values increase upon moving away from this region.
Especially large values of |β2| are obtained in proton-rich

FIG. 8. Proton β2 values (see color map on right) of the lowest in energy solutions of selected set of nuclei (see text for details). Solid
black lines indicate two-proton and two-neutron drip lines. Neutron density distributions of some nuclei are shown: Orange arrows are used to
indicate these nuclei. The same color map (shown in the upper left corner) as the one used in Figs. 1 and 9 is employed here for the densities.
The density color map starts at ρn = 0.005 fm−3 and shows the densities in fm−3. The density of the 348138 nucleus is used here as a reference
(see Fig. 9 for its actual geometrical size) with respect of which the geometrical sizes of the density distributions in other nuclei are normalized.
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nuclei with Z > 140 in the vicinity of the two-proton drip
line. These toroidal shapes are characterized by very large
radius of the torus and small radius of the torus tube and
thus these nuclei are described as thin toroidal nuclei. Slightly
smaller values of |β2| are seen in neutron-rich N � 310 nuclei.
The aspect ratios R/d for these nuclei are slightly smaller as
compared with the ones in proton-rich nuclei but these nuclei
are still the representatives of thin toroidal nuclei. Remaining
nuclei shown by cyan, dark and light green, and gray colors in
Fig. 8 are characterized by β2 ranging from −2.5 to −3.7. A
general trend of the increase of torus radius R and the aspect
ratio R/d with increasing proton number is seen in Fig. 8.
It is a consequence of Coulomb repulsion: Toroidal shapes
provide less compact distribution of charge as compared with
spherical ones and thus the Coulomb energy is substantially
reduced for toroidal shapes as compared with spherical ones
(see discussion in Sec. XII in Ref. [2])). The increase of
proton number requires the increase of torus radius in order
to minimize the Coulomb energy by creating less compact
distribution of charge. Observed features in the distribution
of toroidal shapes, which are the result of the competition
of different energy minima similar to the minima A and B
shown in Fig. 1 (see also Fig. 16 in Ref. [2]), have roots in the
underlying shell structure of toroidal hyperheavy nuclei (see
Sec. IV B).

To get a better understanding of the relative properties of
proton and neutron density distributions, we compare them in
Fig. 9 for the 348138 and 466156 nuclei. Similar to the situation
at spherical shape (see, for example, Fig. 7), the maximum
of proton density distribution ρmax

π is significantly smaller
(ρmax

π ≈ 2
3ρmax

ν ) than the neutron one ρmax
ν and those maxima

do not necessary appear at the same distance from the center
of toroid. The outer edges of the proton and neutron density
distributions appear at approximately the same distances from
the center of toroid. However, the diameter of the hole in the
center of proton density distribution is visibly larger than the
one in the case of neutrons. This is most likely the conse-
quence of the Coulomb repulsion acting on protons. Thus, the
diameter of toroid tube is smaller in the case of protons as
compared with the one for neutrons. Note also that the density
distribution in toroid tube is not necessary symmetric with
respect of its geometrical axis of symmetry; this is especially
visible in the case of proton density distributions presented
in Figs. 9(b) and 9(d). Detailed analysis reveals that this is a
consequence of the occupation of the single-particle orbitals
characterized by different spatial distributions of the single-
particle densities.

Because of the presence of well-pronounced minima (sim-
ilar to the minimum D in Fig. 1), the present axial RHB
calculations in extremely large basis confirm for the first time
the stability of toroidal Z � 140 nuclei shown in Fig. 8 with
respect of so-called breathing deformations. The breathing
deformation [5] preserves the azimuthal symmetry of the torus
and it is defined by the radius of torus and the radius of its
tube. In our calculations, this type of deformation is related
to the β2 values (see discussion in Ref. [1]). This result is
clearly different as compared with the ones obtained for clas-
sical uncharged toroidal liquid droplets, which are unstable
with respect of shrinking instabilities [20,46,47]. Because of
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FIG. 9. Neutron ρν (left column) and proton ρπ (right column)
density distributions of toroidal configurations in the β2 = −2.25
minimum of the 348138 nucleus and in the minima B and A of the
466156 nucleus (see Fig. 1).

surface tension, such droplet starts from toroidal shape but
then gradually shrinks by closing its interior hole and trans-
forms into spherical droplet [20,46,47]. In atomic nuclei, this
shrinking instability is counteracted by the Coulomb force:
The transition to a more compact spherical configuration leads
to a substantial increase of the Coulomb energy and thus it is
not energetically favored in hyperheavy nuclei [2].

Another class of potential instabilities of toroidal nuclei
is related to so-called sausage deformations [5]: They make
a torus thicker in one section(s) and thinner in another sec-
tion(s). This class of the instabilities is much more difficult to
describe in the density functional theories since their consid-
eration requires, in general, symmetry-unrestricted computer
codes. This fact, combined with the requirement for extremely
large basis in high-Z systems, makes this problem numer-
ically intractable with existing computer codes for absolute
majority of toroidal nuclei. The only exception are fat toroidal
nuclei located in the Z ≈ 136, N ≈ 210 region for which (as
illustrated by the examples of the 354134 and 348138 nuclei
discussed in Refs. [1,2]) the calculations for even-multipole
sausage deformations within the triaxial relativistic mean field
(RMF) +BCS codes are possible [1]. However, even such cal-
culations are extremely time-consuming and can be performed
only for a few nuclei.
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In such a situation, it is useful to get some insight from
the studies of classical liquid droplets. Thin toroidal droplets
exhibit Plateau-Rayleigh instabilities: When the outer circum-
ferences of toroid is equal to an integer (n) times of the
wavelength λc of unstable mode, the toroidal droplet will
eventually fission into n spherical droplets [46] (see also
Ref. [48] for the results obtained for liquid toroidal droplets
suspended in another liquid). Note that in classical toroidal
liquid droplets the Plateau-Rayleigh instability disappears for
sufficiently fat tori (R/d � 2) while the shrinking mode is
present for all aspect ratios [46]. These features have been
confirmed in experimental studies of stability of both toroidal
droplets in a viscous liquid [49] as well as melted polymer
rings [50]. The instability with respect of so-called sausage
deformations [5] in nuclear physics leading to multifragmen-
tation4 is an analog of the Plateau-Rayleigh instabilities. Thus,
these results suggest that such instabilities are less important
for fat toroidal nuclei [characterized by low (in absolute sense)
values of β2 > −2.5 and located in the Z ≈ 134, N ≈ 210
region (see Fig. 8)] but become more critical (and probably fa-
tal) for thin toroidal nuclei characterized by large (in absolute
sense) values of β2. The latter type of nuclei become dominant
both with increasing proton number Z and in proton- and
neutron-rich nuclei (see Fig. 8). The former suggestion is
in line with the results of triaxial RMF+BCS calculations
for the 354134 and 348138 nuclei, which have 4.4- and 8.54-
MeV fission barriers for nonaxial distortions, respectively (see
Ref. [1]).

However, it is necessary to recognize that fully quantum
mechanical calculations based on the density functional the-
ory are needed for establishing the stability of toroidal nuclei
with respect of sausage deformations. Toroidal liquid droplets
have a uniform density and the tube of torus has a cylindrical
form [46]. In contrast, the density functional theory (DFT)
calculations paint a much more complicated picture. First,
the density rapidly changes across the tube of the torus with
considerable mismatch between proton and neutron densities
(see Fig. 9 in the present paper, Figs. 2(c) and 2(d) in Ref. [1],
and Fig. 9 in Ref. [51]), which are defined by the occupation
of underlying proton and neutron single-particle orbitals. The
description of such a situation on the level of liquid-drop
model would require the model based on two (proton and
neutron) fluids with the specification of functional dependen-
cies of their densities on the position in the tube of the torus.
Second, not in all cases is the tube of the torus represented by
a perfect cylinder (see Fig. 2 in Ref. [2]). This may lead to an
enhanced stability against sausage deformations since exper-
imental studies of toroidal liquid droplets show that oblong
cross section of the torus tube suppresses Plateau-Rayleigh
instabilities as compared with circular one [47]. Because of
above-mentioned reasons, the analysis of Ref. [5] indicating
the instability of toroidal nuclei with respect of sausage defor-
mations in the liquid drop model should not be taken at face

4In this context, it would be interesting to see whether the observed
multifragmentation of high-spin configurations of 28Si into seven α

particles [19] represents the analog of Plateau-Rayleigh instabilities
of toroidal droplets in nuclear physics.

value. Note also that this analysis considers only the nuclei
with Z < 120 in which toroidal shapes are formed at high
excitation energies with respect to the ground states while
the toroidal shapes in the majority of hyperheavy nuclei are
expected to be the ground states. Moreover, the quantum shell
effects can counterbalance the potential instabilities toward
sausage deformations at some combinations of proton and
neutron numbers and deformations [1,5].

B. Shell structure of toroidal hyperheavy nuclei

It is well known that the presence of large gaps in proton
and neutron single-particle energies leads to an extra stabil-
ity of nuclear systems. So far, the analysis of toroidal shell
structure at spin I = 0 has been performed in light nuclei
[5,51], in the intermediate-mass region nuclei [52], and in su-
perheavy Z ≈ 120 nuclei [15,17]. Such an analysis was based
either on phenomenological toroidal single-particle potential
(see Refs. [5,51,52]) or on Skyrme DFT calculations (see
Refs. [15,17,51]). Large gaps in the single-particle energies
have been found at toroidal shapes in all these regions. For ex-
ample, in light nuclei these energy gaps give rise to “toroidal
shells” at “magic” nucleon numbers N = 2(2m + 1) with m
being an integer satisfying the condition m � 1 [5]. The extra
stability associated with toroidal shells leads to local energy
minima at toroidal shapes in many nuclei either at spin zero
[5,53] or in some high-spin isomer states [51]. However, in
all these nuclei such minima are located at high excitation
energies with respect to ellipsoidal-like ground state.

However, the situation changes in hyperheavy nuclei in
which the ground states are expected to have toroidal shapes.
Thus, it is very important to investigate shell structures of
toroidal hyperheavy nuclei. In particular, it would be interest-
ing to see whether there are large shell gaps or reduced density
of the single-particle states at specific particle numbers which
could provide extra stability with respect to potential insta-
bilities originating from sausage deformations. One should
also remember that even if hyperheavy nuclei are unstable
with respect to sausage deformations in the liquid drop model,
they can be stabilized by quantum shell corrections. The best
known examples of such a situation are superheavy nuclei:
They are unstable in the liquid drop model but are relatively
stable in a fully quantum mechanical picture which includes
shell corrections [54,55].

The analysis presented in Sec. IV A suggests that it is
more likely to get potentially stable toroidal nuclei when their
shapes in corresponding minima are characterized by small
absolute β2 values (or small aspect ratio R/d). The toroidal
354134 and 348138 nuclei are representative cases of such
shapes (see Fig. 1 in the Supplemental Material to Ref. [1]
and Fig. 19 in Ref. [2]). Triaxial RMF+BCS calculations
of Refs. [1,2] suggest that these two nuclei are expected
to be relatively stable with respect to nonaxial distortions
(even-multipole sausage deformations) with calculated fission
barriers being equal to 4.4 and 8.54 MeV, respectively. En-
hanced stability of the 348138 nucleus is a reason why we
start the analysis of toroidal shell structure from this nucleus,
which is characterized by moderately compact toroidal shapes
[see Figs. 9(a) and 9(b)]. We also consider toroidal shell
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FIG. 10. Proton and neutron single-particle energies, i.e., the diagonal elements of the single-particle Hamiltonian h in the canonical basis
[29], for the lowest in total energy solution in the 348138 nucleus calculated as a function of the β2 quantity. Black solid and red dashed lines
are used for positive- and negative-parity states, respectively. The dominant components �[N, nz, 
] of the wave functions (as calculated at
LEMAS) are shown by blue and green colors for the positive- and negative-parity orbitals, respectively. The energies EF of the respective
Fermi levels are shown by blue dotted lines. The vertical orange lines and orange arrows are drawn at the β2 value corresponding to LEMAS.
Shell gaps are indicated by encircled numbers.
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FIG. 11. The same as Fig. 10 but for the 466156 nucleus.

structure in the 466156 nucleus. The LEMAS of this nucleus
is characterized by noncompact toroidal shapes with large
R/d aspect ratio [see Figs. 9(e) and 9(f)], but there is also an
excited minimum B (see Fig. 1) which is characterized by very
compact toroidal shapes with very small holes in the centers
[see Figs. 9(c) and 9(d)].

The Nilsson diagrams for these nuclei are shown in
Figs. 10 and 11. In order to illustrate the differences between

shell structures of toroidal and ellipsoidal-like nuclei, bottom
panels display proton and neutron single-particle states in the
very large energy and β2 ranges. They are shown from the
bottom of respective potentials up to 4 MeV energy above the
continuum threshold and from β2 = −5.1, corresponding to
toroidal nuclei with large R/d aspect ratio, up to β2 = +3.5
in the 348138 nucleus and up to β2 = 2.25 in the 466156 nuclei.
These large positive β2 values correspond to prefissioning
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FIG. 12. The same as Fig. 11 but for the single-particle states active in the vicinity of the Fermi levels corresponding to the minimum B of
Fig. 1.

configurations with well-pronounced necks (see, for example,
density distribution at the position F of Fig. 1). Middle and top
panels of Figs. 10 and 11 as well as Fig. 12 show the regions
of interest in an enlarged scale. The analysis of these figures
reveals the general features which are discussed below.

Toroidal shell structure (especially the one for the shapes
with large R/d aspect ratio) has much more pronounced
regular features as compared with the shell structure of
ellipsoidal-like shapes in the range of the β2 values from
≈ −1.15 up to ≈1.5 which looks quite chaotic for deformed
shapes [see Figs. 10(e), 10(f), 11(e), and 11(f)]. At higher β2

values, typical features of shell structure of two-center shell
model (see, for example, Ref. [56]) are seen.

The bunching of the pairs of the orbitals of the same parity
with dominant structure of �[N, nz,
] and (� + 1)[N, nz,
]

TABLE II. The dominant components of the wave functions of
nearly degenerate pairs of the single-particle states of same parity
indicated by the letters in Fig. 13. They are defined at the β2 value
corresponding to LEMAS. The states forming the pair are shown in
the columns labeled as “first state” and “second state.”

First state Second state

a 1/2[ 9,0,1] 3/2[ 9,0,1]
b 3/2[10,0,2] 5/2[10,0,2]
c 5/2[ 9,0,3] 7/2[ 9,0,3]
d 7/2[10,0,4] 9/2[10,0,4]
e 9/2[ 9,0,5] 11/2[ 9,0,5]
f 11/2[10,0,6] 13/2[10,0,6]
g 13/2[11,0,7] 15/2[11,0,7]
h 15/2[10,0,8] 17/2[10,0,8]
i 17/2[11,0,9] 19/2[11,0,9]
j 19/2[12,0,10] 21/2[12,0,10]
k 21/2[13,0,11] 23/2[13,0,11]
l 23/2[12,0,12] 25/2[14,1,12]

with N � 9 and nz = 0 (see Table II)5 leads to the appearance
of toroidal shell gaps at particle numbers 6, 10, 14, 18, 22, 26,
30, 34, 38, 42, and 46 at the bottom of proton and neutron
potentials (see Fig. 13). These gaps exist in a large range
of the β2 values; this is contrary to the case of shell gaps
for ellipsoid-like shapes which are localized in deformation.
They are also consistent with the ones obtained in the study
of toroidal shapes in light nuclei within toroidal harmonic
oscillator shell model6 and Skyrme DFT (see Figs. 1, 5,
and 6 in Ref. [51] and Fig. 12 in Ref. [5]). The energies
of these pairs of orbitals generally decrease with increasing
the absolute value of β2; the only exception from this rule
are several lowest pairs of orbitals located at the bottom of
neutron and proton potentials (see Fig. 13). Note that the
pairs of the orbitals with dominant structure of �[N, nz,
]
and (� + 1)[N, nz,
] are almost near degenerate in energy
at the bottom of potential and that this near-degeneracy in-
creases with increasing absolute value of β2. There is also an
alternation of the pairs of the states with positive and negative
parities with increasing energy (see Fig. 13). These features
of the shell structure dominate the physics of toroidal shapes
in light to medium-mass nuclei (see Refs. [5,51]).

The general features of the pairs of orbitals with dominant
structure of �[N, nz,
] and (� + 1)[N, nz,
] with nz = 0
changes drastically in the energy ranges between −20 and 0

5The only exception is the last pair of the states shown in Table II
for which the second state has nz = 1.

6This type of the model has been described before either as a
shell model based on radially displaced harmonic oscillator poten-
tial [5,51] or a harmonic oscillator toroidal shell model [52]. We
abbreviate it here as toroidal harmonic oscillator shell model in
order to stress that the basis of it is formed by the eigenvectors of
radially displaced (toroidal) harmonic oscillator potential and that in
this respect it differs from the standard shell model which uses a
traditional harmonic oscillator for basis set expansion.
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FIG. 13. The same as Fig. 10 but for the single-particle states located in the bottom part of nucleonic potential and in the β2 range from
−5.1 up to 0.0. Toroidal shell gaps are shown by bold blue numbers. Encircled letters and green arrows are used to indicate the pairs of the
single-particle states which are almost degenerate in energy. The structure of these states are shown in Table II.

MeV for protons and between −25 and 0 MeV for neutrons
(see Figs. 10, 11, and 14) for β2 � −1.8. First, their ener-
gies decrease almost linearly with increasing absolute value
of β2. Second, there is a periodic pattern in the change of
the orbitals: With increasing energy, two positive-parity or-
bitals are followed by two negative-parity orbitals, then by
two positive-parity orbitals, and so on. Third, these orbitals
form the grating-like structure with almost equidistant energy
spacings between them.

In the same energy range as discussed in the previous
paragraph, there are other single-particle structures dictated
by the symmetries of the toroid. These are almost degenerate
in energy single-particle states of opposite parity (see Figs. 14,
10, and 11) with dominant structures of the wave functions
given by �[N, nz,
] and �[N ′, n′

z,

′], where the conditions

N ′ = N ± 1, |
′ − 
| = 0 or 1 and |n′
z − nz| = 0 or 1 are typ-

ically satified (see Table III). These states change their energy
very slowly when the β2 value is varied. Note that such pairs
of the states are also present in the Skyrme DFT calculations
of toroidal shapes in the 304120 nucleus (see Figs. 3 and 4 in
Ref. [17]).

The presence of the two types of the single-particle states
discussed in the previous two items is mostly responsible
for the shell structure and shell gaps in the intermediate
energy range of proton and neutron potentials. This leads
to the existence of many gaps in the single-particle spec-
tra which are quite large. These are proton Z = 120, 130,
134, 138, 140, 144, and 148 shell gaps with typical size
of approximately 1 MeV and neutron N = 206, 210, and

TABLE III. The dominant components of the wave functions of
the pairs of proton and neutron single-particle states of opposite par-
ity which are almost degenerate in energy. The states forming the pair
are shown in the columns labeled as “parity= +” and “parity= −.”
These pairs are indicated in Fig. 14. Note that the dominant compo-
nents of the wave functions are defined at the β2 value corresponding
to LEMAS.

Neutron(ν) Proton(π )

2 3 4 5
1 Parity= + Parity= − Parity= + Parity= −
a 1/2[8,0,0] 1/2[ 9,0,1] 1/2[8,0,0] 1/2[ 9,0,1]
b 3/2[8,0,2] 3/2[ 9,0,1] 3/2[6,1,1] 3/2[ 9,0,1]
c 1/2[6,1,1] 1/2[ 7,1,0] 5/2[8,0,2] 5/2[ 7,1,2]
d 13/2[10,0,6] 13/2[ 9,1,6] 7/2[8,1,3] 7/2[ 9,0,3]
e 13/2[8,1,7] 13/2[11,0,7] 1/2[6,1,1] 1/2[ 7,1,0]
f 1/2[10,1,1] 1/2[ 9,1,0] 3/2[6,1,1] 3/2[ 7,1,2]
g 3/2[10,1,1] 3/2[11,0,1] 9/2[10,0,4] 9/2[ 7,1,4]
h 5/2[10,1,3] 5/2[ 9,1,2] 11/2[8,1,5] 11/2[ 9,0,5]
i 7/2[10,1,3] 7/2[11,0,3] 13/2[10,0,6] 13/2[ 9,1,6]
j 5/2[10,1,3] 5/2[ 9,2,3] 11/2[10,0,6] 11/2[ 9,1,6]
k 7/2[8,2,4] 7/2[11,1,4] 13/2[8,1,7] 13/2[11,0,7]
l 13/2[10,2,6] 13/2[11,1,6] 1/2[10,1,1] 1/2[ 9,1,0]
m 9/2[10,1,5] 9/2[ 9,2,5] 3/2[10,1,1] 3/2[11,0,1]
n 15/2[12,1,7] 15/2[11,2,7] 5/2[10,1,3] 5/2[ 9,1,2]
o 11/2[10,2,6] 11/2[11,1,6] 7/2[10,1,3] 7/2[11,0,3]
p 9/2[12,0,4] 9/2[11,1,4]
q 1/2[10,1,1] 1/2[ 7,2,1]
r 3/2[8,2,2] 3/2[ 9,1,2]
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FIG. 14. The same as Fig. 10 but for the single-particle states located in the intermediate energy range of nucleonic potential of the 348138
nucleus and in the β2 range from −3.0 up to −1.5. Encircled letters and green arrows are used to indicate the pairs of single-particle states of
opposite parity which are almost degenerate in energy. The structure of these states is shown in Table III.

214 shell gaps which are larger than 1 MeV in the 348138
nucleus [see Figs. 10(a) and 10(b)]. A similar situation is
also seen in the 466156 nucleus. In this nucleus, the bands of
proton (Z = 130, 132, 134, 136), (Z = 142, 144, 146, 148),
(Z = 156, 158), and (Z = 168, 170) shell gaps are formed
because of the presence of the bunches of four single-particle
states with relatively low 
 values located between them. The
energies of these bunches slightly decrease with increasing
absolute value of β2 [see Fig. 11(a)]. Note that some of these
gaps reach almost 2 MeV in size. Smaller neutron gaps with
size of around 1 MeV and below are seen at N = 294, 296,
302, 314, and 318 and contrary to the proton subsystem they
do not form the bands of shell gaps [see Fig. 11(b)].

The obtained results for the shell structure of toroidal nu-
clei allow us to understand its contribution into the stability
of toroidal shapes with respect to breathing deformations. For
example, LEMAS in the 348138 nucleus corresponds to the sit-
uation in which proton and neutron Fermi levels are located in
the middle of the region of low density of single-particle states
in the vicinity of the Z = 134 and N = 210 gaps, respectively
[see Figs. 10(a) and 10(b)]. Any increase or decrease of the
β2 value from the one corresponding to LEMAS will lead to
the increase of the density of the single-particle states in the
vicinities of respective Fermi levels. This effect is especially
pronounced for the neutron subsystem. As a consequence,
the LEMAS corresponds to the largest or near largest (in
absolute sense) negative proton and neutron shell correction
energies, while the deviation (in terms of β2) from total energy
minimum will lead to the reduction of these energies. This

contributes to the stability of toroidal shapes with respect to
breathing deformations. However, as illustrated by the case of
the 466156 nucleus, the contribution of shell correction effects
to the stability of the nuclei is expected to depend on proton
and neutron numbers. In this nucleus, the neutron Fermi level
at LEMAS is located at high density of the neutron single-
particle states [see Fig. 11(b)], which likely leads to positive
neutron shell correction energies. In contrast, shell correction
energies will be large and negative in the proton subsystem
since the proton Fermi level is located in the vicinity of large
Z = 156 gap [see Fig. 11(a)]. Note that this gap is so large
that proton pairing collapses at the β2 values near LEMAS;
this is seen from the fact that the energy of the proton Fermi
level coincides with the energy of the single-particle state
located below the Z = 156 gap. When pairing collapses, the
transition from Hartree-Bogoliubov formalism with pairing
to the Hartree formalism without pairing takes place [29]. In
the latter one, the Fermi level coincide with the position of
the highest occupied level in the lowest in energy nucleonic
configuration [18].

The same features are also active in respect of the stability
of toroidal nuclei in sausage deformation degree of freedom.
This is because of two factors. First, the shell gaps in the
breathing degree of freedom are also the shell gaps in the
sausage degree of freedom (see Sec. IV D in Ref. [5]). Second,
as shown in toroidal harmonic oscillator shell model for parti-
cle numbers of interest, the increase of sausage deformations
σλ of multipolarities λ = 1, 2, and 3 from zero to some finite
values leads to washing out of these shell gaps and an increase
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of the density of the single-particle states in the vicinity of
the Fermi level (see Figs. 21, 22, and 23 in Ref. [5]). Let us
consider the nuclei in which the proton and neutron Fermi
levels of the LEMAS solution are located in the region of
low density of the single-particle states. In these nuclei, the
shell correction energy is negative at σλ = 0 but it will ei-
ther be reduced in absolute value or become positive when
sausage deformations become nonzero. Thus, the instability
in the breathing degree of freedom which exists on the level of
liquid drop is counterbalanced in these nuclei by the quantum
shell effects. The balance of these two contributions defines
whether the toroidal nucleus is stable with respect to sausage
deformations or not. Fully quantum mechanical calculations
based on DFT are needed to establish the stability of a given
nucleus with respect of sausage deformations. However, the
analysis of the shell structure and the level density of the
single-particle states in the vicinity of the proton and neutron
Fermi levels provides useful information on whether a given
nucleus could potentially be stable with respect of sausage de-
formations. For example, as discussed above, such an analysis
for the 348138 nucleus shows low densities of the single-
particle states in the vicinity of proton and neutron Fermi
levels and indeed the RMF+BCS calculations of Refs. [1,2]
reveal the stability of toroidal shapes in this nucleus with
respect to even-multipole sausage deformations.

Figures 10 and 11 reveal some global bunching of the
pairs of almost degenerate in energy single-particle states of
opposite parities. For example, such bunches of the states are
seen in the proton subsystem of the 348138 nucleus at the
energies ≈ −19, ≈ −14, ≈0, and ≈4 MeV for β2 = −5.0
[see Figs. 10(c) and 10(e)]. The density of the single-particle
states is high in these bunches and thus it is reasonable to
expect that the shell correction energy Eshell will be positive
when the Fermi level is located near or within these bunches.
For such a situation, it is reasonable to expect that the quantum
shell effects will not help stabilize toroidal shapes with respect
to sausage deformations. With decreasing absolute value of
β2, the energies of these bunches of the single-particle states
go down [see Figs. 10(c) and 10(e)]. However, these bunches
and the low-density single-particle structure between them
persist down to β2 values, corresponding to the transition
from toroidal to concave disk shapes. The density of the
single-particle states is low between these bunches and it is
reasonable to expect that for the majority of the combinations
of particle number and β2 the Eshell values will be negative
when the Fermi level is located in this region. These features
are the manifestation of so-called supershell structure, which
has been discussed in the case of ellipsoidal-like shapes in
Ref. [57].

There is a drastic difference in the behavior of neutron
and proton Fermi levels as a function of the β2 value (see
Figs. 10 and 11). The neutron Fermi level is more or less
constant as a function of β2. As a consequence, the calculated
two-neutron drip line for toroidal shapes is close to the extrap-
olation of this line for ellipsoidal-like shapes (see Fig. 2). In
contrast, the proton Fermi level dives deeper into nucleonic
potential with increasing absolute value of β2; it is lower by
approximately 5 MeV for toroidal shapes with large aspect
ratio as compared with its position for biconcave disk shapes.

As a consequence, the transition to toroidal shapes in hyper-
heavy nuclei creates a substantial expansion (the area between
black solid and orange dashed lines in Fig. 2) of the nuclear
landscape.

There are drastic changes in the single-particle structure
of the 348138 nucleus at β2 ≈ −1.15 and β2 ≈ −1.85 [see
Figs. 10(c), 10(d), 10(e), and 10(f)]. The first change is related
to the transition from biconcave disk shape to toroidal one
(which is equivalent to an opening of the hole in the center of
biconcave disk shape). The second one is associated with the
redistribution of the proton density in the torus caused by the
change of the occupation of the single-particle orbitals. This
density is asymmetric with respect to the axis of torus tube
and has a maximum closer to an outer edge of the torus for the
β2 values ranging from ≈ −1.15 down to ≈ −1.85. However,
it becomes almost symmetric with respect to the axis of the
torus tube for β2 � −1.85. Note that similar changes in the
single-particle structure are seen at β2 ≈ −1.1, β2 ≈ −1.8,
and β2 ≈ −2.7 in the 466156 nucleus [see Figs. 11(c), 11(d),
11(e), and 11(f)] and their origins are similar to the ones
discussed above in the 348138 nucleus.

In order to find potentially most stable toroidal nuclei,
two-proton S2p(Z, N ) and two-neutron S2n(Z, N ) separation
energies

S2n(Z, N ) = B(Z, N ) − B(Z, N − 2),

S2p(Z, N ) = B(Z, N ) − B(Z − 2, N ), (7)

and the δ2n(Z, N ) and δ2p(Z, N ) quantities defined as

δ2n(Z, N ) = S2n(Z, N ) − S2n(Z, N − 2),

δ2p(Z, N ) = S2p(Z, N ) − S2p(Z − 2, N ), (8)

are plotted in Fig. 15 for the region with (Z = 132–144, N =
204–228). Here B(Z, N ) is the binding energy. The separation
energies show a sudden drop at the shell gaps, if they are large.
If the variations of the level density are less pronounced, the
δ2n(Z, N ) and δ2p(Z, N ) quantities related to the derivatives
of the separation energies are more sensitive indicators of the
localizations of the shell gaps (see discussion in the Appendix
of Ref. [58]). They also provide the information on average
density of the single-particle states.

The presence of the neutron gap at N = 210 for toroidal
shapes is visible in Figs. 15(a) and 16(a) in the Z = 126–136
nuclei. The δ2n(Z, N ) values for neutron numbers away from
N = 210 are low, which is indicative of high density of neu-
tron single-particle states below and above the N = 210 shell
gap. These features correlate with the ones seen in the Nilsson
diagram [see Fig. 10(b)].

In contrast, the S2p(Z, N ) and δ2p(Z, N ) values [see
Figs. 15(b) and 16(b)] are relatively smooth functions of pro-
ton number which indicates that the average density of proton
single-particle states remains more or less constant. However,
on average the δ2p(Z, N ) values are substantially higher than
the δ2n(Z, N ) ones; only in the region of the peak of δ2n(Z, N )
at N = 210 they are comparable (see Fig. 16). This clearly
indicates that the density of proton single-particle states is low
in a wide range of proton numbers and this observation is sup-
ported by the comparison of Figs. 10(a) and 10(b). Note that
the peak of δ2p(Z, N ) ≈ 1.3 MeV is seen for neutron numbers
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N = 204–212 [see Fig. 16(b)], suggesting extra stability of
these nuclei.

The combination of proton and neutron shell effects should
lead to enhanced stability of specific nuclei. As a result, fea-
tures discussed above are most likely reasons why the fission
barrier is higher in the N = 210 348138 nucleus as compared
with the N = 220 354134 one.

C. Functional dependence of the results

When considering the predictions for toroidal hyperheavy
nuclei and their shell structure, it is important to evaluate their
dependence on the employed functional. So far, all predictions
for such nuclei presented in Refs. [1,2] and in the present
paper were obtained with the CEDF DD-PC1. To study func-
tional dependence of the predictions, we perform additional
calculations for the 348138 and 466156 nuclei with the NL3*
[32], PC-PK1 [37], DD-ME2 [35], and DD-MEδ [36] func-
tionals and compare their results with the ones obtained with
DD-PC1 earlier. These five state-of-the-art functionals repre-
sent three major classes of CDFT models [21] and have been
globally tested in Refs. [21,23,25,59,60]. Note that in this set
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FIG. 16. The δ2n(Z, N ) and δ2p(Z, N ) quantities for the toroidal
nuclei in the (Z = 126–144, N = 204–228) region.

of the functionals the CEDF DD-PC1 and PC-PK1 provide
better descriptions of binding energies on a global scale as
compared with other functionals.

The deformation energy curves obtained with these func-
tionals are presented in Fig. 17. In both nuclei and in terms of
relative energies of the minima corresponding to toroidal and
ellipsoidal-like shapes, there is a large similarity of the results
obtained with point-coupling models DD-PC1 and PC-PK1 as
well as with nonlinear meson-nucleon coupling model NL3*
on the one hand and those obtained with density-dependent
meson-exchange models DD-ME2 and DD-MEδ on the other
hand. In the latter type of the models, the toroidal shapes
are less energetically favored with respect to ellipsoidal-like
shapes as compared with former models. For example, in the
348138 nucleus, the fat toroidal shapes corresponding to the
minimum A are more (less) energetically favored as compared
with biconcave disk shapes corresponding to minimum B in
the calculations with DD-PC1 and PC-PK1 (DD-ME2 and
DD-MEδ) functionals. Note that these two minima are located
at approximately the same energies in the calculations with
the NL3* functional [see Fig. 17(a)]. However, this difference
in the predictions of relative energies of the minima A and
B is not principal because the minimum B is not stable with
respect of triaxial distortions in the calculations with DD-PC1
functional (see Ref. [1]) and the same situation is expected
for other functionals because of the similarity of underlying
shell structure. On the other hand, the minimum A is relatively
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FIG. 17. The deformation energy curves obtained in axial RHB
calculations with indicated CEDFs. The local and global minima are
indicated by the arrows with letters. The same labeling of minima as
shown in Fig. 1 is used for the 466156 nucleus.

stable with respect of even-multipole sausage deformations in
the calculations with DD-PC1 (see Refs. [1,2]), and because
of the similarity of the underlying toroidal shell structure (see
discussion of Fig. 18 below) it is reasonable to expect that this
is also the case for the remaining functionals.

A situation similar to the 348138 nucleus holds also in the
466156 one. This is because toroidal shapes are more ener-
getically favored as compared with ellipsoidal-like ones in
the calculations with CEDFs DD-PC1, PC-PK1, and NL3*
than in those employing DD-ME2 and DD-MEδ functionals
[see Fig. 17(b)]. For example, the energy difference �Edi f f

between the minimum A corresponding to thin toroidal shapes
and the minimum D corresponding to spherical shapes is ap-
proximately 117 MeV in the calculations with the first group
of the functionals and only approximately 67 MeV in the
calculations with the second group. Note that these differences
cannot be explained by the differences in nuclear matter prop-
erties of the functionals since they are similar (quite different)
in the pair of the DD-PC1 and DD-ME2 (DD-PC1 and PC-
PK1) functionals (see Ref. [25]) which provide the �Edi f f

values, which differ by 53.4 MeV (by only 6.5 MeV).
These differences between the functionals, related to the

relative energies of the minima corresponding to toroidal and
ellipsoidal-like shapes, are expected to affect the position of

the boundary between ellipsoidal-like and toroidal shapes in
the nuclear landscape (see Fig. 2 in the present paper and the
discussion in Sec. XII of Ref. [2]). However, this boundary
depends not only on relative energies of these two types of the
shapes but also on the stability of ellipsoidal-like shapes with
respect of fission (see Ref. [2]). There is a quite substantial
dependence of the fission barrier heights for ellipsoidal-like
shapes on CEDF with the PC-PK1 and NL3* (DD-ME2 and
DD-PC1) functionals providing the lowest (highest) barrier
heights for superheavy nuclei among the CEDFs considered
in Ref. [3] and a similar situation is also expected in the
hyperheavy nuclei.

Despite the above-mentioned differences, there are large
similarities between the results of the calculations obtained
with five functionals. For the first time, the results presented
in Fig. 17 confirm that the transition from ellipsoidal-like to
toroidal shapes with increasing proton number Z does not
depend on CEDF. The presence of similar local minima in
deformation energy curves (such as the minima A, B, C, and
D in the 466156 nucleus and the minima A and B in the
348138 nucleus) with similar equilibrium β2 values presented
in Fig. 17 clearly suggest the similarity of underlying shell
structure in all employed functionals. Note that in a few
cases such minima are shoulder-like in deformation energy
curves without a sufficient barrier on one side: These are
the minimum C in the calculations with NL3* and PC-PK1
and the minimum B in the calculations with NL3* [(see
Fig. 17(b)].

The analysis of toroidal shell structure of the 348138 and
466156 nuclei obtained with the NL3*, PC-PK1, DD-ME2,
and DD-MEδ functionals reveals the same general features
as those discussed in Sec. IV B for the DD-PC1 functional.
Thus, we will focus on fine details of the shell structure of
these nuclei in the vicinity of the respective Fermi levels at the
LEMAS of the minimum A in these two nuclei (see Fig. 17)
since they are responsible for potential stability of respective
toroidal shapes. The Nilsson diagrams for these four CEDFs
are shown in Figs. 18 and 19; they can be compared with
those obtained for DD-PC1 and presented in Figs. 10(a),
10(b), 11(a), and 11(b). This comparison reveals significant
similarities between the results of the calculations obtained
with different functionals.

For example, in the 348138 nucleus, the proton Fermi level
EF at LEMAS is located in the region of reduced density of
proton single-particle states between shell gaps at Z = 134
and Z = 140 [see Fig. 10(a)] in the calculations with the
DD-PC1 functionals. A similar situation exists also in the
calculations with NL3*, PC-PK1, DD-ME2, and DD-MEδ

CEDFs [see Figs. 18(a), 18(c), 18(e), and 18(g)]. In this
nucleus, the neutron Fermi level is located in the middle
of substantial N = 210 toroidal shell gap in the calculations
with DD-PC1 [see Fig. 10(a)] and DD-ME2 and DD-MEδ

[see Figs. 18(e) and 18(g)], but it is shifted to the region
of somewhat higher density of the neutron single-particle
states below the N = 214 toroidal shell gap in the calcula-
tions with NL3* and PC-PK1 [see Figs. 18(b) and 18(d)].
These results suggest that two-proton separation energies
S2p(Z, N ) and the δ2p(Z, N ) quantities (see the discussion
in the end of Sec. IV B) should be very similar for all five
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FIG. 18. The same as Figs. 10(a) and 10(b) but for the results obtained with indicated CEDFs. The vertical dashed orange lines are drawn
at the β2 values corresponding to LEMAS.
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FIG. 19. The same as Figs. 11(a) and 11(b) but for the results obtained with indicated CEDFs. The vertical dashed orange lines are drawn
at the β2 values corresponding to LEMAS.
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employed functionals. The same is true for related neutron
S2n(Z, N ) and δ2n(Z, N ) values obtained in the calculations
with DD-PC1, DD-ME2, and DD-MEδ, which are expected
to reveal the presence of the N = 210 toroidal shell gap [see
Fig. 16(b)]. However, it is quite likely that the peak in the
δ2n(Z, N ) values visible at N = 210 in the calculations with
DD-PC1 [see Fig. 16(a)] will be moved to N ≈ 214 and
substantially washed out in the calculations with NL3* and
PC-PK1.

A similar situation exists also in the 466156 nucleus. The
bands of proton (Z = 130, 132, 134, 136), (Z = 142, 144,
146, 148), (Z = 156, 158, 160), and (Z = 168, 170) shell
gaps, formed because of the presence of the bunches of single-
particle states with relatively low 
 values located between
them, exist in all five functionals [see Figs. 11(a), 19(a),
19(c), 19(e), and 19(g)]. Note that some of these gaps reach
almost 2 MeV in size. The proton Fermi level at LEMAS is
located either in the middle of large Z = 156 shell gap in the
NL3*, PC-PK1, DD-ME2, and DD-MEδ functionals or at the
bottom of this shell gap in the DD-PC1 CEDF and thus shell
correction energies will be large and negative in the proton
subsystem in all functionals.

Smaller neutron shell gaps with the size of around 1 MeV
and below are seen at N = 294, 296, 302, 314, 318 in DD-
PC1 [Fig. 11(a)], at N = 278, 290, 294, 300, 302, 314, 318
in NL3* [Fig. 19(b)], at N = 296, 300, 302, 314, 326 in PC-
PK1 [Fig. 19(d)], at N = 292, 296, 298, 302, 308 in DD-ME2
[Fig. 19(f)], and at N = 282, 298, 304, 306, 312 in DD-MEδ

[Fig. 19(h)], and contrary to the proton subsystem they do
not form the bands of shell gaps. Considering the relatively
small size of neutron shell gaps, larger (as compared with the
proton subsystem) dependence of the predictions for neutron
shell gaps on the functional is expected. These differences are
not critical since in all functionals the neutron Fermi level
at LEMAS is located at high density of the neutron single-
particle states, which likely leads to positive neutron shell
correction energies.

The results presented in Fig. 17 clearly indicate the stabil-
ity of the nuclei under discussion with respect to breathing
deformation in all employed functionals. The similarity of the
shell structure in all five functionals strongly suggests that
the considerations provided in Sec. IV B on potential stability
with respect to sausage deformations of the nuclei under study
in the case of CEDF DD-PC1 are also applicable for the
NL3*, PC-PK1, DD-ME2, and DD-MEδ functionals.

V. CONCLUSIONS

In conclusion, the detailed investigation of the properties of
spherical and toroidal hyperheavy even-even nuclei and their
underlying shell structure have been performed in the frame-
work of covariant density functional theory. The following
conclusions have been obtained:

(1) Proton Z = 154, 186 and neutron N = 228, 308, and
406 spherical shell gaps exist in all employed CEDFs.
Their combinations define the islands of stability of
spherical hyperheavy nuclei. The sizes of these gaps
(both actual �Egap and scaled �EgapA1/3) are larger

than those of Z = 120 and N = 184 in superheavy
nuclei. This suggests that some spherical hyperheavy
nuclei may be more stable than superheavy ones. Sys-
tematic theoretical uncertainties in the predictions of
the sizes of spherical shell gaps in hyperheavy nuclei
are smaller than those in superheavy nuclei and exper-
imentally known nuclei.

(2) Detailed calculations in extremely large basis have
allowed us to establish for the first time the general
trends of the evolution of toroidal shapes in the Z ≈
130–180 region of the nuclear chart. Although they
have been performed only for selected Z = 136, 146,
156, 166, and 176 nuclei with the step in neutron
number of �N = 10, their distribution in the nuclear
chart between two-proton and two-neutron drip lines
and deformation energy curves of these nuclei is such
that they allow us to safely extrapolate major conclu-
sions for all nuclei in the above-mentioned region. The
most compact fat toroidal nuclei are located in the
Z ≈ 136, N ≈ 206 region (see Fig. 8). Thin toroidal
nuclei with large R/d aspect ratio become dominant
with increasing proton number and on moving toward
proton and neutron drip lines.

(3) All the nuclei in the Z ≈ 130–180 region located
between neutron and proton drip lines are expected
to be stable with respect to breathing deformations.
Because of numerical difficulties, it is much more
problematic to answer the question on their stabil-
ity with respect to sausage deformations. However,
the analysis of theoretical and experimental studies
of toroidal liquid droplets as well as the results on
the stability of the 354134 and 348138 nuclei with re-
spect to even-multipole sausage deformations obtained
in Refs. [1,2] suggest that fat toroidal nuclei located
in the Z ≈ 136, N ≈ 210 region are potentially more
stable with respect to sausage deformations than thin
toroidal nuclei located outside of this region. Never-
theless, future fully quantum mechanical calculations
based on DFT are needed to establish the stability of
specific toroidal nuclei since the quantum shell effects
can counterbalance the instabilities with respect of
sausage deformations [5].

(4) Toroidal shell structure (especially the one for the
shapes with large R/d aspect ratio) has much more
pronounced regular features as compared with the
shell structure of deformed ellipsoidal-like nuclei.
Global bunching of the pairs of almost degenerate
single-particle states of opposite parities leads to an
appearance of supershell structure. These features are
mostly driven by the existence of the two classes of
the pairs of the orbitals at toroidal shapes. The pairs of
the orbitals with dominant structure of �[N, nz,
] and
(� + 1)[N, nz,
] with nz = 0 belong to the first class.
The second class is formed by almost degenerate in
energy single-particle states of opposite parities with
dominant structures of the wave functions given by
�[N, nz,
] and �[N ′, n′

z,

′] for which the conditions

N ′ = N ± 1, |
′ − 
| = 0 or 1, and |n′
z − nz| = 0 or 1

are typically satisfied.
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(5) As illustrated by discussed cases, at LEMAS large
shell gaps and/or low density of the single-particle
states appear at least in one of the subsystems (proton
and/or neutron) in the vicinity of its Fermi level. These
shell gaps are also the gaps in breathing and sausage
degrees of freedom [5]. If the Fermi level in a given
subsystem is located in the vicinity of the large shell
gap or low density of the single-particle states, quan-
tum shell effects will act against the instabilities in
breathing and sausage deformations. These stabilizing
effects will be definitely enhanced if both proton and
neutron subsystems are characterized by such features.

(6) However, the analysis of the Nilsson diagrams for all
nuclei calculated in Fig. 8 shows that in many of these
nuclei the level densities are high near the proton and
neutron Fermi levels at LEMAS. In reality, such a
situation becomes much more frequent with increasing
proton and neutron numbers and respective rise of the
single-particle level densities. The reason is quite sim-
ple: The β2 value of LEMAS is defined mostly by the
competition of nuclear surface tension and Coulomb
interaction and the shell correction effects play only
a secondary role here. As a result, such nuclei are
expected to be unstable with respect to sausage defor-
mations. Thus, it is reasonable to expect the existence
of the “continent” of stability of toroidal nuclei in low-
Z systems which is replaced by the “isolated islands”
of their stability in higher Z nuclei located in the “sea
of the instability.”

The problem of the stability of toroidal nuclei with respect
of sausage deformations emerges as a major obstacle in their
study. There are several possible ways to investigate such
instabilities. One is based on the analysis of time evolution of
the toroidal nucleus after some external disturbance of equi-
librium shape in time-dependent Hartree-(Fock)-Bogoliubov
framework formulated in coordinate representation. However,
the sizes of thin toroidal nuclei are significantly larger than

those of ellipsoidal ones and the tube of the torus of such
nuclei is characterized by a small radius and rapid change
of the densities. These factors would require a very large
three-dimensional box with small steps in each direction. At
present, it is not clear whether such calculations are numeri-
cally feasible.

An alternative possibility is to rewrite existing RHB com-
puter codes on the basis of toroidal harmonic oscillator
potential and to study “fission” barriers in respective sausage
deformations. Since this is a native basis for toroidal shapes,
it is reasonable to expect that sufficient numerical accuracy
could be achieved at significantly lower size of the toroidal
harmonic oscillator basis as compared with existing comput-
ers codes formulated in the traditional harmonic oscillator
basis, which is more suitable for ellipsoidal-like shapes. For
example, in the latter codes the NF = 20 fermionic shells
are sufficient for the description of spherical and ellipsoidal
shapes in the 466156 nucleus but NF = 30 is required for
the description of toroidal shapes [2]. The use of a toroidal
harmonic oscillator basis would reverse the situation and we
hope the basis with NF = 20 will be sufficient for the descrip-
tion of toroidal shapes near LEMAS and their instabilities
with respect to sausage deformations. Our experience tells us
that numerical calculations in such a basis are feasible with
existing high-performance computers.

The instabilities of toroidal nuclei with respect to sausage
deformations can potentially be studied by means of
three-dimensitional lattice (3D lattice) method suggested in
Ref. [61]. For example, this method has been used for the
investigation of the stability of linear chain structure of three
α clusters in 12C against bending and fission in the framework
of cranking CDFT in Ref. [62].
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