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Three models of the nuclear magnetization distribution are applied to predict the hyperfine structure of
the hydrogenlike heavy ions and neutral thallium atoms: the uniformly magnetized ball model and single-
particle models for the valence nucleon with the uniform distribution and the distribution determined by
the Woods-Saxon potential. Results for the hydrogenlike ions are in excellent agreement with previous studies.
The application of the Woods-Saxon model is now extended to the neutral systems with the explicit treatment
of the electron correlation effects within the relativistic coupled cluster theory using the Dirac-Coulomb
Hamiltonian. We estimate the uncertainty for the ratio of magnetic anomalies and numerically confirm its
near nuclear-model independence. The ratio is used as a theoretical input to predict the nuclear magnetic
moments of short-lived thallium isotopes. We also show that the differential magnetic anomalies are strongly
model dependent. The accuracy of the single-particle models significantly surpasses the accuracy of the simplest
uniformly magnetized ball model for the prediction of this quantity. Skripnikov [Skripnikov, J. Chem. Phys.
153, 114114 (2020)] has shown that the Bohr-Weisskopf contribution to the magnetic dipole hyperfine structure
constant for an atom or a molecule induced by a heavy nucleus can be factorized into the electronic part and the
universal nuclear magnetization dependent part. We numerically confirm this factorization for the Woods-Saxon
single-particle model with an uncertainty less than 1%.
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I. INTRODUCTION

The hyperfine splitting in atomic spectra is of great interest
for many physical applications. From a comparison of the
theoretical and experimental values of the hyperfine structure
(HFS) constants, one can test the accuracy of the electronic
structure methods for atoms [1–5] and molecules [6–14]. Such
electronic calculations are necessary to extract the value of the
electric dipole moment of the electron and other fundamental
constants and properties from the experimental data [1,5,15–
18]. Using the results of calculations and experimental data,
it is possible to obtain the magnetic moments of short-lived
nuclei [19–24]. The obtained values can be used for the de-
velopment of the nuclear structure theory.

To reproduce the experimental results for hyperfine split-
ting with an uncertainty of an order of 1%, it is necessary to
take into account both the finite charge distribution over the
nucleus, the Breit-Rosenthal (BR) effect [25,26], and the finite
nuclear magnetization distribution, the Bohr-Weisskopf (BW)
effect [27–29]. In studies of neutral atoms, the uniformly
magnetized ball model is widely used to calculate the BW
correction [23,30–33]. The only parameter of this model is
the radius of the ball, RM . Therefore, it can be not equal to
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the charge radius to reproduce the experimental value of the
hyperfine splitting [23,34], which raises questions about the
physical meaning of such a model.

In this paper we study a more accurate and more physical
single-particle (SP) nuclear magnetization distribution model.
In this model it is assumed that the nuclear magnetic moment
is induced by one unpaired nucleon, which has both the orbital
motion and the spin. We consider two approximations for the
density of the unpaired nucleon. In the Woods-Saxon (WS)
single-particle model, the wave function of this nucleon is
obtained as a solution of the Schrödinger equation with the
WS potential [35]. In the second single-particle model, the
uniform distribution (UD) of the valence nucleon is assumed.
In the case of zero orbital momentum of the valence nucleon,
this model is equivalent to the model of the uniformly magne-
tized ball.

For a point nuclear model, the ratio of the hyperfine split-
tings of two different isotopes 1 and 2 is proportional to the
ratio of the nuclear g factors of the isotopes. However, this is
not the case for the finite-size nucleus model due to the BR
and BW effects. The corresponding correction 1�2 is called
the nuclear magnetic hyperfine anomaly:

1�2 = A1g2

A2g1
− 1, (1)

where A1 and A2 are HFS constants [see Eq. (2) below] for a
given electronic state, g1 and g2 are the nuclear g factors of the
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considered isotopes 1 and 2. The ratio of magnetic anomalies
is a key theoretical input to obtain the magnetic moments of
short-lived isotopes [19–22].

In the present paper we apply the WS model to predict
the contribution of the BW effect to the hyperfine structure
of the neutral Tl atom in the ground and the first excited
electronic states. As far as we know, this model has not been
previously used to calculate the hyperfine structure of the
neutral thallium atom with the explicit and direct treatment of
the electron correlation effects. Results are compared with the
values obtained within the uniformly magnetized ball model
[23]. Next we compare predictions for the ratio of hyperfine
magnetic anomalies and the differential hyperfine anomaly
within different models. For the former we verify its near
model independence and use it to deduce the magnetic mo-
ment values of the short-lived isotopes of thallium. For the
latter we show that the SP models give results far better than
those of the simple uniformly magnetized ball model. Finally,
we numerically check the factorization of the BW contribu-
tion into the electronic and nuclear magnetization distribution
dependent parts, introduced in Ref. [14] for the WS model.

II. THEORY

In the point magnetic dipole approximation the HFS con-
stant A(0) for the atomic electronic state �JMJ with the total
electronic momentum J and its projection MJ on the axis z
can be calculated using the following expression:

A(0) = μ

IMJ

〈
�JMJ

∣∣ [rel × α]z

r3
el

∣∣�JMJ

〉
, (2)

where μ is the value of the nuclear magnetic dipole moment, I
is the nuclear spin, α are Dirac matrices, and rel is the electron
radius vector. The electronic wave function �JMJ is calculated
assuming the finite nuclear charge distribution. This means
that the Breit-Rosenthal effect is considered nonperturbatively
and is included in A(0). In this case, the expression for the
hyperfine splitting constant has the following form:

A = A(0) − ABW + AQED = A(0)(1 − ε) + AQED, (3)

where ABW is the Bohr-Weiskopf contribution, ε is the relative
Bohr-Weiskopf correction, and AQED is the QED contribution.
Below we do not consider the AQED term in calculations of
neutral systems.

In this paper we consider the SP nuclear magnetization
distribution models in which the nuclear magnetization is
generated by a single valence nucleon. In the WS model
of the nucleus, the wave function of the valence nucleon is
determined as a solution of the Schrödinger equation with the
Woods-Saxon potential [35,36]:

U (r) = V (r) + VC (r) + VSO(r), (4)

where

V (r) = − V0

1 + e(r−R0 )/a
, (5)

VC (r) =
{

(Z − 1)/r, r � RC,

(Z − 1)
(
3 − r2/R2

C

)
/2RC, r � RC,

(6)

VSO(r) = λ

(
h̄

2mpc

)2 1

r

d

dr

V0

1 + e(r−RSO )/a
σ · l . (7)

TABLE I. Parameters of the WS potential from Ref. [36]. The
radii are calculated as R0 = r0A1/3 and RSO = rSOA1/3, where A is
the mass number.

r0 (fm) rSO (fm) a (fm) V0 (MeV) λ

Proton 1.275 0.932 0.70 58.7 17.8
Neutron 1.347 1.280 0.70 40.6 31.5

Here RC = √
5/3〈r2

c 〉1/2 is the nuclear charge radius and
〈r2

c 〉1/2 is the rms charge radius. Parameters of the WS poten-
tial, R0, RSO, a, V0, and λ, are listed in Table I. If the valence
nucleon is the neutron then the Coulomb term VC should be
omitted.

The BW correction ε can be written as follows [27,28,37]:

ε = gS

gI

[
1

2I
〈KS〉 + (2I − 1)

8I (I + 1)
〈KS − KL〉

]

+ gL

gI

[
(2I − 1)

2I
〈KL〉 + (2I + 1)

4I (I + 1)

mp

h̄2 〈φSOr2KL〉
]
, (8)

for I = L + 1/2, and

ε = gS

gI

[
− 1

2(I + 1)
〈KS〉 − (2I + 3)

8I (I + 1)
〈KS − KL〉

]

+ gL

gI

[
(2I + 3)

2(I + 1)
〈KL〉 − (2I + 1)

4I (I + 1)

mp

h̄2 〈φSOr2KL〉
]
, (9)

for I = L − 1/2. Here φSO is the radial part of the spin-orbit
interaction VSO = φSO σ · l , and gI is the g factor of the con-
sidered nucleus. For the valence proton we set gL = 1, and for
the valence neutron we set gL = 0. gS is obtained from the
following equations:

μ

μN
= 1

2
gS +

[
I − 1

2
+ 2I + 1

4(I + 1)

mp

h̄2 〈φSOr2〉
]

gL, (10)

for I = L + 1/2, and

μ

μN
=− I

2(I + 1)
gS +

[
I (2I + 3)

2(I + 1)
− 2I + 1

4(I + 1)

mp

h̄2 〈φSOr2〉
]

gL,

(11)
for I = L − 1/2. 〈KS〉 and 〈KL〉 are obtained by averaging
functions KS (r) and KL(r) over the density of the valence
nucleon |u(r)|2:

〈KS,L〉 =
∫ ∞

0
KS,L(r)|u(r)|2r2dr. (12)

Functions KS (r) and KL(r) in the case of a hydrogenlike
ion have the following forms:

KS (r) =
∫ r

0 f gdrel∫ ∞
0 f gdrel

, (13)

KL(r) =
∫ r

0

(
1 − r3

el/r3
)

f gdrel∫ ∞
0 f gdrel

, (14)

where g and f are the radial parts of the Dirac wave function of
the electron. For the 1s ground state of the hydrogenlike ion,

034314-2



EFFECT OF NUCLEAR MAGNETIZATION DISTRIBUTION … PHYSICAL REVIEW C 103, 034314 (2021)

the following approximate expressions can be used [27,38]:

KS (r) = b

[
a1

2

(
r

RC

)2

+ a2

4

(
r

RC

)4

+ a3

6

(
r

RC

)6]
, (15)

KL(r) = 3b

[
a1

10

(
r

RC

)2

+ a2

28

(
r

RC

)4

+ a3

54

(
r

RC

)6]
. (16)

The expansion coefficients b and ai can be found in Ref. [38].
In the approximation of a uniformly distributed valence

nucleon, the density of the valence nucleon has the following
form:

|u(r)|2 = 3

R3
C

θ (RC − r), (17)

where θ (RC − r) is the Heaviside step function:

θ (RC − r) =
{

1, if r < RC,

0, if r > RC .
(18)

Note that for this model the terms with the spin-orbit interac-
tion in Eqs. (8) and (9) should be omitted.

Hyperfine magnetic anomalies (1) can be used to determine
the magnetic moments of short-lived isotopes [20–22,24]. We
denote stable and short-lived isotopes by 1 and 2, respectively.
Using the experimentally obtained HFS constants A1 and A2

for a given electronic state b, the magnetic moment of the
stable isotope, μ1, and the hyperfine magnetic anomaly, one
can determine the magnetic moment μ2 of the short-lived
isotope:

μ2 = μ1
A2[b]

A1[b]

I2

I1
(1 + 1�2[b]). (19)

A direct calculation of the anomaly 1�2[b] is quite difficult
due to a strong dependence of the result on the choice of the
nuclear model. However, the ratio of the anomalies

1k2[a, b] = 1�2[a]/1�2[b] (20)

for two electronic states a and b turns out to be fairly stable,
which we verify below. Using this fact, it is possible to extract
the desired nuclear magnetic moment of a short-lived isotope.
For this, it is necessary to know the magnetic moment of a
stable isotope, as well as the hyperfine constants A1,2[a] and
A1,2[b] for the electronic states a and b of the nuclei under
consideration. For convenience, we introduce the so-called
differential hyperfine magnetic anomaly 1θ2[a, b] [19,22]:

1θ2[a, b] = A1[a]

A2[b]

A2[a]

A1[b]
− 1 = 1 + 1�2[a]

1 + 1�2[b]
− 1. (21)

The important feature of 1θ2[a, b] is that it is independent
of the magnetic moments and spins of the nuclei under con-
sideration. As it can be seen from Eq. (21), 1θ2[a, b] can be
determined using only the experimental values of the hyper-
fine constants. Substituting the ratio of hyperfine magnetic
anomalies into Eq. (21), we find [20–22]

1�2[b] =
1θ2[a, b]

1k2[a, b] − 1θ2[a, b] − 1
. (22)

One can put 1�2[b] into Eq. (19) to finally obtain the desired
nuclear magnetic moment. Below we explore the model de-

TABLE II. Employed parameters of the nuclei: valence nucleon
state, nuclear magnetic dipole moments [23,41–44], and charge radii
[39,40]. In the square brackets the values of the magnetic moments
used in previous papers are given; they have been revisited in recent
papers [42–44].

Nucleus State μI/μN 〈r2
c 〉1/2 (fm)

185Re 2d5/2 3.1570(29) [+3.1871(3)] 5.3596
191Tlm 1h9/2 3.79(2) 5.4310
193Tlm 1h9/2 3.84(3) 5.4382
203Tl 3s1/2 1.622 257 87(12) 5.4666
205Tl 3s1/2 1.638 214 61(12) 5.4759
207Pb 3p1/2 0.591 02(18) [0.592 583(9)] 5.4943
209Bi 1h9/2 4.092(2) [4.1106(2)] 5.5211

pendence of both the ratio of hyperfine magnetic anomalies
1k2[a, b] and the differential magnetic anomaly 1θ2[a, b].

III. CALCULATION DETAILS

The values of the charge radii of the stable nuclei were
taken from Ref. [39]. The charge radii of the short-lived thal-
lium isotopes were taken from Ref. [40]. Nuclear magnetic
moments listed in Table II were taken from Ref. [41] for stable
nuclei and Ref. [23] for short-lived thallium isotopes. WS
potential parameters were taken from Ref. [36] and are listed
in Table I.

To obtain the nucleon wave function in the WS model
the radial Schrödinger equation has been solved on the grid
using the code developed in the present paper. Calculated
radial probability densities of a valence nucleon for different
isotopes are shown in Fig. 1. The electronic wave function for
the hydrogenlike ions have been obtained by the numerical so-
lution of the Dirac equation using the Gaussian-type basis set.
This basis set includes 50 s-type functions, with exponential
parameters forming a geometric progression. The common
ratio of this progression is 1.8, and the largest element is
5 × 108.

FIG. 1. Calculated radial probability densities of the valence nu-
cleon for various nuclei. The densities for 203Tl and 205Tl isotopes
coincide with rather high accuracy and are indicated by a single line.
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TABLE III. Calculated values of the BW correction ε (in %) using the WS model for various hydrogenlike ions in the ground electronic
state 1s.

Author, reference 185Re74+ 203Tl80+ 205Tl80+ 207Pb81+ 209Bi82+

Shabaev et al. [56], Eqs. (15), (16), without SO 1.20 1.77 1.77 4.19 1.33
Shabaev et al. [56], Eqs. (15), (16), with SO 1.22 1.79 1.79 – 1.18
Gustavsson et al. [57] 1.18 1.74 1.74 4.29 1.31
This work, Eqs. (15), (16), without SO 1.20 1.78 1.78 4.44 1.29
This work, Eqs. (15), (16), with SO 1.22 1.80 1.79 4.47 1.17
This work, Eqs. (13), (14), without SO 1.30 1.87 1.87 4.43 1.43
This work, Eqs. (13), (14), with SO 1.32 1.89 1.89 4.45 1.30
Experiment 1.35 2.21 2.23 3.81 1.02

In HFS calculations of the neutral thallium atom, the
QED effects were not taken into account. Atomic orbitals for
subsequent correlation calculations were obtained using the
Dirac-Hartree-Fock (DHF) method, where the Fock operator
is determined by averaging electronic shell configurations
over 6p1

j=1/2 and 6p1
j=3/2 for 6P1/2 and 6P3/2 electronic states.

For the 7S1/2 electronic state the averaging has been per-
formed over the 7s1

j=1/2 configuration. The main correlation
calculations that include all 81 electrons have been performed
using the coupled cluster method with single, double, and
perturbative triple amplitudes [CCSD(T)] [45,46] within the
Dirac-Coulomb Hamiltonian. In these calculations the uncon-
tracted Dyall’s AAE4Z basis set [47] augmented with one h-
and one i-type functions was used. It includes 35s-, 32p-,
22d-, 16 f -, 10g-, 5h-, and 2i-type functions. For the cal-
culation virtual orbitals were truncated at the energy of
10 000 hartree. The importance of the high-energy cutoff for
properties dependent on the behavior of the wave function
close to the heavy-atom nucleus has been demonstrated in
Refs. [10,18]. In the tables below we also include corrections
on the basis set size extension, high-order correlation effects
beyond the CCSD(T) level, and the Gaunt interaction con-
tribution from Ref. [23]. The basis set correction has been
calculated within the CCSD(T) method using the extended
basis set that includes 44s, 40p, 31d , 24 f , 15g, 9h, and 8i
basis functions. 1s-3d electrons were excluded from the cor-
relation treatment and the virtual orbitals were truncated at the
energy of 150 hartree in these calculations. Calculations of
the contributions of correlation effects beyond the CCSD(T)
model have been performed within the coupled cluster with
single, double, triple, and perturbative quadruple amplitudes
[CCSDT(Q)] method [48–50]. In these calculations we have
used the SBas basis set that consists of 30s-, 26p-, 15d-, 9 f -
type functions and corresponds to the Dyall’s CVDZ [51,52]
basis set augmented by diffuse functions. As in the case of
the basis set correction calculation, 1s-3d electrons were ex-
cluded from the correlation treatments. The contribution of
the Gaunt interaction has been calculated within the SBas
basis set using the CCSD(T) method. In this calculation, all
electrons were correlated and all virtual orbitals within a given
basis set were considered. Correlation calculations have been
performed using the finite-field technique. For relativistic cou-
pled cluster calculations the DIRAC15 [53] and MRCC codes
[49,50,54] were used. The code developed in Ref. [55] was
used to calculate the HFS integrals in the approximation of

a point magnetic dipole. The code for calculating the BW
matrix elements in the WS model has been developed in the
present paper.

IV. RESULTS AND DISCUSSION

To test the developed approach, the HFS constants of
hydrogenlike ions were calculated. The obtained values are
given in Table III and compared with the previous studies
[56,57]. A slight difference between the present and the pre-
vious results can be explained by a different nuclear charge
model. In the present calculations the Gaussian charge distri-
bution model [58] was used, while in the previous calculations
the Fermi distribution was employed. The Gaussian charge
distribution model is widely used in the molecular calcula-
tions of HFS.

Table III contains also the BW correction extracted from
the experimental values of the HFS constants Aexp [59,60]
using the following expression:

εexp = 1 − (Aexp − AQED)
μ

IMJ

〈
�JMJ

∣∣ [rel×α]z

r3
el

∣∣�JMJ

〉 . (23)

For calculation of the denominator, we used the data
from Ref. [56] and the latest values of the nuclear mag-
netic moments. QED contributions AQED were taken from
Refs. [56,61,62]. Note that there is a small dependence of the
BW correction calculated in the SP models due to the depen-
dence of the parameter gS on the magnetic moment value [see
Eqs. (8)–(11)]. Therefore, to be able to compare with previous
calculations of the BW correction for H-like ions we used the
same values of the magnetic moments that have been used
in the previous papers. However, to obtain the εexp values
the revisited nuclear magnetic moment values [42–44] have
been used (see Table II). One can see from Table III that the
simplified Eqs. (15) and (16) give very good approximation to
the more accurate Eqs. (13) and (14).

Tables IV and V give the values of calculated HFS con-
stants for the neutral 205Tl atom in the ground electronic state
6P1/2 and the first excited state 6P3/2, respectively. In the last
column, the values of HFS constants with BW contributions
calculated within the WS model of the nuclear magnetization
distribution are given. They were obtained using Eqs. (13)
and (14) for one-electron matrix elements. For comparison,
we also provide results obtained within the point magnetic
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TABLE IV. Calculated values of the HFS constant of the 6P1/2

state of 205Tl (in MHz) using different levels of electronic theory and
nuclear models. The numbers in the first line in columns 2 and 3
indicate the ratio of the model magnetic radius and the charge radius
RM/RC . The values of the BW contributions, −ABW, are given in
parentheses.

Method 0 [23] 1.0 [23] WS

DHF 18 805 18 681 18 696
(−124) (−109)

CCSD 21 965 21 807 21 826
(−158) (−139)

CCSD(T) 21 524 21 372 21 390
(−152) (−134)

+Basis corr. −21 – –
+CCSDT-CCSD(T) +73 – –
+CCSDT(Q)-CCSDT −5 – –
+Gaunt −83 – –
Totala 21 488 21 337 21 354

aInstead of missing corrections, the contributions calculated for the
point magnetic dipole moment model given in the first column were
used.

dipole approximation (the second column) and the uniformly
magnetized ball model from Ref. [23] (the third column). One
can see from Tables IV and V a reasonable agreement between
the HFS constants calculated in the ball model and in the WS
model for 205Tl. The theoretical uncertainty of the electronic
structure calculation in Ref. [23] was estimated as 1% for
6P1/2 and about 10% for 6P3/2. One can see very good agree-
ment of the theoretical prediction of the HFS constant for the
6P1/2 state with the experimental value, 21 310.835(5) MHz.
A reasonable agreement between the theoretical value of the
HFS constant for the 6P3/2 state and the experimental value,
265.0383(1) MHz, is obtained. It can be noted that the WS

TABLE V. Calculated values of the HFS constant of the 6P3/2

state of 205Tl (in MHz) using different levels of electronic theory and
nuclear models. The numbers in the first line in columns 2 and 3
indicate the ratio of the model magnetic radius and the charge radius
RM/RC . The values of the BW contributions, −ABW, are given in
parentheses.

Method 0 [23] 1.0 [23] WS

DHF 1415 1415 1415
CCSD 6 40 36

(+34) (+30)
CCSD(T) 244 273 269

(+29) (+25)
+Basis corr. +4 – –
+CCSDT-CCSD(T) −49 – –
+CCSDT(Q)-CCSDT +14 – –
+Gaunt +1 – –
Totala 214 243 239

aInstead of missing corrections, the contributions calculated for the
point magnetic dipole moment model given in the first column were
used.

TABLE VI. The ratio of magnetic hyperfine anomalies
205kx[7S1/2, 6P1/2], where x is 203Tl, 193Tlm, or 191Tlm. For the ball
and UD models the magnetic rms radius was set to be equal the
experimental rms charge radius.

Nucleus Method Ball [23] UD WS

DHF 3.77 3.77 3.85
203Tl CCSD 3.38 3.38 3.44

CCSD(T) 3.47 3.47 3.54
DHF 3.73 3.55 3.54

193Tlm CCSD 3.36 3.23 3.22
CCSD(T) 3.45 3.32 3.31

DHF 3.74 3.55 3.54
191Tlm CCSD 3.36 3.23 3.22

CCSD(T) 3.46 3.32 3.31

model also predicts large relative BW correction for this state
(see a detailed discussion in Ref. [23]).

Table VI presents the values of calculated ratios of hyper-
fine magnetic anomalies 205kx[7S1/2, 6P1/2], where x is 203Tl,
193Tlm, or 191Tlm. Results are given at different levels of the
electronic structure theory for three models of the magnetiza-
tion distribution: the uniformly magnetized ball model [23]
and the UD and WS single-particle models. In the former
model, the ball radius is equal to the charge radius. The
obtained values are in fairly good agreement. This numeri-
cally justifies the assumed near model independence of such a
ratio. Thus, a theoretical calculation of the ratio of hyperfine
magnetic anomalies for a pair of electronic states can be used
to determine the magnetic moments of short-lived isotopes. It
should be noted that, for stable isotopes, the charge and mag-
netization distribution effects give comparable contributions
to the anomalies, and hence to their ratio. However, for the
case of isotopes having different states of the valence nucleon,
the main contribution to the anomaly comes from the BW
effect.

Table VII gives the values of the differential hyperfine
magnetic anomalies 205θ x[7S1/2, 6P1/2] defined by Eq. (21),
where x is 203Tl, 193Tlm, or 191Tlm. As in the previous case,

TABLE VII. The differential magnetic hyperfine anomalies
205θ x[7S1/2, 6P1/2], where x is 203Tl, 193Tlm, or 191Tlm, 10−4. For the
ball and UD models the magnetic rms radius was set to be equal to the
experimental rms charge radius. The experimental values [22,64,65]
are given in the last column.

Nucleus Method Ball [23] UD WS Experiment

DHF −1.09 −1.09 −0.86
203Tl CCSD −1.05 −1.05 −0.83 −1.9(8)

CCSD(T) −1.06 −1.06 −0.84
DHF −5.14 −93 −69

193Tlm CCSD −4.92 −90 −66 −129(62)
CCSD(T) −4.98 −91 −67

DHF −6.06 −96 −72
191Tlm CCSD −5.80 −92 −69 −154(60)

CCSD(T) −5.87 −93 −70
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three nuclear magnetization distribution models have been
used: the simplest uniformly magnetized ball model and two
single-particle models: UD and WS. The obtained values of
the differential anomaly for 193Tlm and 191Tlm isotopes are
slightly smaller than the estimate 205θ x(I=9/2)[7S1/2, 6P1/2] =
−1.2 × 10−2 from Ref. [22]. This can be explained by the
fact that in Ref. [22] the effective value of the orbital g factor
of the valence nucleon gL = 1.16 from Ref. [63] has been
used. In our calculations, the value gL = 1.0 has been used.
For comparison, we have also performed calculations at the
DHF level using the effective value of gL from paper [63]
and the corresponding value gS derived using Eqs. (10) and
(11). We estimate 205θ x(I=9/2)[7S1/2, 6P1/2] = −1.13 × 10−2

and 205θ x(I=9/2)[7S1/2, 6P1/2] = −0.95 × 10−2 for the UD and
WS models of magnetization distribution, respectively.

As one can see from Table VII, the dependence of the
differential magnetic anomaly on the level of the included
electronic correlation effects is slightly smaller than in the
case of the ratio of the magnetic anomalies. In the case of
the differential magnetic anomaly 205θ203[7S1/2, 6P1/2], the-
oretical and experimental values are of the same order of
magnitude. However, for the short-lived isotopes 193Tlm and
191Tlm, SP models give much more accurate results than the
model of a uniformly magnetized ball. This can be explained
by the fact that the 205Tl and 203Tl thallium isotopes have the
same valence nucleon state s1/2 with zero orbital momentum
(see Table II). In this case the uniformly magnetized ball
model reduces to the single-particle UD model. This is not the
case for the short-lived isotopes 193Tlm and 191Tlm with the va-
lence nucleon state having nonzero orbital momentum. Thus,
it follows from Table VII that it is important to use nuclear
magnetization distribution models that are more complex than
the simplest uniformly magnetized ball model.

It has been shown in Ref. [14] that the BW contribution to
the hyperfine structure constant of an atom or a molecule in-
duced by a heavy nucleus can be factorized into the electronic
part, E , and the universal nuclear magnetization distribution
dependent part, N , with very high accuracy (see Eq. (29) in
Ref. [14]). As it has been shown in Ref. [14], such factoriza-
tion is valid for almost any electronic state and for calculations
with the treatment of the electron correlation effects. The elec-
tronic part depends only on the considered electronic state.
The nuclear magnetization distribution dependent part does
not depend on the actual electronic state. In Ref. [14] the
nuclear part corresponds to the matrix element of the BW
correction operator over the 1s function of the corresponding
hydrogenlike ion, Bs. In particular, it means that within a
given level of the electronic structure theory the ratio of two
BW corrections calculated using two different models of the
nuclear magnetization distribution is equal to the ratio of the
nuclear parts and should not be dependent on the level of
the considered electronic structure theory. Moreover, it should
not be dependent on the actual electronic and charge state of
the considered open-shell system (we do not consider here
situations when the HFS constant is determined exclusively
by an electron in the electronic state with j � 3/2). Tables IV
and V give the BW contributions, −ABW, calculated within
the uniformly magnetized ball model and the single-particle
WS model for different levels of electronic structure theory

TABLE VIII. Magnetic moments μ(μN ) for short-lived thallium
isotopes with I = 9/2. The values in column 3 were obtained using
the averaged value of the differential anomaly, while the values in
column 4 were obtained using the individual experimental values of
the differential anomalies. In the last two columns, the first uncer-
tainty corresponds to the experiment, and the second corresponds to
the theoretical value of the ratio of magnetic anomalies.

Nucleus Ref. [22] This work This work

187Tlm 3.707(22) 3.710(22)(2) 3.687(38)(2)
189Tlm 3.756(22) 3.758(22)(2) 3.764(42)(2)
191Tlm 3.781(22) 3.783(22)(2) 3.785(24)(2)
193Tlm 3.824(22) 3.827(22)(2) 3.841(25)(2)

(see the numbers in brackets). According to our findings, the
ratio of these BW contributions is indeed practically (with
the uncertainty less than 1%) independent of the level of
the electronic structure theory as well as of the considered
electronic and charge state: 6P1/2 and 6P3/2 of the neutral Tl
and 1S1/2 of the hydrogenlike Tl.

The theory formulated in Ref. [14] can be also used to
illustrate the dependence of the ratio of magnetic anomalies
and the differential anomalies on the model of the nuclear
magnetization distribution. For convenience of consideration,
we rewrite Eq. (3) by separating further the Breit-Rosenthal
correction δ:

A = A(0)(1 − ε) = A(p.n.)(1 − δ)(1 − ε), (24)

where A(p.n.) is the HFS constant corresponding to the point
nucleus. In this case, in the leading order, the magnetic
anomaly is determined by the magnetic and charge distribu-
tion contributions:

1�2 ≈ 1�2
m + 1�2

c = ε2 − ε1 + δ2 − δ1. (25)

For isotopes with different valence nucleon states the main
contribution to the anomaly comes from the magnetic distri-
bution term, while the charge distribution term, (δ2 − δ1), can
be neglected for a qualitative treatment, i.e., 1�2 ≈ ε2 − ε1.
Using the factorization of the BW corrections [14] we obtain
the following expression:

1�2[a] ≈ ε2[a] − ε1[a] = E [a](N2 − N1). (26)

As one can see, the ratio of anomalies for two electronic states
depends on the ratio of electronic parts:

1k2[a, b] =
1�2[a]
1�2[b]

≈ E [a]

E [b]
. (27)

A slight deviation from this equality can be due the neglected
charge distribution contribution. Thus, for this case, it is rea-
sonable to suggest that the uncertainty of the ratio of magnetic
anomalies is mainly due to the uncertainty of the electronic
structure calculation. For example, according to Table VI,
below we assume 205kx(I=9/2)[7S1/2, 6P1/2] = 3.31(10). At
the same time, a differential anomaly depends on both the
electronic and nuclear parts:

1θ2[a, b] ≈ 1�2[a] − 1�2[b] = (E [a] − E [b])(N2 − N1).
(28)
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Table VIII gives the values of magnetic moments for short-
lived thallium nuclei calculated according to Eqs. (19)–(22)
using the calculated ratio of anomalies from Table VI and
the experimental values of HFS constants from Ref. [22]. For
193Tlm and 191Tlm isotopes, this ratio is the same within a
given uncertainty. Therefore, the same value, 3.31(10), has
been used for other isotopes in Table VIII, all of which
also have one valence proton in the 1h9/2 state. Follow-
ing Ref. [22], we used the mean weighted value of the
experimental differential anomaly 205θ x(I=9/2)[7S1/2, 6P1/2] =
−1.53(37) × 10−2 for the isotopes under consideration. The
magnetic moments obtained with this value are given in
the third column of Table VIII. As one can see, the ob-
tained values are in good agreement with the results of
Ref. [22]. Their difference is mainly due to the different
values of the ratio of the magnetic anomalies. In the present
paper the WS model has been used, while in Ref. [22] the
single particle model with a uniform valence nucleon distri-
bution model from Ref. [57] has been used. Alternatively,
the differential anomaly can be determined for each isotope
separately using Eq. (21). For this, the experimental values
of HFS constants A205[7S1/2] = 12 296.1(7) from Ref. [64],
A205[6P1/2] = 21 310.835(5) from Ref. [65], and the hyper-
fine constants for short-lived thallium isotopes from Ref. [22]
were used. The obtained results are given in the last col-
umn of Table VIII. The determined magnetic moments are
in good agreement with the values μ(193Tlm) = 3.84(3)μN

and μ(191Tlm) = 3.79(2)μN from Ref. [23], where the same
approach was used. The main source of the magnetic mo-
ments’ uncertainty is the experimental uncertainty of the HFS
constants of the short-lived isotopes.

V. CONCLUSION

In the present paper, we have developed the approach to
treat the nuclear magnetization distribution contribution to the
hyperfine structure constants in many-electron atoms, which

can be used in the calculations with the explicit treatment of
the electronic correlation effects. The approach can be further
generalized to the molecular case.

Using the approach, we have numerically verified that
the ratio of the magnetic hyperfine anomalies for a pair of
electronic states is rather stable with respect to the choice of
the nuclear magnetization distribution model. The obtained
uncertainty can be taken into account when one uses the ratio
for determining the magnetic moments of short-lived nuclei.

It has been demonstrated that the order of magnitude of
the differential hyperfine anomaly for Tl isotopes having the
s1/2 valence nucleon state can be calculated using the model
of the uniformly magnetized ball and single-particle mod-
els. However, the uniformly magnetized ball model cannot
be used for isotopes with different nuclear configurations. It
gives a wrong order of magnitude for the differential hyperfine
anomaly. At the same time, the single-particle models with a
uniform or Woods-Saxon distribution of the valence nucleon
give reasonable results.
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