
PHYSICAL REVIEW C 103, 034316 (2021)

Exact solution of the Brueckner-Bethe-Goldstone equation with three-body forces in nuclear matter
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An exact treatment of the operators Q/e(ω) and the total momentum is adopted to solve the nuclear matter
Bruecker-Bethe-Goldstone equation with two- and three-body forces. The single-particle potential, equation of
state, and nucleon effective mass are calculated from the exact G matrix. The results are compared with those
obtained under the angle-average approximation and the angle-average approximation with total momentum
approximation. It is found that the angle-average procedure, whereas preventing huge calculations of coupled
channels, nevertheless provides a fairly accurate approximation. On the contrary, the total momentum approxi-
mation turns out to be quite inaccurate compared to its exact counterpart.
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I. INTRODUCTION

One of the central objective in modern nuclear theory
is to understand the saturation properties of nuclear matter,
starting from the ab initio calculation. Different many-body
theories have been developed to settle this problem, such
as the many-body perturbation theory [1–5], the variational
method [6,7], the Monte Carlo method in its various ver-
sions [8–13], and the diagrammatic expansion method, in
particular, the Brueckner-Bethe-Goldstone (BBG) hole-line
expansion [14,15] and the self-consistent Green’s function
approach [16–19]. In the BBG model, the effect of the nuclear
medium is taken into account via the Pauli operator, which
limits the allowed intermediate states to particle states above
the Fermi level, and the self-energy in the denominator of the
two-particle propagator. The accurate treatment of the Pauli
blocking operator and of the denominator of the two-particle
propagator (we call it energy denominator hereafter) is one of
the essential requirements for the numerical calculation.

The Pauli operator and energy denominator depend, in
principle, not only on the magnitudes of total and relative
momenta of the intermediate two nucleons, but also on their
angles. Different partial waves can couple to each other due
to this angular dependence, leading to cumbersome numeri-
cal computations. One can avoid this difficulty adopting the
angle-average (AA) approximation [20,21]. Various studies
have assessed the reliability of the AA approximation. Among
these, major attention has been devoted to the angular depen-
dence of the Pauli operator [22–26], whereas complications
arising from the angular dependence of the energy denomi-
nator were handled by the AA procedure or effective-mass
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approximation [27]. There are also attempts to check the
angular dependence of the energy denominator [28,29]. In
Ref. [28], Sartor reports solutions to the BBG equation with
the exact propagator with the Reid soft-core potential [30],
including the coupling of different partial waves. It has been
concluded that the corrections due to the angular dependence
of the energy denominator are marginal comparing to the
exact treatment of the Pauli operator. However, Ref. [29]
shows the mass operator and the saturation properties can be
affected by taking a monopole approximation for the propaga-
tor with the Argonne V18 and Paris potential. The three-body
force (3BF), which is crucial for reproducing the empirical
saturation point of symmetric nuclear matter [31,32], was
not included in these studies. To evaluate accurately the AA
approximation, the 3BF should be embodied either.

On the other hand, because of the computational limits,
the total momentum of the intermediate two nucleons was
approximated by its average value in the first calculations of
Brueckner et al. [33]. Such an approximation for the total
momentum was widely adopted in previous nonrelativistic
[34–40] and relativistic investigations [41–43]. However, it is
now possible to refrain from this approximation, and, in fact,
a recent relativistic investigation shows a sizable contribution
to the saturation property [44] within an exact treatment of
the total momentum. The total momentum approximation in
the nonrelativistic regime has not been investigated yet. In the
present paper we solve the BBG equation exactly, considering
the coupling of different partial waves and abandoning the
total momentum approximations. The reliability of the angu-
lar average and the total momentum approximation will be
investigated with the realistic Argonne V18 including also a
microscopic 3BF.

In Sec. II we derive the exact partial-wave expansion
of BBG equation. The angle-average and total momentum

2469-9985/2021/103(3)/034316(9) 034316-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6585-8257
https://orcid.org/0000-0002-8289-361X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.034316&domain=pdf&date_stamp=2021-03-22
https://doi.org/10.1103/PhysRevC.103.034316


SHANG, DONG, ZUO, YIN, AND LOMBARDO PHYSICAL REVIEW C 103, 034316 (2021)

approximations are described in Sec. III. The numerical re-
sults are presented in Sec. IV, and the summary and outlook
are finally given in Sec. V.

II. THEORETICAL APPROACHES

The starting point of BBG theory is the Brueckner reaction
matrix G, which describes the scattering of two nucleons
inside the nuclear medium. The G matrix satisfies the Bethe-
Goldstone equation,

G(ω) = v + v
Q

e(ω)
G(ω), (1)

where Q, ω, and e(ω) are the Pauli operator, the starting
energy, and the energy denominator, respectively. The starting
energy is a parameter in the calculation of the various quanti-
ties [e.g., the mass operator M(k, ω)]. In the previous studies
[14,15,22–26,28,29,32,35], the Pauli operator with the energy
denominator had been defined as follows:

Q

e(ω)
|Kkσ1τ1σ2τ2〉 = F τ1τ2 (K, k, k̂)|Kkσ1τ1σ2τ2〉, (2)

with the definition,

F τ1τ2 (K, k, k̂)

=
[
1 − nτ1

(∣∣K
2 + k

∣∣)][1 − nτ2
(∣∣K

2 − k
∣∣)]

ω − K2

4m − k2

m − U τ1
(∣∣K

2 + k
∣∣) − U τ2

(∣∣K
2 − k

∣∣) + ıη
,

(3)

where K and k (k = |k|) are the total and relative momenta of
the scattering nucleons, respectively. The neutron and proton
rest masses are assumed to be equal to the average value
m of the nucleon mass. By nτ (k) [τ = n, p] we denote the
Fermi distribution function, which at zero temperature is given
by the Heaviside step function θτ (k − kτ

F ) with the Fermi
momentum kτ

F . The so-called auxiliary potential U τ is defined
as

U τ (1) =
∑
p′σ ′τ ′

nτ ′
(2)Re〈12|G[ετ (1) + ετ ′

(2)]|12〉A, (4)

where 1 ≡ (p, σ, τ ) denote the momentum, the spin z compo-
nent, and the isospin z component of the particle, respectively.
The single-particle (s.p.) energy in the Brueckner-Hartree-
Fock (BHF) approaches reads

ετ (p) = p2

2m
+ U τ (p). (5)

The auxiliary potential U τ is also called the s.p. potential in
the BHF approaches.

A. Matrix elements of the propagator Q/e(ω) in the
partial-wave expansion

Usually, the BBG equation is solved in the partial-wave
representation, where the NN interaction can be easily ex-
pressed. Here �, S, J , and T are the orbit angular momentum,
the spin, the total angular momentum, and the isospin of the

two scattering nucleons, respectively. mJ and Tz are the z com-
ponents of J and T , respectively. This basis can be expressed
as the linear combination of the plane-waves |Kk〉, i.e.,

|Kk�SJmJT Tz〉
=

∫
d k̂

∑
m�ms

(�m�Sms|JmJ )Y�m�
(k̂)|Kk〉|Sms〉|T Tz〉, (6)

here k̂ ≡ k/k. One should note that the partial wave basis is
not the eigenstate of the operators Q/e(ω). [The eigenstate
of the Pauli operator as well as the two-particle propagator
should be |Kkσ1τ1σ2τ2〉 or equivalently |k1σ1τ1k2σ2τ2〉 with
k1,2 = K

2 ± k]. With the help of the transformation relation,

〈K ′k′σ1τ1σ2τ2|Kk�SJmJT Tz〉

= (2π )3δ(K − K ′)(2π )3 δ(k − k′)
k2

×
∑
m�ms

(
1

2
σ1

1

2
σ2

∣∣∣∣Sms

)(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)

× (�m�Sms|JmJ )Y�m�
(k̂

′
), (7)

the matrix elements of the propagator Q/e(ω) is given by

〈K ′k′�′S′J ′m′
JT ′T ′

z | Q

e(ω)
|Kk�SJmJT Tz〉

=
∑

K ′′k′′σ1σ2τ1τ2

〈K ′k′�′S′J ′m′
JT ′T ′

z |K ′′k′′σ1τ1σ2τ2〉

× F τ1τ2 (K ′′, k′′, k̂
′′
)〈K ′′k′′σ1τ1σ2τ2|Kk�SJmJT Tz〉

= (2π )3δ(K − K ′)(2π )3 δ(k − k′)
k2

δSS′

×
∑

m′
�m�msτ1τ2

(�′m′
�Sms|J ′m′

J )

(
1

2
τ1

1

2
τ2

∣∣∣∣T ′Tz

)

× (�m�Sms|JmJ )

(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)

×
∫

d k̂ Y ∗
�′m′

�
(k̂)F τ1τ2 (K, k, k̂)Y�m�

(k̂). (8)

Due to the conservation of the total momentum, the orienta-
tion of the total momentum does not affect the calculation.
Its direction can be chosen as the z axis, therefore, the value
of F τ1τ2 depends upon the magnitude of the total and relative
momenta of the scattering nucleons, and it is only affected
by the orientation of the relative momentum. Moreover, the
function F τ1τ2 is axisymmetric along the z axis [the orientation
of K] . In Eq. (8) the integration over angle ϕ of the spherical
coordinates will, thus, yield a δm�m′

�
factor, which allows the

m′
� summation to be performed trivially. The Clebsch-Gordan

coefficients imply that both m′
J and mJ are equal to m� + ms,

hence, the propagator is diagonal in mJ .
Note that F τ1τ2 [Eq. (3)] also depends upon the isospin,

the summation of Clebsch-Gordan coefficients with F τ1τ2 over
τ1τ2 could not lead to the relation T = T ′ directly. Neverthe-
less, the summation can be separated into the symmetric and
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antisymmetric parts, i.e.,

∑
τ1τ2

(
1

2
τ1

1

2
τ2

∣∣∣∣T ′Tz

)(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)
F τ1τ2 (K, k, k̂)

= F τ1τ2
S (K, k, k̂)|δT T ′ + F τ1τ2

A (K, k, k̂)|εT T ′ , (9)

where εT T ′ = 1 − δT T ′ . And each part corresponds to a dif-
ferent relationship between T and T ′ (see the Appendix for
details). Accordingly, the matrix elements of the operators
Q/e(ω) are calculated as

〈K ′k′�′S′J ′m′
JT ′T ′

z | Q

e(ω)
|Kk�SJmJT Tz〉

= (2π )3δ(K − K ′)(2π )3 δ(k − k′)
k2

δSS′δmJ m′
J
δTzT ′

z

× [〈k�′J ′|FS (K, ω)|k�J〉δT T ′

+ 〈k�′J ′|FA(K, ω)|k�J〉εT T ′ ], (10)

with

〈k�′J ′|FS (K, ω)|k�J〉
=

∑
m�ms

(�′m�Sms|J ′mJ )(�m�Sms|JmJ )

×
∫

d k̂ Y ∗
�′m′

�
(k̂)F τ1τ2

S (K, k, k̂)Y�m�
(k̂), (11)

and

〈k�′J ′|FA(K, ω)|k�J〉
=

∑
m�ms

(�′m�Sms|J ′mJ )(�m�Sms|JmJ )

×
∫

d k̂ Y ∗
�′m′

�
(k̂)F τ1τ2

A (K, k, k̂)Y�m�
(k̂). (12)

Once the charge-dependent Argonne V18 NN potential is
adopted, the auxiliary potential U n �= U p for symmetric nu-
clear matter. Moreover, it is generally true that U n �= U p

for asymmetric nuclear matter. Consequently, the definition
F pn(K, k, k̂) is neither an even function nor an odd function
of k̂. The AA approximation of Q/e(ω) in the previous inves-
tigation removes the odd part of F pn(K, k, k̂), and the reserved
part ensures the conservation of the parity (see the Appendix).
In Ref. [28], Sartor did not distinguish the neutron and proton
strictly in the derivation, i.e., omitting the antisymmetric part
F pn

A (K, k, k̂). From Eqs. (10) and (12) the antisymmetric part
F pn

A (K, k, k̂) would result in the mixing of the total isospin
T = 0 and T = 1 neutron-proton states. Due to the property
of F pn

A (K, k, k̂), this mixing preserves the generalized Pauli
principle selection rule (−1)T +S+L = −1 (see the Appendix
for details). In fact, we have estimated the effects of the
mixing by considering the antisymmetric part F pn

A (K, k, k̂) in
solving the BBG equation self-consistently, and the results
manifest that the matrix elements of effective G corresponding
to the mixing is less than 0.1%, and the energy due to this
mixing is even smaller.

We stress here the mixing of the total isospin T = 0
and T = 1 neutron-proton states, which originates from the

definition of Q/e(ω) [Eq. (3)], is nonphysical. The definition
in Eq. (3) was first adopted for symmetric nuclear matter with
a charge-independent potential [14,20] in which the freedom
of the proton and neutron was not considered explicitly. For
asymmetric nuclear matter or the charge-dependent potential
adopted, the definition of Q/e(ω) should be modified. In the
present paper, we propose a symmetrization of Q/e(ω), i.e.,

F τ1τ2 (K, k, k̂)

= 1

2

{ [
1 − nτ1

(∣∣K
2 + k

∣∣)][1 − nτ2
(∣∣K

2 − k
∣∣)]

ω − K2

4m − k2

m − U τ1
(∣∣K

2 + k
∣∣) − U τ2

(∣∣K
2 − k

∣∣) + i0

+
[
1 − nτ1

(∣∣K
2 − k

∣∣)][1 − nτ2
(∣∣K

2 + k
∣∣)]

ω − K2

4m − k2

m − U τ1
(∣∣K

2 − k
∣∣) − U τ2

(∣∣K
2 + k

∣∣) + i0

}

(13)

to remove the mixing of total isospin T = 0 and T = 1
neutron-proton states. Actually, one might obtain this formula
following Day’s derivation [14] by distinguishing the proton
and neutron specifically. Using this definition the antisymmet-
ric part in Eq. (10) vanishes as well as the mixing.

B. Partial-wave expansion of the Brueckner-Bethe-Goldstone
equation

Using the partial-wave basis, the standard symmetry prop-
erties of the NN interaction are expressed as

〈K ′k′�′S′J ′m′
JT ′T ′

z |v|Kk�SJmJ T Tz〉
= (2π )3δ(K − K ′)δSS′δJJ ′δmJ m′

J
δT T ′δTzT ′

z

×〈k′�′JST |v|k�JST 〉. (14)

From Eqs. (10) and (14) and the closure relation pertaining to
the basis |Kk�SJmJT Tz〉, the BBG equation can be written in
the form

〈k′�′J ′|G(K, ω)|k�J〉

= δJJ ′ 〈k′�′J|v|k�J〉 +
∑

�′′�′′′J ′′′

∫
k′′2dk′′

(2π )2
〈k′�′J ′|v|k′′�′′J ′〉

× 〈k′′�′′J ′|FS (K, ω)|k′′�′′′J ′′′〉〈k′′�′′′J ′′′|G(K, ω)|k�J〉
(15)

for fixed T, S, and mJ . The total momentum K affects the
effective G only by its value K implicitly. Here the invari-
ants, i.e., K, T, S, mJ , and Tz, have not been written out
explicitly in the expression. The same as in Refs. [25,28] for
fixed ST channels, there are coupling between various total
momenta J’s.

The auxiliary potential U τ can be expressed as U τ ≡
U τ1

σ1
= ∑

τ2
U τ1τ2

σ1
with

U τ1τ2
σ1

(k1)

= 2
∫

dk2

(2π )3

∑
T SmJ

∑
�′J ′�J

Re〈k�′J ′|G(K, E2)|k�J〉|T SmJ Tz
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× ı�
′−�

∑
σ2

(
1

2
σ1

1

2
σ2

∣∣∣∣Sms

)2(1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)2

× (�′m�Sms|J ′mJ )Y ∗
�′m�

(k̂)(�m�Sms|JmJ )Y�m�
(k̂), (16)

where E2 = ετ1 (k1) + ετ2 (k2). For fixed σ1, ms = σ1 + σ2,
and m� = mJ − ms. In the integral of d
k2 , one should note
that

cos θk = k1−k1 cos θk2
2k and ϕk = ϕk2 with k̂2 = (θk2 , ϕk2 ) and

k̂ = (θk, ϕk). In the exact calculations, the BBG equation (15),
the auxiliary potential potential (16), and the s.p. energy (5)
are solved self-consistently by taking the off-diagonal matrix
elements of 〈�′J ′|G|�J〉.

C. The angle-average approximation and the total momentum
approximation

In the AA procedure, F τ1τ2 is replaced by its averaged
value, i.e.,

F τ1τ2 (K, k, k̂) −→ F τ1τ2 (K, k) ≡
∫

d
k

4π
F τ1τ2 (K, k, k̂).

(17)

Thus, the integral in Eq. (16) yields δ��′ , and the summation
over m� and ms gives δJJ ′ . Thus, the matrix elements of the
operators Q/e(ω) are written as

〈K ′k′�′S′J ′m′
JT ′T ′

z | Q

e(ω)
|Kk�SJmJT Tz〉

= (2π )3δ(K − K ′)(2π )3 δ(k − k′)
k2

× F τ1τ2 (K, k)δSS′δJJ ′δ��′δmJ m′
J
δTzT ′

z
. (18)

The BBG equation can be simplified as

〈k′�′J|G(K, ω)|k�J〉

= 〈k′�′J|v|k�J〉 +
∑
�′′

∫
k′′2dk′′

(2π )2
〈k′�′J|v|k′′�′′J〉

× F τ1τ2 (K, k)〈k′′�′′J|G(K, ω)|k�J〉. (19)

Here the coupling between different partial waves is elim-
inated, only a coupling between different orbital angular
momenta �’s due to the tensor force. The auxiliary potential is
simplified as

U τ1τ2
σ1

(k1) =
∑
JS�

(2J + 1)(1 + δτ1τ2 )

4

∫
k2

2dk2

(2π )3

×
∫

sin θk2 dθk2 Re〈k�J|G(K, E2)|k�J〉. (20)

Equations (5), (19), and (20) are essentially solved self-
consistently in the AA approximation.

The calculations of the auxiliary potential, i.e., Eq. (20),
need the full information of G at arbitrary values of K and
ω. One actually solves the BBG equation on a NK × Nω

grid, where NK (Nω ) is the number of the K (ω) points. Sev-
eral decades ago, such calculations were greatly challenging.
Consequently, the total momentum approximation has been

adopted [33], which is defined as

〈
K2

ττ ′
〉
(k) =

∫
dk1

∫
dk2nτ (k1)nτ ′

(k2)K2δ(k − |k1 − k2|/2)∫
dk1

∫
dk2nτ (k1)nτ ′ (k2)δ(k − |k1 − k2|/2)

.

(21)

In the present paper, the total momentum approxima-
tion (TMA) refers to adopting this average value of total
momentum.

In the 3BF model adopted here, the most important
mesons, i.e., π, ρ, σ , and ω have been considered. Using the
one-boson-exchange potential model, all the parameters of the
3BF model, i.e., the coupling constants and the form factors,
are self-consistently determined to reproduce the Argonne V18

potential, and their values can be found in Ref. [32]. After a
suitable integration over the degrees of freedom of the third
nucleon, the 3BF can be reduced to an equivalent effective
two-body force according to the standard scheme as described
in Ref. [31]. The equivalent two-body force V eff

3 in r space
reads

〈r′
1, r′

2|V eff
3 |r1, r2〉

= 1

4
Tr

∑
n

∫
dr′

3r3φ
∗
n (r′

3)[1 − η(r′
13)][1 − η(r′

23)]

×W3(r′
1, r′

2, r′
3|r1, r2, r3)φn(r3)[1 − η(r13)]

× [1 − η(r23)], (22)

where φn is the wave function of the single nucleon in free
space and the trace is taken with respect to the spin and isospin
of the third nucleon. W3 represents the 3BF as described in
Ref. [31]. Note that the averaging procedure of the third nu-
cleon, which avoids the difficult problem to solve the Faddeev
equation involving the 3BF, neglects certain many-body con-
tributions [45,46]. The defect function η(r) is directly related
to the G matrix and should be calculated self-consistently
with the BBG equation. Also, the defect function implicitly
depends on the value of total momentum. On the contrary, in
the TMA, the total momenta are approximated by the average
values for both the G matrix and the defect function. We stress
here, in our exact numerical treatment, we do not use the total
momentum approximation in the determination of the defect
function as well.

III. RESULTS AND DISCUSSION

Compared to the AA, two primary changes stem from the
angular dependence of the operator Q/e(ω). First, the off-
diagonal matrix elements of the G matrix in J , i.e., 〈J ′|G|J〉 �=
0 [here the other variables are omitted] represent the coupling
of different channels with fixed spin and isospin. These off-
diagonal G matrix elements result in a nonvanishing contribu-
tion to the s.p. potentials. In the upper panel of Fig. 1 we show
U mJ

�′J ′,�J (k) [which is obtained calculating Eq. (16) without the
T S�Jmj summations] for the isospin-singlet neutron-proton
scattering for symmetric nuclear matter at the empiri-
cal saturation density ρ0 = 0.17 fm−3. In this figure, three
kinds couplings, i.e., (�′ = 0, J ′ = 1, � = 2, J = 1), (�′ =
0, J ′ = 1, � = 2, J = 2), and (�′ = 2, J ′ = 1; � = 2, J =
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FIG. 1. Nuclear potential as calculated from the off-diagonal
matrix elements of the G matrix with the angular dependence of
the propagator Q/e(ω). The upper (lower) panel corresponds to the
neutron-proton (neutron-neutron) in the isospin singlet (triplet) state.

2) with mJ = 0, 1 are displayed. The sizable coupling (�′ =
0, J ′ = 1, � = 2, J = 1) actually corresponds to the ten-
sor force in the 3SD1 channel which contains three mj

components. For spin-up, i.e., σ1 = 1
2 , the Clebsch-Gordan

coefficients and the properties of the spherical harmonics im-
ply that the mj = −1 components U −1

01,21(k) ≡ 0. In addition,
the Clebsch-Gordan coefficients and the properties of the
spherical harmonics in Eq. (16) render the opposite values
for the two components U 0

01,21(k) and U 1
01,21(k). However,

they do not cancel each other completely since the G matrix
is nondegenerate for different mj’s, that is, essentially origi-
nated from the angular dependence of the operators. This is
the second major change when the AA approximation is not
adopted. Due to the symmetries of G matrix 〈�′J ′|G|�J〉−mJ =
(−)�

′−J ′+�−J〈�′J ′|G|�J〉mJ , U 0
01,22(k) and U 0

21,22(k) are both
equal to 0. The significant potential U 1

01,22(k) corresponding
to the coupling between 3S1 and 3D2 partial waves indicates
that certain couplings, unexpected in the AA approximation,
might contribute to some extent to the s.p. potential. For
neutron-neutron, except the specific values, they are similar
to the neutron-proton case shown in the lower panel of Fig. 1.

To investigate the changes in the s.p. potential due to the
angular dependence of the propagator, we report in the upper
panels of Fig. 2 the BHF optical potential of symmetric nu-
clear matter in two cases with (solid line) and without (dashed
line) the AA approximation for two typical densities ρ0 and
2ρ0, respectively. [Here, the BHF optical potential represents
the on-shell value of Eq. (4).] Moreover, the results with the

FIG. 2. BHF optical potential and neutron effective-mass m∗
n/m

as a function of the momentum k for symmetric nuclear matter at two
densities with the exact calculation, the AA approximation, and the
AA approximation with TMA, respectively.

AA approximation including TMA, widely used in the pre-
vious works [32–37,47], are reported as well. In calculating
the BHF optical potential, one can actually employ Eq. (16)
by considering the imaginary part of the G matrix as well
as the real part, and Im G corresponds to the imaginary part
of the BHF optical potential. In the lower panels, the neu-
tron effective mass vs momentum, which are related to the
derivative of the s.p. potential by m∗

τ

m (k) = k
m [ dετ (k)

dk ]
−1

is also
plotted. At the empirical saturation density ρ0, compared to
the exact scheme, the deviation resulting from the AA ap-
proximation is tiny for both potential and effective mass. This
deviation grows up when increasing density since the Pauli
blocking effects become stronger and stronger. The procedure
of handling with the Q/e(ω) becomes more important due
to enhancing the Pauli blocking effect. When the TMA is
also adopted, the potential deviation from the exact results is
quite evident, especially for large momenta. Fortunately, the
deviation is still tolerable below the Fermi momentum. The
same as with the AA approximation, the deviation becomes
more distinct at larger densities due to the enhancement of the
Pauli blocking. The effective masses in the AA approximation
and TMA manifest a diversity similar to what happens with
the potential. However, the difference looks more remarkable
for the effective mass.

In Fig. 3. we show the effects of the AA and TMA approx-
imations on the EOS for symmetric nuclear matter. The sat-
uration point (ρs = 0.197 fm−3, E/A = −15.09 MeV) in the
AA approximation with TMA coincides with that of Ref. [32].
The exact treatment of the total momentum substantially
improves the saturation point. The saturation point within
the AA approximation is about (ρs = 0.186 fm−3, E/A =
−14.47 MeV) approaching that of the exact calculation ρs =
0.188 fm−3, E/A = −14.62 MeV. As expected, AA approxi-
mation only leads to a small deviation of the EOS from the
exact one. Although the discrepancy between the EOS of
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FIG. 3. Equation of state (EOS) of symmetric nuclear matter
with the exact calculation, the AA approximation, and the AA ap-
proximation with TMA, respectively. The star marks the saturation
point in the three calculations.

the exact calculation and the AA approximation plus TMA
remains substantial.

The nucleon effective mass is an important microscopic
input to many studies of nuclear phenomena, such as the
dynamics of heavy-ion collisions at intermediate and high
energies [48], the damping of nuclear excitations and giant
resonances [49], and the thermal properties of neutron stars
[50–53]. Very important is the value of the effective mass at
the Fermi surface, i.e., m∗(kF ) [hereafter the effective mass
is referred to as m∗(kF )]. The density and isospin-asymmetry
dependence of the effective mass is reported in Fig. 4 where
the asymmetry parameter is defined as β = (ρn − ρp)/(ρn +
ρp) with the neutron (proton) density ρn (ρp). The results
in the AA approximation with TMA is consistent with that
of Ref. [54]. Above all, the effective-mass calculation with
AA agrees well with the exact one at low density, but the
discrepancy between the two grows with increasing density,

being the enhancement attributed to the Pauli blocking effect.
Similar to the potential, the difference between the exact and
the AA approximation plus TMA seems noteworthy, although
the difference tends to diminish at increasing densities. How-
ever, one should note that the proton effective mass decreases
monotonically with the isospin asymmetry when the TMA is
adopted. The proton effective mass in the exact calculation
and AA exhibits a parabolic dependence on the isospin asym-
metry.

IV. SUMMARY

The equation of state of nuclear matter plays an impor-
tant role in modern nuclear physics and astrophysics. The
Brueckner-Bethe-Goldstone theory allows an ab initio calcu-
lation from microscopic two-body and three-body potentials.
In the present investigation, an exact numerical treatment of
the BG equation is performed to assess the reliability of the
angular-average procedure of the operators Q/e(ω) as well
as the total momentum approximation. In the exact treatment
of the Pauli propagator, the previous definition of Q/e(ω)
Eq. (3), which was adopted for symmetric nuclear matter,
is proved to be inappropriate for asymmetric nuclear matter
since it may lead to a mixing of the total isospin T = 1
and T = 0 neutron-proton states in the G matrix. Instead, we
propose to symmetrize the Pauli propagator, i.e., Eq. (13), in
our calculation to extend the definition of Q/e for asymmet-
ric matter, consistently with the symmetry G(β ) = G(−β ).
Accordingly we compare the s.p. potential, nucleon effective
mass, and EOS in the three calculations with a microscopic
3BF, i.e., the exact calculation, the AA approximation, and
the AA approximation plus TMA.

The calculations show that the exact treatment of the Pauli
propagator results in inappreciable changes in the potential,
effective mass, and binding energy at low densities. These
changes grow slightly with density due to the enhancement
of Pauli blocking. However, the AA procedure provides a
fairly accurate simplifying approximation even when 3BF is

FIG. 4. Nucleon effective mass as a function of the density ρ and the isospin asymmetry β within the exact calculation, the AA
approximation, and the AA approximation with TMA, respectively.
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applied. Instead, the total momentum of the intermediate two
nucleons leads to a considerable contribution in predicting the
saturation properties, the s.p. potential, and nucleon effective
mass. And its replacement TMA is insufficient for accurate
investigations of nuclear matter.
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APPENDIX

Let us consider, in fact, neutron-proton or proton-neutron
matrix elements with Tz = 0 in Eq. (8). When T = 0, the
summation over τ1τ2 reads

∑
τ1 �=τ2

(
1

2
τ1

1

2
τ2

∣∣∣∣T ′Tz

)(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)
F τ1τ2 (K, k, k̂)

∣∣∣∣
T ′=0

=
(

1

2

1

2

1

2

−1

2

∣∣∣∣00

)(
1

2

1

2

1

2

−1

2

∣∣∣∣00

)
F pn(K, k, k̂)

∣∣∣∣
T ′=0

+
(

1

2

−1

2

1

2

1

2

∣∣∣∣00

)(
1

2

−1

2

1

2

1

2

∣∣∣∣00

)
F np(K, k, k̂)

∣∣∣∣
T ′=0

= 1

2
[F pn(K, k, k̂) + F np(K, k, k̂)]

∣∣∣∣
T ′=0

= F pn
S (K, k, k̂)|T ′=0,∑

τ1 �=τ2

(
1

2
τ1

1

2
τ2

∣∣∣∣T ′Tz

)(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)
F τ1τ2 (K, k, k̂)

∣∣∣∣
T ′=1

=
(

1

2

1

2

1

2

−1

2

∣∣∣∣10

)(
1

2

1

2

1

2

−1

2

∣∣∣∣00

)
F pn(K, k, k̂)

∣∣∣∣
T ′=1

+
(

1

2

−1

2

1
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1

2

∣∣∣∣10

)(
1

2

−1

2

1

2

1

2

∣∣∣∣00

)
F np(K, k, k̂)

∣∣∣∣
T ′=1

= 1

2
[F pn(K, k, k̂) − F np(K, k, k̂)]

∣∣∣∣
T ′=1

= F pn
A (K, k, k̂)|T ′=1, (A1)

with the symmetric and antisymmetric parts of F τ1τ2 ,

F pn
S (K, k, k̂) = 1

2 [F pn(K, k, k̂) + F pn(K, k,−k̂)]

F pn
A (K, k, k̂) = 1

2 [F pn(K, k, k̂) − F pn(K, k,−k̂)].
(A2)

In deriving Eq. (A1), the properties of F τ1τ2 ,

F τ1τ2 (K, k, k̂) = F τ2τ1 (K, k,−k̂) (A3)

should be adopted. For the cases of T = 1 and Tz = 0 with the same procedure we get∑
τ1 �=τ2

(
1

2
τ1

1

2
τ2

∣∣∣∣T ′Tz

)(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz )F τ1τ2 (K, k, k̂
)∣∣∣∣

T ′=1

= F pn
S (K, k, k̂)|T ′=1,

∑
τ1 �=τ2

(
1

2
τ1

1

2
τ2

∣∣∣∣T ′Tz

)(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)
F τ1τ2 (K, k, k̂)

∣∣∣∣
T ′=0

= F pn
A (K, k, k̂)|T ′=0. (A4)

Equations (A1) and (A5) indicate that∑
τ1τ2

(
1

2
τ1

1

2
τ2

∣∣∣∣T ′Tz

)(
1

2
τ1

1

2
τ2

∣∣∣∣T Tz

)
F τ1τ2 (K, k, k̂) = F τ1τ2

S (K, k, k̂)|δT T ′ + F τ1τ2
A (K, k, k̂)|εT T ′ (A5)

for the case of Tz = 0, where εT T ′ = 1 − δT T ′ . Once the proton-proton (neutron-neutron) matrix element with Tz = 1(−1) is
calculated, Eq. (A6) is true as well with F τ1τ1

A ≡ 0.
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The property of F τ1τ2
S (K, k, k̂) = F τ1τ2

S (K, k,−k̂) together with the well-known properties of the spherical harmonics, implies
the identities, ∫

d k̂ Y ∗
�′m′

�
(k̂)F τ1τ2

S (K, k, k̂)Y�m�
(k̂) =

∫
d k̂ Y ∗

�′m′
�
(−k̂)F τ1τ2

S (K, k,−k̂)Y�m�
(−k̂)

= (−1)�
′+�

∫
d k̂ Y ∗

�′m′
�
(k̂)F τ1τ2

S (K, k, k̂)Y�m�
(k̂), (A6)

which conserves the parity. On the contrary, the term,∫
d k̂ Y ∗

�′m′
�
(k̂)F τ1τ2

A (K, k, k̂)Y�m�
(k̂) =

∫
d k̂ Y ∗

�′m′
�
(−k̂)F τ1τ2

A (K, k,−k̂)Y�m�
(−k̂)

= −(−1)�
′+�

∫
d k̂ Y ∗

�′m′
�
(k̂)F τ1τ2

A (K, k, k̂)Y�m�
(k̂) (A7)

violates the parity conservation. Fortunately, with the help of εT T ′ and δSS′ one can demonstrate that this term maintains the
generalized Pauli principle selection rule (−1)T +S+� = −1.
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