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We discuss an extension of the generator coordinate method (GCM) by taking simultaneously a collective co-
ordinate and its conjugate momentum as generator coordinates. To this end, we follow the idea of the dynamical
GCM (DGCM) proposed by Goeke and Reinhard. We first show that the DGCM method can be regarded as an
extension of the double projection method for the center of mass motion. As an application of DGCM, we then
investigate the particle number projection, for which we not only carry out an integral over the gauge angle as
in the usual particle number projection but also take a linear superposition of Barden-Cooper-Schrieffer (BCS)
states which have different mean particle numbers. We show that the ground state energy is significantly lowered
by such effect, especially for magic nuclei for which the pairing gap is zero in the BCS approximation. This
suggests that the present method makes a good alternative to the VAP method, as the method is much simpler
than the VAP.
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I. INTRODUCTION

Beyond mean-field calculations based on the generator
coordinate method (GCM) have been rapidly developing in
recent years [1–25]. In this method, the wave function of
many-body states is described as a linear superposition of
many Slater determinants [26]. In this way, quantum correla-
tions beyond the mean field approximation are incorporated
in the ground-state wave function. Furthermore, the GCM
provides not only the ground state but also excited states
described by the chosen generator coordinates. For these rea-
sons, the GCM has often been employed for a microscopic
description of nuclear collective motions.

While the idea of GCM is conceptually simple, it has also
long been known that a naive GCM cannot describe properly
the center of motion of a nucleus. That is, the appropriate
moment of inertia associated with the translational motion,
i.e., the total mass of a system, cannot be obtained by simply
superposing the wave functions located at different center
of mass positions [26]. Peierls and Thouless resolved this
problem by projecting the GCM state on a state with a definite
linear momentum [27]. This method has been referred to as
the double projection method, which has also been formulated
for a rotational motion [27].

Recently, the idea based on the double projection method
has been put forward by Borrajo et al. [28,29] as well as
by Shimada et al. [30–32] for a calculation of rotational
bands in deformed nuclei. These authors employed cranked-
Hartree-Fock-Bogoliubov states with several deformations
and rotational frequencies as basis states for the GCM cal-
culations after performing the angular momentum projection.
By including the cranked states with a broken time-reversal
symmetry, it was shown that the excitation energies in the
rotational bands are significantly lowered.

One can view these results form a different point of view.
That is, the angular momentum projection is carried out by su-
perposing many-body states with different orientation angles
of the principle axes. To this end, the angular momentum pro-
jection is usually applied to the states with a single rotational
frequency only. Superposing cranked states with different ro-
tational frequencies implies that the quantity conjugate to the
angle, that is, the angular momentum, is incorporated in GCM
states. This suggests that one can achieve a better description
of collective states by simultaneously treating a collective
coordinate and its conjugate momentum in the GCM method.

In addition to the double projection method, there are sev-
eral ways to extend the GCM along this line, such as the
complex GCM, in which collective coordinates are regarded
as complex numbers [26,33,34]. In this connection, we men-
tion that Goeke and Reinhard have formulated the GCM by
introducing the conjugate momentum apart from a collective
variable and called it the dynamical GCM (DGCM) [35–39].
It has been argued that the DGCM includes the complex GCM
as a special case and that the DGCM is an extension of the
double projection method. However, due to its complexity,
no concrete numerical calculations have been carried out with
DGCM as far as the authors know.

The aim of this paper is to apply the DGCM to the particle
number fluctuation in a BCS wave function, for which a pair
of the canonical variables is known a priori, that is, the gauge
angle and the particle number. Treating these variables as gen-
erator coordinates is nothing but an application of the DGCM.
This amounts to superposing many BCS states with different
particle numbers after performing the particle number projec-
tion, as in Refs. [28–32] for rotational motions. This work can
in fact be regarded as the first step in a long-range project
of applications of the DGCM to nuclear collective motions.
The fact that there is only a single variable (and its conjugate)
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for the collective coordinate is another numerical advantage
to investigating the particle number fluctuation.

The paper is organized as follows. In Sec. II, we give a brief
review of the DGCM. We then show that the DGCM is equiva-
lent to a generalization of the double projection method when
a constraint operator is considered. We discuss specific cases
of quantum number projections for the angular momentum,
the momentum of the center of mass, and the particle number.
In Sec. III, we apply the DGCM to BCS calculations and
discuss the effect of a fluctuation of mean particle numbers
on the ground state of spherical nuclei. We then summarize
the paper and discuss future perspectives in Sec. IV.

II. DYNAMICAL GCM AND GENERALIZATION
OF THE DOUBLE PROJECTION METHOD

A. A brief summary of DGCM

In the GCM, one diagonalizes a Hamiltonian Ĥ in the
space spanned by states {|q〉} which are parametrized by gen-
erator coordinates q. Usually, many-body Slater determinants
are used for the states {|q〉} with a real number q. Notice that
the states {|q〉} are not orthogonal to each other. For simplicity,
in the following, we consider only a single generator coordi-
nate, q. A many-body wave function is then expanded as

|ψ〉 =
∫

dq f (q)|q〉. (1)

In this equation, the weight function f (q) is determined by the
variational principle, which leads to the Hill-Wheeler equa-
tion [26],

∫
dq′ (〈q|Ĥ |q′〉 − E〈q|q′〉) f (q′) = 0, (2)

where E is an energy eigenvalue. 〈q|Ĥ |q′〉 and 〈q|q′〉 are
referred to as the Hamiltonian and the overlap kernels, re-
spectively. The GCM is often employed to describe collective
motions, and in this sense q is called a collective coordinate.

In principle, if one could generate a collective coordinate
properly, the GCM could correctly describe a collective mo-
tion. This is the case, e.g., for a system described by the
Lipkin model [26]. However, in general, it is an extremely
difficult problem to find properly a collective path, and one
often determines it in an empirical way. There is no guarantee
that the basis constructed in this way adequately takes into
account the relevant dynamics of a collective motion which
one wants to describe.

In order to overcome this problem, Goeke and Reinhard
have extended the GCM by introducing the canonical momen-
tum p conjugate to the collective coordinate q and defined the
basis states which satisfy

〈q, p|←−∂ q
−→
∂ p − ←−

∂ p
−→
∂ q|q, p〉 = i. (3)

Here,
←−
∂ q and

−→
∂ q act on the left-hand and the right-hand

sides of q, respectively, and similar for
←−
∂ p and

−→
∂ p. Notice

that we have set h̄ = 1. The path connecting |q, p〉 is called a
dynamical path.

The condition (3) can also be written in a form of the
commutation relation,

〈q, p|[Q̂0, P̂0]|q, p〉 = i, (4)

where Q̂0 and P̂0 are generators of q and p defined as

Q̂0|q, p〉 = −
(

i∂p + ∂S

∂ p

)
|q, p〉, (5)

P̂0|q, p〉 =
(

i∂q + ∂S

∂q

)
|q, p〉, (6)

respectively, with an arbitrary smooth function, S = S(q, p),
of q and p. The function S = S(q, p) originates from the
freedom to choose any phase of the state |q, p〉. In Ref. [39],
the phase was chosen so that the expectation values of the two
operators Q̂0 and P̂0 are zero.

After the dynamical path is somehow obtained, one can
expand a wave function using the states |q, p〉 as

|ψ〉 =
∫∫

dqd p f (q, p)|q, p〉. (7)

This is called the dynamical GCM (DGCM) [35–39]. The
weight function f (q, p) is determined by solving the Hill-
Wheeler equation, as in the usual GCM.

In general, not all the states specified by the two parameters
q and p contribute to a collective motion. For example, if one
could find a function �(q, p; q′) which satisfies

|q, p〉 =
∫

dq′ �(q, p; q′)|q′, 0〉 (8)

for an arbitral pair of (q, p), the wave function in the DGCM,
Eq. (7), is reduced to the wave function in the GCM, Eq. (1),
with

fGCM(q′) =
∫∫

d pdq fDGCM(q, p)�(q, p; q′). (9)

Here, fGCM(q) and fDGCM(q, p) are the weight functions in
Eqs. (1) and (7), respectively. In this case, there is no need
to consider the DGCM and the usual GCM is sufficient.
This condition is called the global redundancy [39]. Goeke
and Reinhard further showed that there are certain cases in
which a one-parameter GCM along a path in the (q, p) space
suffices even without the global redundancy [39]. However,
in general, the configuration along such a relevant path is
considerably complicated. In that situation, one can instead
apply the DGCM in a straightforward manner. Nevertheless,
it is not numerically easy to construct the configurations along
a dynamical path, partly because the number of collective
variables is doubled in the DGCM. For this reason, the DGCM
has not yet been applied to any concrete numerical problems.

B. Dynamical path from a constrained Hartree-Fock method

Another potential problem of the DGCM is that it is not ob-
vious how to practically find a dynamical path. In this regard,
we show below that there is a reasonable way to construct a
dynamical path when a collective coordinate is generated by
the constrained Hartree-Fock(-Bogoliubov) method.

Suppose that |q〉 is a many-body state which satisfies

〈q|Q̂0|q〉 = q (10)
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with a Hermitian operator Q̂0. We then define a state

|q, p〉 ≡ eiQ̂0 p|q〉. (11)

It is obvious that this state satisfies

〈q, p|Q̂0|q, p〉 = q. (12)

Differentiating both sides of this equation by q, we then obtain

〈q, p|←−∂ qQ̂0 + Q̂0
−→
∂ q|q, p〉 = 1. (13)

Noticing

iQ̂0|q, p〉 = −→
∂ p|q, p〉, (14)

which follows from the definition of the state |q, p〉, Eq. (11),
we find

〈q, p|←−∂ q
−→
∂ p − ←−

∂ p
−→
∂ q|q, p〉 = i. (15)

This is nothing more than the conjugate condition, Eq. (3).
That is, when one uses the constrained Hartree-Fock(-
Bogoliubov) method to generate a collective coordinate with
a Hermitian operator, one can always construct a desired dy-
namical path.

If one employs the states |q, p〉 so obtained in the DGCM,
a many-body wave function is expressed as

|ψ〉 =
∫∫

dqd p f (q, p)eiQ̂0 p|q〉. (16)

We rewrite this equation using the Fourier transform of
f (q, p),

f (q, p) =
∫

dq′ f̃ (q, q′)e−iq′ p. (17)

This leads to

|ψ〉 =
∫∫

dqdq′ f̃ (q, q′)
{∫

d p ei(Q̂0−q′ )p

}
|q〉. (18)

Notice that, apart from the normalization coefficient,

P̂(Q̂0 )
q′ ≡

∫
d p ei(Q̂0−q′ )p (19)

is the projection operator which projects a state onto an eigen-
function of the operator Q̂0 with an eigenvalue of q′. Thus, the
DGCM state can be expressed as

|ψ〉 =
∫∫

dqdq′ f̃ (q, q′)P̂(Q̂0 )
q′ |q〉. (20)

This implies that the DGCM is equivalent to the GCM sup-
plemented by a projection method.

C. Translational motion

Let us apply the formula derived in the previous subsection
to the center of mass motion and compare with the double
projection method. To this end, we first generate the state |p〉
which satisfies

〈p|P̂|p〉 = p, (21)

where P̂ = (P̂x, P̂y, P̂z ) is the operators for the center of mass
motion of a whole system. Since P̂x, P̂y, and P̂z commute with

each other, the wave function in the DGCM, Eq. (18), reads

|ψ〉 =
∫∫

d p′d p′′ f̃ (p′, p′′)
{∫

dq e−i(P̂−p′′ )·q
}
|p′〉. (22)

Since the operators P̂ commutes with the Hamiltonian, one
would be interested only in the eigenstates of P̂. Acting the
projection operator for the operator P̂ onto Eq. (22), one then
obtains

|ψ〉p =
∫∫

dqd p′ f̃ (p′, p)e−i(P̂−p)·q|p′〉. (23)

This coincides with Eq. (2.6) in Ref. [27]. In this way, the
ansatz of the double projection method can be directly derived
from the DGCM, when the operators to generate a generator
coordinate commutes with a Hamiltonian. In this sense, the
DGCM can be regarded as an extension of the double projec-
tion method of Peierls and Thouless [27].

Incidentally, we mention that another approach with the
variation after projection (VAP) method for the translational
motion has also been carried out in Refs. [10,11].

D. Rotational motion

Let us next consider a rotational motion, thus, the angular
momentum. For the sake of simplicity, we consider only a
rotation around the x axis. Using the operator Ĵx, we first
generate a generator coordinate imposing a condition of

〈m|Ĵx|m〉 = m. (24)

Following the same procedure as in the center of mass motion,
one can write the DGCM ansatz for the eigenstates of Ĵx as

|ψ〉m =
∫∫

dθdm′ f (m′, m)e−i(Ĵx−m)θ |m′〉. (25)

This is also consistent with Eq. (3.11) in Ref. [27].
Unfortunately, it is not straightforward to extend this dis-

cussion to a general rotation, since the angular momentum
operators Ĵx, Ĵy, and Ĵz do not commute with each other,
unlike the linear momentum operators, P̂. One possible pre-
scription is to construct a DGCM wave function using Ĵx and
Ĵ

2
. Wave functions similar to this have been considered in

Refs. [28–32], in which the following ansatz was employed:

|LM〉 =
∑
K,m′

fKm′ P̂L
MK |m′〉. (26)

Here, m′ is the generator coordinate defined by Eq. (24) and
P̂L

MK is the angular momentum projection operator. We have
dropped other parameters than the angular momentum, such
as deformation, from the notation in Eq. (26). Notice that the
idea of DGCM is applied in this equation only to the angular
momentum component in the direction of the quantization
axis, while the effect of the fluctuation of the total angular
momentum is not considered. It might be an interesting future
work to extend this prescription by introducing a generator
coordinate associated with the total angular momentum in
addition to that in Eq. (24).

034313-3



N. HIZAWA, K. HAGINO, AND K. YOSHIDA PHYSICAL REVIEW C 103, 034313 (2021)

E. Particle number

We next consider the particle number projection. Using
the particle number operator N̂ , we first generate a generator
coordinate according to

〈N |N̂ |N〉 = N. (27)

Here, the state |N〉 represents either a BCS state or a Hartree-
Fock-Bogoliubov state, in which several particle number
components are mixed. If we construct the eigenstate of N̂ ,
one can write the DGCM wave function as

|ψ〉N0 =
∫∫

dNdφ f (N, N0)ei(N̂−N0 )φ|N〉. (28)

Here, φ is the gauge angle, which is a quantity conjugate to
the particle number. If one considers a nonrelativistic case, the
particle number operator is semipositive definite. In this case,
the integral range of N is from 0 to ∞. On the other hand, for
φ, the range of the integral is from 0 to 2π . Using the particle
number projection operator defined by

P̂N0 =
∫ 2π

0

dφ

2π
ei(N̂−N0 )φ, (29)

one thus has

|ψ〉N0 =
∫ ∞

0
dN fN0 (N )P̂N0 |N〉, (30)

except for a normalization constant. This can also be inter-
preted as the double projection method for the particle number
fluctuation. The Hill-Wheeler equation for fN0 (N ) reads∫ ∞

0
dN ′ (〈N |Ĥ P̂N0 |N ′〉 − E〈N |P̂N0 |N ′〉) fN0 (N ′) = 0. (31)

Notice that, in the case of the particle number, the usual
GCM corresponds to the variation before projection (VBP)
method,

|ψ〉N ∝
∫ 2π

0

dφ

2π
ei(N̂−N )φ|N〉. (32)

In addition to the gauge angle φ, if one treats N as a generator
coordinate, one obtains the DGCM wave function, Eq. (30).
While the VBP takes into account only the fluctuation of the
gauge angle, the DGCM incorporates the effect of the fluctua-
tion of a mean particle number in mean-field wave functions.

Even though the DGCM, or the double projection method,
has not been applied to the particle number fluctuation,
GCM calculations based on a similar idea have been carried
out treating the pairing fluctuation as a generator coor-
dinate [40–42]. See also Ref. [43]. There, the generating
functions are constructed as

|〈δ|(	N̂ )2|δ〉|1/2 = δ, (33)

using the operator 	N̂ = N̂ − 〈N̂〉. Following the idea of
GCM, these wave functions are linearly superposed as

|ψ〉N0 =
∫

dδ f (δ)P̂N0 |δ〉. (34)

It has been shown that such treatment of the pair fluctuation
improves the description of the structure of 54Cr [40] and also
significantly affects nuclear matrix elements of double beta

decays [42]. This method indeed takes into account the effect
of pairing fluctuation, but it is not clear whether it fully takes
it into account in a sense of the DGCM illustrated in this
subsection.

III. NUMERICAL CALCULATIONS FOR DGCM
FOR PARTICLE NUMBER

A. Numerical details

In this section, we apply the DGCM to actual nuclei and
numerically investigate the effect of the particle number fluc-
tuation in a BCS wave function using Eq. (30). To this end,
we focus for simplicity only on the neuron number. We thus
choose the singly closed 16,18O, 40,42Ca, and 56,58,64Ni nuclei
and assume that the protons are in the normal fluid phase.
Considering the systematic calculation [44], we also assume
that these nuclei have a spherical symmetry. We employ the
SIII Skyrme energy functional [45].

We prepare a set of many-body wave functions |N〉 which
have the average particle number of N . Notice that N may be
different from the actual neutron number N0 for each nucleus,
and that N may not necessarily be an integer number. For this
purpose, we employ the BCS approximation for the pairing
correlation among neutrons, while we ignore the neutron-
proton pairing. We solve the Skyrme-Hartree-Fock equation
in a box with 15 fm with a mesh spacing of 0.05 fm, and the
continuum states are then discretized. To calculate the pairing
energy, we employ the pairing energy functional given by

Epair[ρ, ρ̃] = Vn

4

∫
dr

(
1 − ρ(r)

ρ0

)
|ρ̃n(r)|2, (35)

where ρ(r) and ρ̃n(r) are the total particle density and the
neutron pair density, respectively, with ρ0 being 0.16 fm−3.
The pairing energy is calculated with an energy cut-off at 15
MeV above the Fermi energy.

For 18O, 42Ca, and 58,64Ni, we determine the value of Vn so
that the average pairing gap,

	̄ =
Vn
2

∫
d3r

(
1 − ρ(r)

ρ0

)|ρ̃n(r)|2∫
d3r|ρ̃n(r)|2 , (36)

coincides with the empirical value, 12/
√

A MeV, where A is
the mass number of a nucleus. For the doubly magic nuclei,
16O and 40Ca, we somewhat reduce the value of Vn so that
the pairing gap becomes zero in the BCS approximation. For
the 56Ni nucleus, this problem does not appear and we use the
same value of Vn as that for 58Ni. The parameters are listed in
Table I.

We mainly show below the results with 	N = 0.2 around
N0 in the range of N0 − 2 � N � N0 + 2. For simplicity,
for each nucleus we ignore the nonorthogonality of single-
particle wave functions for different values of N and assume
〈ϕi(N )|ϕ j (N ′)〉 = δi, j , where ϕi(N ) is the ith single-particle
wave function for a system with the average neutron number
of N . We have confirmed that the deviation from this condition
is negligibly small in the range of N considered in this paper.
We thus use the single-particle wave functions for N = N0 for
each nucleus.
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TABLE I. The strengths of the pairing interaction, Vn, employed in the present calculations. These are given in units of MeV fm−3.

nucleus 16O 18O 40Ca 42Ca 56Ni 58Ni 64Ni

Vn −800.00 −901.98 −700.00 −775.23 −897.80 −897.80 −707.81

Figure 1 shows the probability of the component of N0 in
each BCS wave function |N〉 as a function of N for the 56Ni
nucleus (N0 = 28). This is computed as PN0

N = 〈N |P̂N0 |N〉,
with the particle number projection operator, Eq. (29). One
can see that the probability has a large value in the range
considered in this paper, N0 − 2 � N � N0 + 2. The BCS
states with larger values of N have a smaller overlap with the
state with N0, and inclusion of such states in the DGCM may
cause a serious numerical problem.

We then apply the particle number projection, Eq. (29),
to the wave functions |N〉 and superpose them according to
Eq. (30). For this purpose, we discretize the gauge angle φ

with 	φ = 2π/80 for the integral with respect to φ. We use
the mixed density prescription to calculate the Hamiltonian
and the overlap kernels [46,47]. Since we use the same single-
particle wave functions for each N , the mixed density and the
mixed pair density are simply given by

ρ
φ

NN ′ (r) =
∑

i

vN
i vN ′

i e2iφ

uN
i uN ′

i + vN
i vN ′

i e2iφ
|ϕi(r)|2, (37)

ρ̃
φ

NN ′ (r) =
∑

i

uN
i vN ′

i e2iφ

uN
i uN ′

i + vN
i vN ′

i e2iφ
|ϕi(r)|2, (38)

respectively. Here, uN
i and vN

i are the uv factors for the single-
particle state i in the BCS wave function with the average
neutron number N . Other local mixed densities are given in
a similar way.

In our calculations, we superpose many similar states. The
problem of overcompleteness may then arise [26] due to the
linear dependence of the bases. To avoid this problem, in nu-
merical calculations shown below, we remove the eigenstates
of the overlap kernel whose eigenvalue is smaller than λcut =

20 24 28 32 36
0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it
y

〈N |N̂ |N〉

56Ni

FIG. 1. The probability to find the N0 = 28 component in the
BCS wave function |N〉 for 56Ni which has the average neutron
number of N .

10−5 (see Fig. 2 below for the dependence of the result on the
choice of λcut). In the actual calculations, with this remedy
for the overcompleteness, we use the subroutine DSYEV of
the LAPACK package [48] to diagonalize the discretized Hill-
Wheeler equation as both the Hamiltonian and the overlap
kernels are real symmetric matrices in the present calculation.

B. Results

Figure 2 shows the total energy gain 	E for 56Ni due to
the superposition of various |N〉 states in Eq. (30). Here, the
energy gain is defined as 	E = E (NDGCM) − E (NDGCM = 1),
where E (NDGCM) is the total energy of the system when the
number of basis is NDGCM. This quantity is plotted as a func-
tion of the number of basis (|N〉), NDGCM, where NDGCM = 1
corresponds to the usual variation before particle number pro-
jection (VBP). To draw the figure, we increase the number of
basis by adding two basis states symmetrically around N0, that
is, N0, N0 ± 	N, N0 ± 2	N . . . . The solid, the dashed, and
the dotted lines denote the results with λcut = 10−4, 10−5, and
10−6 for the cut-off of the eigenvalues of the overlap kernel,
respectively. One can see that the results are almost converged
at λcut = 10−5. We thus use this value in all the calculations
shown below unless otherwise mentioned. The figure also
shows that the energy gain quickly converges as a function
of NDGCM. In particular, the energy is significantly decreased
even with a mixture of three basis states only, NDGCM = 3.
We have repeated the same calculation with 	N = 0.1 and
have found that the converged energy remains almost the same

1 6 11 16 21
number of basis states

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Δ
E

(M
eV

)

56Ni
10−4

10−5

10−6

FIG. 2. The energy gain in the 56Ni nucleus as a function of the
number of basis states NDGCM in the DGCM method. It is plotted
with respect to the energy of NDGCM = 1, which is equivalent to the
variation before projection method. The solid, the dashed, and the
dotted lines denote the results with λcut = 10−4, 10−5, and 10−6 for
the cut-off of the eigenvalues of the overlap kernel, respectively.
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TABLE II. The ground-state energy of each nucleus calculated
with different methods. The energies are given in units of MeV.
For the DGCM method, the number in the parenthesis denotes the
number of basis states, NGCM, for which DGCM(1) is equivalent to
VBP.

BCS DGCM(1) DGCM(3) DGCM(21)

16O −128.01 −128.01 −128.41 −129.29
18O −144.91 −147.50 −147.82 −148.03
40Ca −341.30 −341.30 −342.63 −342.79
42Ca −363.83 −365.55 −365.87 −365.98
56Ni −482.74 −482.74 −484.76 −485.04
58Ni −504.40 −506.31 −507.37 −507.79
64Ni −557.87 −559.44 −559.66 −559.84

as that with 	N = 0.2, with a similar convergence feature to
each other.

Table II summarizes the results for the 16,18O, 40,42Ca, and
56,58,64Ni nuclei.1 One can see that a large energy gain is
obtained for all of these cases, as in 56Ni shown in Fig. 2.
As we have discussed in Sec. II D, this can be interpreted as
a consequence of the fluctuation of a mean particle number
in mean-field wave functions. It is noteworthy that the energy
gain is particularly large for the neutron magic nuclei, 16O,
40Ca, and 56Ni. To clarify the reason for this, we show in Fig. 3
the energy gain (the solid lines) and the contribution of the
pairing energy (the dashed lines) as a function of NDGCM. The
lines with the filled circles denote the results for 56Ni, while
the lines with the filled triangles are for 58Ni. One can clearly

1For 16O, the problem of overcompleteness is found to be severe,
and we chose λcut = 8.0×10−2, which is determined from the eigen-
value distribution of the overlap kernel.
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FIG. 3. Similar to Fig. 2, but for a comparison between the total
energy (the solid lines) and the pairing energy (the dashed lines). The
filled circles and the filled triangles denote the results for the 56Ni and
the 58Ni nuclei, respectively.
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FIG. 4. The pairing gap 	 of 56Ni in the BCS approximation for
the basis states for the DGCM calculation.

see that the total energy decreases with the development of
the pairing energy. It is interesting to notice that the pairing
contribution is larger in the neutron magic nucleus 56Ni as
compared to that in 58Ni. This is due to the fact that, for
58Ni, the effect of the pairing correlation is already taken into
account to some extent in the calculation with NDGCM = 1,
while for 56Ni the energy with VBP does not change from that
in the BCS approximation due to the absence of the pairing
gap. To illustrate this, Fig. 4 shows the BCS pairing gap for
the basis states |N〉 for 56Ni used in this study. While the
pairing gap is zero for N = 28, the gap is finite for other basis
states. Therefore, this nucleus can take an advantage of finite
pairing gaps by mixing configurations with 〈N̂〉 �= 28, which
significantly lowers the total energy. In this sense, the DGCM
for the particle number is somewhat similar to the GCM cal-
culations where a pairing fluctuation is treated as a generator
coordinate [41,49–51]. It is also noted that the energy gain due
to DGCM is small for nuclei where the pairing correlation is
well developed, such as 64Ni shown in Table II.

In the mean-field calculations, the VAP method is more
consistent than the VBP method [26,52–57]. However, the
VAP is much more cumbersome and is often numerically
more involved as compared to the VBP. One may resort to
the Lipkin-Nogami method (LN) [58,59] as an approximation
of the VAP, but it has been know that the LN method does
not work well for nuclei closed to shell closures [60–63].
The method proposed in this paper is much simpler than
the VAP, yet a similar amount of the energy gain can be
obtained with a lower computation cost. In particular, it is a
numerical advantage of our method that the total energy is
significantly lowered already with NDGCM = 3. Moreover, our
method works well not only for open shell nuclei but also for
nuclei close to a shell closure. We thus argue that our method
can be a good alternative to the VAP and the Lipkin-Nogami
methods.

IV. SUMMARY AND FUTURE PERSPECTIVES

We have discussed an extension of the generator coordinate
method (GCM) by treating both a collective coordinate and
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its conjugate momentum as generator coordinates. To this
end, we have investigated the idea of the dynamical GCM
(DGCM). We have first shown that a dynamical path relevant
to the DGCM can be constructed whenever a collective coor-
dinate is generated by the constrained mean-field method with
a Hermitian operator. The DGCM can thus be applied once the
operator relevant to a collective motion is identified. In such
cases, the DGCM can be formulated in a form of a generalized
double projection method.

We have applied the DGCM to the particle number pro-
jection as an example. Here, we have superposed many BCS
states which have different mean particle numbers, after per-
forming the particle number projection. In this way, we have
incorporated not only the fluctuation of the gauge angle but
also the fluctuation of the mean particle number in the BCS
wave functions. As a result, the ground state energy was found
to be significantly lowered compared to the BCS + VBP
method, which can be regarded as the usual GCM for the
gauge angle. In particular, for magic nuclei, no energy gain
is obtained in the VBP method due to a vanishing of pairing
correlation in the mean field approximation, while this method
yields a significant energy gain by mixing configurations with
a nonzero pairing gap. This consideration may be important
for the Mottelson-Valatin effect [64] in nuclear superconduc-
tivity at high angular momenta and/or at high temperatures.
There, the fluctuation beyond the mean field approximation
may play an important role [65,66], and it may be interesting
to recast this problem from the viewpoint of DGCM.

We have also found that the convergence of the DGCM
calculations is fast with respect to the number of super-
posed states, and a considerable energy gain is obtained
by mixing only three configurations. The method is much
simpler than the VAP, and thus a numerical calculation is
much easier. Moreover, the method works well for both open
shell nuclei and magic nuclei, unlike the Lipkin-Nogami
method which does not work for nuclei at shell closures. We
thus advocate this method as a good alternative to the VAP
method.

In this paper, for simplicity we have carried out all the
calculations assuming spherical symmetry. It would be an

interesting future work to extend this by removing the restric-
tion of nuclear shape. This would be important particularly
for soft nuclei, for which the nuclear shape may change sig-
nificantly as a function of the average particle number. In
such cases, it is an advantage of our method that correlations
associated with the shape degree of freedom can be largely
incorporated by mixing a few configurations with different
average particle numbers.

In addition, even though we have focused in this paper
only on the neutron number, it is straightforward to include
the fluctuation of the average proton number in BCS states
as well. The resultant DGCM wave function can easily in-
corporate the effect of a proton-neutron pairing, because it is
no longer a form of the direct product of proton and neutron
states. This may be a good advantage to explaining the Wigner
energy [67,68], for which the fluctuation of a pair field may
play an important role [69,70].

Our calculations presented in this paper indicates that a
better description can be achieved with the DGCM by incor-
porating the conjugate momentum of a collective coordinate.
This would mean that GCM calculations reported in the lit-
erature may need to be reexamined from the view point of
the DGCM. For example, for a GCM calculation with the
quadrupole deformation operator Q̂20, the DGCM wave func-
tion can be constructed according to Eq. (16) or (20). This
would require a development of a computation method to
evaluate the operator in a form of exp(iqQ̂20) or to carry out
the quantum number projection for the operator Q̂20. Since
the multipole operators are mutually commutative, the DGCM
wave function can be easily extended to a multi-dimensional
deformation plane as well. It would be an interesting future
problem to develop a microscopic fission theory [71] based
on this idea.
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