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Low-energy dipole excitation mode in 18O with antisymmetrized molecular dynamics
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Low-energy dipole (LED) excitations in 18O were investigated using a combination of the variation after
K projection in the framework of antisymmetrized molecular dynamics with β constraint with the generator
coordinate method. We obtained two LED states, namely, the 1−

1 state with a dominant shell-model structure
and the 1−

2 state with a large 14C +α cluster component. Both these states had significant toroidal dipole (TD)
and compressive dipole (CD) strengths, indicating that the TD and CD modes are not separated but mixed in the
LED excitations of 18O. This is unlike the CD and TD modes for well-deformed nuclei such as 10Be, where the
CD and TD modes are generated as Kπ = 0− and Kπ = 1− excitations, respectively, in a largely deformed state.
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I. INTRODUCTION

Low-energy dipole (LED) excitation has gained con-
siderable interest among both experimental and theoretical
researchers for a few decades [1–3]. LEDs have been ob-
served in a lower-energy region than giant dipole resonances
and have significant dipole strengths of about several per-
cent of the energy-weighted sum rule (EWSR) in N = Z
nuclei such as 12C [4] and 16O [5]. LEDs were recently dis-
covered in neutron-rich nuclei such as 20O [6–8], 26Ne [9],
and 48Ca [10,11]. Although LED modes were investigated in
many theoretical studies, the observed LED strengths were
not fully described, and LED properties are still not well
understood. Kvasil et al. introduced the toroidal dipole (TD)
and compressive dipole (CD) operators to prove the vortical
and compressional modes, respectively [12], and predicted the
existence of the vortical (toroidal) mode in some neutron-rich
nuclei [13–15]. Chiba et al. showed that the cluster excitation
can enhance CD strength and contribute to the LED mode
[16].

LED excitations in oxygen isotopes have attracted the-
oretical and experimental researchers for a few decades.
For 17–22O, the isovector dipole strengths were observed in
the low-energy region; a few percent of Thomas-Reiche-
Kuhn sum rule were found below the excitation energy of
15 MeV [17]. Recently, Nakatsuka et al. measured the signif-
icant isoscalar (IS) LED strengths in 20O [8]. To understand
the properties of LED excitations in neutron-rich oxygen
isotopes, theoretical studies were conducted based on the
mean-field approach, and LEDs were described as nonres-
onant single-particle excitations of weakly bound neutrons
[18–20]. On the other hand, origins besides single-particle
excitations can be considered for the excited states of O iso-
topes. For example, cluster structures have been intensively
discussed for 18O in experimental and theoretical studies. Gai
et al. observed E1, E2, and α widths for low-energy states
and proposed cluster bands, including 1− (4.46 MeV) and 1−

(6.20 MeV) states, with a large 14C +α cluster component
[21–23]. In experiments on 14C +α elastic scattering, many
excited states with large α-spectroscopic factors were ob-
served in the energy region below 14.9 MeV [24,25]. Further
in theoretical studies, cluster states, including 14C +α cluster
and 12C +α + 2n molecular structures in 18O were examined
using cluster models [26,27] and antisymmetrized molecular
dynamics (AMD) [28–30]. However, these cluster structures
have not been discussed in association with LED excitations.

In recent years, LED excitations in deformed systems were
theoretically examined [31–35]. Nesterenko et al. discussed
the coexistence of the TD and CD modes in the lower-energy
region of deformed nuclei such as 24Mg [31], 132Sn [32],
and 170Yb [33]. In our previous work [35], we extended the
AMD method for studying LED and applied the method with
variation after K projection (K-VAP) to 10Be and 16O. The
AMD with K-VAP was useful for studying two types of
LED, namely, the TD and CD modes in deformed systems
by treating separately the K = 1 and K = 0 components and
their mixing. (The K-quantum number is defined by the Z
component of the total angular momentum in the body-fixed
frame.) For 10Be, we found that significant TD strength was
generated by the K = 1 component, showing a remarkable
vortical nature. An interesting result is that TD and CD modes
are clearly separated by the K-quantum number in the 1−

1
and 1−

2 states of 10Be because of large deformation with a
developed cluster structure. However, this is not so in the case
of 16O, where two modes are mixed in the 1−

1 and 1−
2 states.

In this study, we investigated LED excitations in 18O by
applying the same method of AMD as used in the previous
paper [35]. Namely, we applied the β-constrained AMD with
K-VAP, which was combined with the generator coordinate
method (GCM). We aimed to clarify the role of cluster struc-
tures and determine whether the TD and CD modes appear in
LED states in 18O. The TD and CD strengths in the LED states
are analyzed, and the vortical nature was discussed.
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This paper is organized as follows. In Sec. II, the frame-
work of β-AMD with K-VAP and GCM are explained. The
definition of the dipole operators are also given. Section III
describes the effective nuclear interaction used in the present
calculation. The calculated results for 18O are shown in
Sec. IV. The properties of LED excitations in 18O are dis-
cussed in Sec. V. Finally, a summary is given in Sec. VI.

II. FORMALISM

To investigate LED excitation, we apply K-VAP in the
framework of β-AMD to 18O. Total wave functions of 18O are
obtained by GCM calculation for β values and for K mixing.
We calculate the dipole transition strengths for three dipole
operators to 1− states.

A. β-constraint AMD with K-VAP

An AMD wave function for A-body system � is expressed
by a Slater determinant of single-particle wave functions
[36,37]:

� = A[ψ1ψ2 · · · ψA], (1)

where ψi represents the ith single particle wave function writ-
ten as follows:

ψi = φ(Zi )χ (ξi )τi, (2)

φ(Zi ) =
(

2ν

π

) 3
4

exp

[
−ν

(
r − Zi√

ν

)2]
, (3)

χ (ξi ) = ξi↑|↑〉 + ξi↓|↓〉, (4)

τi = p or n. (5)

The spatial part of the single-particle wave function is given
by a localized Gaussian wave packet. Here Zi and ξi are the
parameters of the Gaussian centroids and spin directions, re-
spectively, and are treated as complex variational parameters.
The width parameter ν is common for all nucleons.

In the AMD, to obtain the base function, the energy varia-
tion

δ

( 〈
|Ĥ |
〉
〈
|
〉

)
= 0 (6)

is performed for the effective Hamiltonian Ĥ . In the K-VAP
formalism proposed in our previous paper [35], the energy
variation is done for the parity- and K-projected AMD wave
function |
〉 = P̂K P̂π |�〉, where P̂π is the parity-projection
operator, and P̂K is the K-projection operator given as

P̂K = 1

2π

∫ 2π

0
dθ e−iKθ R̂(θ ), (7)

where R̂(θ ) is the rotation operator around the principal axis in
body-fixed frame. With the K-VAP method, the wave function
optimized for each Kπ can be obtained. In the present work,
to obtain the basis wave functions for the ground and dipole
states in 18O, we perform K-VAP with the Kπ = 0+, Kπ =
0−, and Kπ = 1− projections and obtain the bases called
Kπ = 0+, Kπ = 0−, and Kπ = 1− bases, respectively.

To consider the quadrupole deformations of an AMD wave
function, we use the deformation parameters β and γ defined
as follows:

β cos γ =
√

5

3

2〈z2〉 − 〈x2〉 − 〈y2〉
R2

, (8)

β sin γ =
√

5

3

〈x2〉 − 〈y2〉
R2

, (9)

R2 = 5

3
(〈x2〉 + 〈y2〉 + 〈z2〉), (10)

where 〈r2
σ 〉 (σ = x, y, z) is the expected value of the one-body

operator r̂2
σ = 1

A

∑A
i=1 r̂2

iσ for the AMD wave function be-
fore the projections. In the framework of β-constraint AMD,
we perform the K-projected energy variation under the β

constraint but no constraint on γ to obtain the AMD wave
function |�π

K (β )〉 optimized for a given β value [38,39]. Thus,
sets of basis AMD wave functions |�+

K=0(β )〉, |�−
K=0(β )〉,

|�−
K=1(β )〉 for various β values are obtained.

B. GCM

To obtain the total wave function of the Jπ
m state of 18O,

the obtained wave functions are superposed by K mixing and
GCM with respect to the generator coordinate β as follows:

|
π (Jm)〉 =
∑
K,K ′

∑
β

cKK ′ (β )P̂J
MK ′ P̂π

∣∣�π
K (β )

〉
, (11)

where P̂J
MK is the angular-momentum-projection operator.

Coefficients cKK ′ (β ) are determined by diagonalizing the
Hamiltonian and norm matrices. Note that for the negative
parity states, Kπ = 0− and Kπ = 1− bases are also super-
posed in addition to K mixing.

C. Dipole operators

We calculate the transition strengths of three dipole opera-
tors, namely, E1, TD, and CD operators, for transitions from
the ground state to the LED states:

M̂E1(μ) = N

A

∑
i∈p

riY1μ(r̂i ) − Z

A

∑
i∈n

riY1μ(r̂i ), (12)

M̂TD(μ) = −1

10
√

2c

∫
dr (∇ × jnucl(r)) · r3Y 11μ(r̂), (13)

M̂CD(μ) = −1

10
√

2c

∫
dr ∇ · jnucl(r) r3Y1μ(r̂), (14)

where Y jLμ(r̂) is vector spherical [12]. Further, jnucl(r) is the
convection nuclear current defined by

jnucl(r) = −ih̄

2m

A∑
k=1

{∇kδ(r − rk ) + δ(r − rk )∇k}. (15)

E1 operator measures the isovector dipole mode, whereas the
TD and CD operators measure the nuclear vorticity [13] and
nuclear compressional mode, respectively.
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The transition strength of a dipole operator D =
{E1, TD, CD} for 0+

1 → 1−
k is given as

B(D; 0+
1 → 1−

k ) = |〈1−
k ||M̂D||0+

1 〉|2. (16)

It is noted that the CD transition strength is consistent with the
standard ISD transition strength:

B(CD; 0+
1 → 1−

k ) =
(

1

10

Ek

h̄c

)2

B(ISD; 0+
1 → 1−

k ), (17)

where Ek is the excitation energy of the 1−
k state.

III. EFFECTIVE INTERACTION

The effective Hamiltonian used in the present study is
given as

H =
∑

i

ti − TG +
∑
i< j

vcoulomb
i j + Veff. (18)

Here, ti and TG are the kinetic energy of the ith nucleon
and that of the center of mass, respectively, and vcoulomb

i j is
the Coulomb potential. The effective nuclear potential Veff

includes the central and spin-orbit potentials. We use the
MV1 (case 1) central force [40] with the parameters W =
1 − M = 0.38 and B = H = 0, and the spin-orbit part of the
G3RS force [41,42] with the strengths u1 = −u2 = −3000
MeV. This set of parametrization is identical to that used
for the AMD calculations of p-shell and sd-shell nuclei in
Refs. [43–46]. It describes the energy spectra of 12C includ-
ing the 1− states. The width parameter is chosen as ν =
0.16 fm−2, which reproduces the nuclear size of 16O with a
closed p-shell configuration.

IV. RESULTS

In this section, we show the results of 18O calculated by
β-AMD with K-VAP. We mainly discuss the structure of the
0+ and 1− states.

A. Energy curves and intrinsic structure

By applying the β-AMD method with K-VAP, we obtain
the energy minimum bases for Kπ = 0+, Kπ = 0−, and Kπ =
1− at given β values. The K-projected energy curve obtained
for Kπ = 0+ is shown in Fig. 1(a), and the Kπ = 0− and
Kπ = 1− energy curves are shown in Fig. 1(b). In all cases
of Kπ = 0+, Kπ = 0−, and Kπ = 1−, the Kπ energy curve
has the minimum in the small β region (β < 0.4) and no local
minimum in the large β region (β > 0.4). For the negative
parity, the Kπ = 0− and Kπ = 1− energies are almost con-
sistent with each other in the small β region. In this region,
the K-quantum number is not well defined and the Kπ = 0−
and Kπ = 1− projected states are similar to each other. In the
large β region (β > 0.4), the Kπ = 0− and Kπ = 1− energies
are divided. The Kπ = 0− energy is lower than the Kπ = 1−
energy, implying that the Kπ = 0− component is favored in
this β region. We emphasize that the Kπ = 1− component in
the large β region contains excited configurations optimized
for quanta Kπ = 1−, which cannot be obtained by the usual
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FIG. 1. K-projected energy curves as a function of β in 18O ob-
tained by β-AMD with K-VAP. (a) The energy of the Kπ = 0+ base
with Kπ = 0+ projection. (b) The energy of the Kπ = 0− and Kπ =
1− bases with Kπ = 0− and Kπ = 1− projections, respectively.

β-constraint variation without the Kπ projection. This is an
advantage of the present K-VAP method.

For each β, three configurations are obtained by the K-VAP
calculation for the positive (Kπ = 0+) and negative (Kπ = 0−
and Kπ = 1−) parities. The intrinsic density distributions of
these bases are shown in Fig. 2. For positive parity, the Kπ =
0+ bases at β = 0.28, β = 0.64, and β = 0.96 are shown
in Figs. 2(a), 2(b), and 2(c), respectively. The shell model
states are obtained for the small β region corresponding to
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FIG. 2. Intrinsic density distributions of the basis wave func-
tions, (a) �+

K=0(β = 0.28), (b) �+
K=0(β = 0.64), (c) �+

K=0(β =
0.96), (d) �−

K=0(β = 0.28), (e) �−
K=0(β = 0.64), (f) �−

K=0(β =
0.88), (g) �−

K=1(β = 0.28), (h) �−
K=1(β = 0.52), and (i) �−

K=1(β =
0.88), obtained by K-VAP with the β constraint. The density is
projected onto the Z-X plane by integrating along the Y axis.
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FIG. 3. Calculated and experimental energy spectra of 18O. For the calculated spectra, the ground-band states and excited states assigned to
the 14C +α and 14C +α (higher nodal) bands labeled Kπ = 0±

2 and Kπ = 0±
4 , respectively, are shown together with the low-lying shell model

states, i.e., 1−
1 , 3−

1 , and 5−
1 states. For the experimental spectra, the ground band states and cluster-band candidates for Kπ = 0+ [25,47] and

Kπ = 0− bands proposed by Gai et al. [21,23] and Avila et al. [25] are shown. The states labeled 14C +α are those with α-spectroscopic factor
θ 2
α � 0.09 in Ex � 14.9 MeV as reported in Ref. [25]. The low-lying shell model states, i.e., the 3−(5.10 MeV) and 5−(7.96 MeV) states, are

also shown in the experimental spectra. The dashed lines show the calculated and experimental 14C +α threshold energies.

the energy minimum [Fig. 2(a)]. This configuration domi-
nantly contributes to the ground state. The 14C +α cluster
bases obtained in the deformed region of β ≈ 0.6 contribute
to the 0+

2 band, which is regarded as the first 14C +α cluster
band. With increase in the deformation, the clustering around
β ≈ 1.0 developed further, as seen in Fig. 2(c), and constructs
a higher-nodal 14C +α cluster band of the 0+

4 state. For the
negative parity, the density distributions of the Kπ = 0− bases
at β = 0.28, β = 0.64, and β = 0.88 are shown in Figs. 2(d),
2(e) and 2(f), respectively, and those of the Kπ = 1− bases at
β = 0.28, β = 0.52, and β = 0.88 are shown in Figs. 2(g),
2(h) and 2(i), respectively. The shell model states obtained
for the small β (� 0.4) region are shown in Figs. 2(d) and
2(g). The Kπ = 0− and Kπ = 1− components of these bases
are almost identical to each other and give dominant contri-
butions to the 1−

1 state. For the Kπ = 0− bases in the β �
0.4 region, the developed 14C +α cluster bases are obtained
[see Figs. 2(e) and 2(f)]; they contribute to the 1−

2 and 1−
3

states, which can be regarded as the parity partners of the
0+

2 and 0+
4 states in the cluster bands, respectively. For the

Kπ = 1− bases at β ∼ 0.5, an α cluster is formed at the
surface of the 14C cluster but the reflection asymmetry in
the Z direction is not as remarkable as that of the Kπ = 0−
bases. This finding indicates that these Kπ = 1− components
mainly contain single-particle excitation instead of the parity
asymmetric 14C +α-cluster excitation. In the β � 0.6 region,
the Kπ = 1− bases show 14C +α-like structures, but the 14C
cluster is somewhat distorted from the almost spherical 14C
clusters in the Kπ = 0+ and Kπ = 0− bases.

B. GCM results: Energy spectra and LED strengths

From the GCM calculation, the binding energy for the
ground state is obtained as 128.8 MeV, which is underes-
timated compared to the experimental value of 139.8 MeV.

The calculated root-mean-square (rms) matter radius of 18O
is 2.77 fm, which is slightly overestimated from the experi-
mental value of 2.59 ± 0.12 fm [48]. The energy spectra of
18O obtained by the GCM calculation are shown in Fig. 3. In
addition to the calculated spectra, the observed spectra up to
14.9 MeV are also shown. For the calculated spectra, we show
the ground-band states and excited states assigned to the low-
est and higher nodal 14C +α-cluster bands labeled Kπ = 0±

2
and Kπ = 0±

4 , respectively. The low-lying shell model states,
the 1−

1 , 3−
1 , and 5−

1 states are also shown. In the experimental
spectra, we show the experimental states labeled “Kπ = 0+”
and “Kπ = 0−” are cluster-band candidates for the Kπ = 0+
and Kπ = 0− bands, respectively [21,23,25,47]. We also show
the experimental spectra for the ground band and low-lying
shell model states, i.e., the 3−(5.10 MeV) and 5−(7.96 MeV)
states, and those for other 14C +α-cluster states with the α-
spectroscopic factor θ2

α � 0.09 reported in Ref. [25].
The ground band is dominated by the shell model bases

obtained for Kπ = 0+ at small β; the 0+
1 state has 93% overlap

with the Kπ = 0+ base at β = 0.28. We obtain the 14C +α-
cluster band starting from the 0+

2 state at 7.40 MeV, which is
mainly constructed by the Kπ = 0+ bases in the β = 0.5–0.7
region. Furthermore, the higher-nodal 14C +α-cluster band on
the 0+

4 state at 12.9 MeV is constructed by the developed
14C +α-cluster components in the β > 0.8 region.

In the negative parity spectra, three dipole states are
obtained in the low-energy region; the 1−

1 state with the
dominant shell model component, the 1−

2 with the 14C +α-
cluster component, and the 1−

3 state with the further developed
14C +α-cluster structure. The 1−

2 and 1−
3 states are the band-

head states of the lowest and higher-nodal 14C +α-cluster
bands, respectively. They are regarded the parity partners of
the positive-parity 14C +α-cluster bands. Experimentally, the
negative-parity cluster band has not yet been assigned, the
1− at 9.19 MeV and 3− at 9.36 MeV states observed by
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TABLE I. Calculated and experimental E2 transition strengths
for the in-band transitions of the ground and positive-parity cluster
bands. The experimental data are taken from Ref. [49]. B(E2) values
are shown in units of e2fm4.

Calculation

Band Jπ
init Jπ

fin B(E2)

Ground band 2+
1 (1.30) 0+

1 (0.00) 1.02
4+

1 (2.13) 2+
1 (1.30) 1.00

14C +α band 2+
3 (9.08) 0+

2 (7.40) 78.6
4+

2 (10.6) 2+
3 (9.08) 87.2

6+
1 (14.8) 4+

2 (10.6) 122
14C +α band 2+

4 (13.4) 0+
4 (12.9) 402

(higher nodal) 4+
4 (15.0) 2+

4 (13.4) 718
6+

2 (17.5) 4+
4 (15.0) 818

Experiment

Band Jπ
init Jπ

fin B(E2)

Ground band 2+ (1.98) 0+ (0.00) 9.3
4+ (3.56) 2+ (1.98) 3.3

14C +α band 2+ (5.26) 0+ (3.64) 70 ± 42
4+ (7.12) 2+ (5.26) 15.7 ± 4.5

14C +α scattering experiment [25] are candidate states for the
14C +α-cluster band.

The calculated B(E2) values for the in-band transitions of
the positive- and negative-parity bands are listed in Tables I
and II, respectively. For comparison, the experimental values
for the ground and excited (Kπ = 0+) bands in positive parity,
and those for the strong E2 transitions B(E2) > 10 e2 fm4 in
negative parity are also listed in the tables.

TABLE II. Calculated and experimental E2 transition strengths
for the negative parity states. For the experimental strengths, values
of B(E2) > 10 e2fm4 from Ref. [49] are listed. B(E2) values are
shown in units of e2fm4.

Calculation

Band Jπ
init Jπ

fin B(E2)

Kπ = 1−
1 3−

1 (6.07) 1−
1 (6.35) 23.9

5−
1 (6.68) 3−

1 (6.07) 17.8
14C +α band 3−

4 (11.5) 1−
2 (8.68) 27.4

3−
5 (12.3) 1−

2 (8.68) 24.7
5−

4 (13.0) 3−
4 (11.5) 5.66

5−
4 (13.0) 3−

5 (12.3) 10.4
5−

5 (14.4) 3−
4 (11.5) 17.1

5−
5 (14.4) 3−

5 (12.3) 16.8
14C +α band 3−

8 (14.4) 1−
3 (8.68) 105

(higher nodal) 5−
6 (15.3) 3−

8 (14.4) 136

Experiment

Band Jπ
init Jπ

fin B(E2)

Not assigned 3− (6.40) 1− (4.46) 25± 17
5− (8.13) 3− (5.10) 14± 14
3− (8.28) 1− (4.46) 22± 22
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FIG. 4. GCM amplitudes for the 1− states in 18O. (a), (b), and
(c) show the GCM amplitudes of the 1−

1 , 1−
2 , and 1−

3 states, respec-
tively. The K = 0(K = 1) components for the Kπ = 0−(Kπ = 1−)
bases are indicated by squares (circles).

The calculation underestimates the experimental E2 tran-
sition strengths in the ground band, indicating that the present
model is insufficient to describe the proton excitations in the
18O(2+

1 ) and 18O(4+
1 ) states. This result is similar to other

AMD calculations [28,50]. For the 0+
2 band, strong E2 tran-

sitions are obtained because of the 14C +α structure. The
calculated B(E2; 2+

3 → 0+
2 ) value is in good agreement with

the experimental value for the Kπ = 0+
2 band. This result

supports the assignment of the lowest 14C +α-cluster band
to the experimental 0+(3.64 MeV) and 2+(5.26 MeV) states.
Further remarkable E2 transition strengths are predicted for
the higher-nodal 14C +α-cluster band. In addition, for the
negative parity, strong E2 transition strengths are obtained in
the 14C +α-cluster bands. Note that the E2 transitions in the
lowest 14C +α-cluster band are fragmented into 3−

4,5 and 5−
4,5

states. Experimentally, significant E2 transitions are observed
for some states, but the data is insufficient to assign the band
structure of cluster states.

To discuss details of the properties of the 1−
1 , 1−

2 , and
1−

3 states, we show the GCM amplitudes, which are defined
by the squared overlap with each base in Fig. 4; the K = 0
components of the Kπ = 0− bases and the K = 1 components
of the Kπ = 1− bases are presented by squares and circles,
respectively. The shell model bases in β < 0.4 are the dom-
inant component of the 1−

1 state. On the other hand, the 1−
2

state has a significant overlap with the Kπ = 0− component
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FIG. 5. Strength functions of (a) E1, (c) TD, and (d) CD tran-
sitions for the 0+

1 → 1−
k transitions. The EWSR ratio of the ISD

strengths is shown in (b). Here, the EWSR values are calculated by
using the formula in Ref. [5].

of the 14C +α cluster bases; the peak amplitude is observed
at β ∼ 0.6 [Fig. 4(b)]. The 1−

3 state dominantly contains
the Kπ = 0− 14C +α cluster components with a two-peak
structure [Fig. 4(c)], which corresponds to the higher-nodal
behavior of the 14C +α cluster mode. Note that the Kπ = 1−

components in the deformed region (β = 0.4–0.6) signifi-
cantly contribute to the 1−

1 and 1−
2 states. This mixing of the

Kπ = 1− components plays an important role in the dipole
strengths as discussed later.

The dipole transition strengths are calculated for the 0+
1 →

1−
k transitions. The strength functions for the E1, TD, and CD

operators are shown in Figs. 5(a), 5(c), and 5(d), respectively.
The EWSR ratio of the ISD transition strengths is shown in
Fig. 5(b). The three LED states, 1−

1 , 1−
2 , and 1−

3 have weak
E1 transition strengths. The weak E1 strength calculated for
the 1−

1 state is qualitatively consistent with the observation,
though it is an overestimate compared to the experimental data
of B(E1 : 0+

1 → 1−
1 ) < 1.5 × 10−6 W.u. [23] by a few orders

of magnitude. For the TD and CD transitions, the strengths
of the 1−

1 and 1−
2 states are significant, but there is no clear

separation of the TD and CD modes in these two LED states.
Unlike these states, the 1−

3 state in the higher-nodal cluster
band show no remarkable TD or CD strength.

V. DISCUSSIONS: TRANSITION CURRENT AND
STRENGTH DENSITIES FOR LED

To discuss the detailed properties of the two LED states,
the 1−

1 and 1−
2 states, with significant TD and CD transition

strengths, we analyze the transition densities in the intrinsic
states. We consider the dominant components of the 0+

1 , 1−
1 ,

and 1−
2 states; the Kπ = 0+ base at β = 0.28 labeled 0+

gs

[Fig. 2(a)] for the 0+
1 state, the Kπ = 0− and Kπ = 1− bases at

β = 0.28 labeled 1−
ND(K = 0) and 1−

ND(K = 1) [i.e., the nor-
mal deformation shown in Figs. 2(d) and 2(g)], respectively,
for the 1−

1 state, and the Kπ = 0− base at β = 0.64 labeled
1−

cl (K = 0) [the cluster state shown in Fig. 2(e)] for the 1−
2

state. These dominant bases are approximately regarded as
the intrinsic states. Moreover, we analyze the Kπ = 1− base
at β = 0.52 labeled 1−

cl (K = 1) [clusterlike state shown in
Fig. 2(h)] because it is contained within the 1−

1 and 1−
2 states

and makes considerable contribution to the dipole strengths.
For each intrinsic state, we calculate the transition current

density δ jK (r) and the local matrix elements MK
TD,CD(r) of

the TD and CD operators for the excitation from the 0+
gs state

to the 1−
ND(K = 0), 1−

ND(K = 1), 1−
cl (K = 0), and 1−

cl (K = 1)
states, which are defined as,

δ jK (r) ≡ 〈 fK | jnucl(r)|i〉, (19)

MK=0
TD (r) = 1

c

[
(2X 2 + 2Y 2 + Z2)δ jK=0

Z − ZXδ jK=0
X − Y Zδ jK=0

Y

]
, (20)

MK=1
TD (r) = 1

c

[
(X 2 + 2Y 2 + 2Z2)δ jK=1

X − XY δ jK=1
Y − ZXδ jK=1

Z

]
, (21)

MK=0
CD (r) = 1

c

[−(X 2 + Y 2 + 3Z2)δ jK=0
Z − 2ZXδ jK=0

X − Y Zδ jK=0
Y

]
, (22)

MK=1
CD (r) = 1

c

[−(3X 2 + Y 2 + Z2)δ jK=1
X − 2XY δ jK=1

Y − 2ZXδ jK=1
Z

]
, (23)

where jnucl(r) is the convection nuclear current defined
in Eq. (15). The initial state is projected onto K = 0
as |i〉 = P̂K=0|0+

gs〉, and the final states | fK〉 are the K-

projected intrinsic states, P̂K=0|1−
ND(K = 0)〉, P̂K=1|1−

ND(K =
1)〉, P̂K=0|1−

cl (K = 0)〉, and P̂K=1|1−
cl (K = 1)〉. Note that

MK
TD(r) and MK

CD(r) correspond to the integrand of the TD

034312-6



LOW-ENERGY DIPOLE EXCITATION MODE IN 18O … PHYSICAL REVIEW C 103, 034312 (2021)

-4
-2
 0
 2
 4

-4 -2  0  2  4

X
 (f

m
)

Z (fm)

(a) 1-
ND (K=0)

-4
-2
 0
 2
 4

-4 -2  0  2  4
X

 (f
m

)

Z (fm)

(b) 1-
ND (K=1)

-4
-2
 0
 2
 4

-4 -2  0  2  4

X
 (f

m
)

Z (fm)

(c) 1-
cl (K=0)

-4
-2
 0
 2
 4

-4 -2  0  2  4

X
 (f

m
)

Z (fm)

(d) 1-
cl (K=1)

FIG. 6. Transition current densities calculated for the intrinsic
states. (a), (b), (c), and (d) show the transition current densities
for the 1−

ND(K = 0), 1−
ND(K = 1), 1−

cl (K = 0), and 1−
cl (K = 1) states,

respectively. The vector plot of δ jK on the Z − X plane at Y = 0 are
shown. The size of vector is multiplied by 50.

and CD transition matrix elements and are termed TD and CD
strength density, respectively, in this paper.

The transition current densities calculated for the 1−
ND(K =

0), 1−
ND(K = 1), 1−

cl (K = 0), and 1−
cl (K = 1) states are shown

in Fig. 6. The TD and CD strength densities are shown in
Fig. 7.

In the transitions to the 1−
ND(K = 0) and 1−

ND(K = 1) bases
for the 1−

1 state, the 1p-1h excitations generate the transition
current in the internal region, namely, the translational current
in the Z direction in the 1−

ND(K = 0) base [Fig. 6(a)] and the
vortical current mainly from the proton part in the 1−

ND(K =
1) base [Fig. 6(b)]. These currents in the 1−

ND(K = 0) and
1−

ND(K = 1) bases give the significant CD and TD strength
densities as shown in Figs. 7(a) and 7(b) contributing to the
CD and TD strengths for the 1−

1 state, respectively. In other
words, the origin of the CD and TD strengths in the 0+

1 → 1−
1

excitation are the K = 0 and K = 1 1p-1h modes, respec-
tively, on the top of the normal deformation.

For the 1−
2 state, we first discuss the transition properties of

its main component, i.e., the 1−
cl (K = 0) base. In the transition

to this 1−
cl (K = 0) base, a remarkable translational current is

produced in the outer region around Z ∼ 2.5 fm by the motion
of the α cluster [Fig. 6(c)]. This translational motion results in
remarkable CD strength densities as shown in Fig. 7(c) and
contributes to the significant CD strength in the 1−

2 excitation.
Next, we discuss the properties of the 1−

cl (K = 1) component,
which is significantly mixed in the 1−

2 state. As can be seen
in Figs. 6(d) and 7(d) for this 1−

cl (K = 1) base, the remark-
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FIG. 7. TD and CD strength densities calculated for the intrinsic
states. (a) and (c) show the CD strength densities for the 1−

ND(K = 0)
and 1−

cl (K = 0) states, respectively, and (b) and (d) present the TD
strength densities for the 1−

ND(K = 1) and 1−
cl (K = 1) states, respec-

tively. These heat maps for the strength densities on the Z − X plane
at Y = 0 are plotted.

able vortical current and TD strength density are obtained, in
particular, in the surface region. This vortical current of the
1−

cl (K = 1) component is a major origin of the TD strength
in the 1−

2 state. It is worth to mention that this 1−
cl (K = 1)

component is also mixed in the 1−
1 state and enhances the TD

strength of the 1−
1 state.

From these analyses, the CD and TD transition properties
of the two LED states can be roughly understood by two kinds
of excitation modes: the 1p-1h excitation in the 1−

1 state and
the cluster excitation in the 1−

2 state. In both modes of the 1p-
1h and cluster excitations, the CD and TD transition strengths
are generated in the Kπ = 0− and Kπ = 1− components of
the deformed bases, respectively. In particular, remarkably
strong surface currents are generated by the α cluster motion
in the cluster excitation. This collective (cluster) excitation in
the largely deformed bases further enhances the CD and TD
transition strengths compared with the 1p-1h excitations in
the normal deformation. This plays an important role in the
properties of the LED states. As shown in Figs. 4(a) and 4(b),
for the GCM amplitudes, the cluster bases around β = 0.5–
0.6 are significantly mixed in the 1−

1 and 1−
2 states. Through

the configuration mixing along β, these cluster components
significantly enhance the CD and TD strengths in the two
LED states. Moreover, as a result of the K and configuration
mixing, the CD and TD natures do not separately appear in
the independent 1− states of 18O. This is different from the
decoupling case obtained for 10Be with a large deformation
[35]. Similar mode mixing features were obtained for 16O in
our previous study [35]. Such features are expected in other
neutron-rich oxygen isotopes too.
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VI. SUMMARY

We investigated the LED excitations in 18O using β-AMD
with K-VAP method. In the AMD result, the shell model,
14C +α, and higher nodal 14C +α bases are obtained in Kπ =
0± bases. Through GCM, two LED states, the 1−

1 and 1−
2

states, are obtained. The main components of the former state
are shell model bases with small deformation and those of the
latter state are the 14C +α cluster bases with large deforma-
tion. Moreover, the 1−

3 is obtained as the higher nodal 14C +α

cluster state. For the 1−
1 and 1−

2 states, the significant TD and
CD strengths are obtained, whereas the strengths are weak for
the 1−

3 .
Detailed analyses of the transition properties of the 1−

1 and
1−

2 states were performed by calculating the transition current
densities and strength densities. For the 1−

1 state, the TD and
CD strengths mainly originate from the 1p-1h excitation of
the shell model bases. For the 1−

2 state, the significant CD
strength is generated by the α-cluster motion in the Kπ = 0−
components of the 14C +α cluster bases, and the TD strengths
originate from the Kπ = 1− components of the 14C +α cluster
bases through the K and configuration mixing. The cluster
components also contribute to the 1−

1 state; they provide addi-
tional enhancement of the CD and TD strengths of the 1−

1 state
via the configuration mixing of cluster bases to the dominant
shell model bases. Thus, the 14C +α cluster excitation plays
important roles in the transition properties of the two LED
states of 18O.

In the present calculation, The α-cluster states obtained in
the present result are candidates for the excited states observed
near and above the α-decay threshold energy. In principle, ex-

perimental states above the n- and 2n-decay threshold energies
(8.04 MeV and 12.19 MeV, respectively) can couple with the
neutron-decay channels. However, in the present framework,
such a coupling is not taken into account because n- 17O and
2n- 16O configurations are not sufficiently contained in the
basis wave functions because of the limitation of the present
model. It is expected that the coupling with n- 17O and 2n- 16O
continuum states can give some effects on the widths and
excitation energy of the α-cluster states. More detailed study
including neutron decays with a theoretical framework be-
yond the present model is a future challenging issue.

Nesterenko et al. investigated the low-lying TD and CD
modes in deformed nuclei and showed the clear separation
of the TD and CD modes in LED states in largely deformed
systems. However, the present result does not show such a
clear separation. Instead, the two modes mix in the 1−

1 and 1−
2

states because the 18O system favors small deformation. The
similar scenario can be extended to the 20O system. Indeed,
fragmentation of the CD strengths to the 1−

1 and 1−
2 states of

20O has been reported by the recent experiment by Nakatsuka
et al. [8]. Application of the present AMD method with K-
VAP to 20O is a challenge for the future to clarify the LED
modes in neutron-rich oxygen isotopes.

ACKNOWLEDGMENTS

The authors thank Dr. Nesterenko and Dr. Chiba for fruit-
ful discussions. The computational calculations of this work
were performed by using the supercomputer in the Yukawa
Institute for theoretical physics, Kyoto University. This work
was supported by JSPS KAKENHI Grants No. 18J20926, No.
18K03617, and No. 18H05407.

[1] N. Paar, D. Vretenar, E. Khan, and G. Colo, Rep. Prog. Phys.
70, 691 (2007).

[2] T. Aumann and T. Nakamura, Phys. Scr. T152, 014012 (2013).
[3] A. Bracco, F. C. L. Crespi, and E. G. Lanza, Eur. Phys. J. A 51,

99 (2015).
[4] B. John, Y. Tokimoto, Y. W. Lui, H. L. Clark, X. Chen, and

D. H. Youngblood, Phys. Rev. C 68, 014305 (2003).
[5] M. N. Harakeh and A. E. L. Dieperink, Phys. Rev. C 23, 2329

(1981).
[6] E. Tryggestad et al., Phys. Lett. B 541, 52 (2002).
[7] E. Tryggestad et al., Phys. Rev. C 67, 064309 (2003).
[8] N. Nakatsuka et al., Phys. Lett. B 768, 387 (2017).
[9] J. Gibelin et al., Phys. Rev. Lett. 101, 212503 (2008).

[10] T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and A.
Zilges, Phys. Rev. Lett. 85, 274 (2000).

[11] V. Derya et al., Phys. Lett. B 730, 288 (2014).
[12] J. Kvasil, N. L. Iudice, C. Stoyanov, and P. Alexa, J. Phys. G:

Nucl. Part. Phys. 29, 753 (2003).
[13] J. Kvasil, V. O. Nesterenko, W. Kleinig, P. G. Reinhard, and P.

Vesely, Phys. Rev. C 84, 034303 (2011).
[14] A. Repko, P. G. Reinhard, V. O. Nesterenko, and J. Kvasil, Phys.

Rev. C 87, 024305 (2013).
[15] P. G. Reinhard, V. O. Nesterenko, A. Repko, and J. Kvasil, Phys.

Rev. C 89, 024321 (2014).

[16] Y. Chiba, M. Kimura, and Y. Taniguchi, Phys. Rev. C 93,
034319 (2016).

[17] A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001).
[18] H. Sagawa and T. Suzuki, Nucl. Phys. A 687, 111 (2001).
[19] D. Vretenar, N. Paar, P. Ring, and G. A. Lalazissis, Nucl. Phys.

A 692, 496 (2001).
[20] N. Paar, P. Ring, T. Niksic, and D. Vretenar, Phys. Rev. C 67,

034312 (2003).
[21] M. Gai, M. Ruscev, A. C. Hayes, J. F. Ennis, R. Keddy, E. C.

Schloemer, S. M. Sterbenz, and D. A. Bromley, Phys. Rev. Lett.
50, 239 (1983).

[22] M. Gai, R. Keddy, D. A. Bromley, J. W. Olness, and E. K.
Warburton, Phys. Rev. C 36, 1256 (1987).

[23] M. Gai, M. Ruscev, D. A. Bromley, and J. W. Olness, Phys.
Rev. C 43, 2127 (1991).

[24] E. D. Johnson, G. V. Rogachev, V. Z. Goldberg, S. Brown, D.
Robson, A. M. Crisp, P. D. Cottle, C. Fu, J. Giles, B. W. Green,
K. W. Kemper, K. Lee, B. T. Roeder, and R. E. Tribble, Eur.
Phys. J. A 42, 135 (2009).

[25] M. L. Avila, G. V. Rogachev, V. Z. Goldberg, E. D. Johnson,
K. W. Kemper, Y. M. Tchuvil’sky, and A. S. Volya, Phys. Rev.
C 90, 024327 (2014).

[26] D. Baye and P. Descouvemont, Phys. Lett. B 146, 285
(1984).

034312-8

https://doi.org/10.1088/0034-4885/70/5/R02
https://doi.org/10.1088/0031-8949/2013/T152/014012
https://doi.org/10.1140/epja/i2015-15099-6
https://doi.org/10.1103/PhysRevC.68.014305
https://doi.org/10.1103/PhysRevC.23.2329
https://doi.org/10.1016/S0370-2693(02)02224-4
https://doi.org/10.1103/PhysRevC.67.064309
https://doi.org/10.1016/j.physletb.2017.03.017
https://doi.org/10.1103/PhysRevLett.101.212503
https://doi.org/10.1103/PhysRevLett.85.274
https://doi.org/10.1016/j.physletb.2014.01.050
https://doi.org/10.1088/0954-3899/29/4/312
https://doi.org/10.1103/PhysRevC.84.034303
https://doi.org/10.1103/PhysRevC.87.024305
https://doi.org/10.1103/PhysRevC.89.024321
https://doi.org/10.1103/PhysRevC.93.034319
https://doi.org/10.1103/PhysRevLett.86.5442
https://doi.org/10.1016/S0375-9474(01)00609-1
https://doi.org/10.1016/S0375-9474(01)00653-4
https://doi.org/10.1103/PhysRevC.67.034312
https://doi.org/10.1103/PhysRevLett.50.239
https://doi.org/10.1103/PhysRevC.36.1256
https://doi.org/10.1103/PhysRevC.43.2127
https://doi.org/10.1140/epja/i2009-10887-1
https://doi.org/10.1103/PhysRevC.90.024327
https://doi.org/10.1016/0370-2693(84)91697-6


LOW-ENERGY DIPOLE EXCITATION MODE IN 18O … PHYSICAL REVIEW C 103, 034312 (2021)

[27] P. Descouvemont and D. Baye, Phys. Rev. C 31, 2274
(1985).

[28] N. Furutachi, S. Oryu, M. Kimura, A. Dote, and Y. Kanada-
En’yo, Prog. Theor. Phys. 119, 403 (2008).

[29] T. Baba and M. Kimura, Phys. Rev. C 100, 064311 (2019).
[30] T. Baba and M. Kimura, Phys. Rev. C 102, 024317

(2020).
[31] V. O. Nesterenko, A. Repko, J. Kvasil, and P. G. Reinhard, Phys.

Rev. Lett. 120, 182501 (2018).
[32] V. O. Nesterenko, J. Kvasil, A. Repko, W. Kleinig, and P. G.

Reinhard, Phys. At. Nucl. 79, 842 (2016).
[33] J. Kvasil, V. O. Nesterenko, W. Kleinig, and P. G. Reinhard,

Phys. Scr. 89, 054023 (2014).
[34] Y. Chiba, Y. Kanada-En’yo, and Y. Shikata, arXiv:1911.08734.
[35] Y. Shikata and Y. Kanada-En’yo, Prog. Theor. Exp. Phys.

(2020) 073D01.
[36] Y. Kanada-En’yo, Phys. Rev. Lett. 81, 5291 (1998).
[37] Y. Kanada-En’yo and H. Horiuchi, Prog. Theor. Phys. Suppl.

142, 205 (2001).
[38] A. Dote, H. Horiuchi, and Y. Kanada-En’yo, Phys. Rev. C 56,

1844 (1997).

[39] M. Kimura, Y. Sugawa, and H. Horiuchi, Prog. Theor. Phys.
106, 1153 (2001).

[40] T. Ando, K. Ikeda, and A. Tohsaki-Suzuki, Prog. Theor. Phys.
64, 1608 (1980).

[41] R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).
[42] N. Yamaguchi, T. Kasahara, S. Nagata, and Y. Akaishi, Prog.

Theor. Phys. 62, 1018 (1979).
[43] Y. Kanada-En’yo, H. Horiuchi, and A. Dote, Phys. Rev. C 60,

064304 (1999).
[44] Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007).
[45] Y. Kanada-En’yo, Phys. Rev. C 96, 034306 (2017).
[46] Y. Kanada-En’yo and K. Ogata, Phys. Rev. C 101, 064308

(2020).
[47] A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti, and

N. Saunier, Phys. Rev. C 24, 476 (1981).
[48] J. Vernotte, G. Berrier-Ronsin, J. Kalifa, and R. Tamisier, Nucl.

Phys. A 390, 285 (1982).
[49] D. Tilley, H. Weller, C. Cheves, and R. Chasteler, Nucl. Phys.

A 595, 1 (1995).
[50] Y. Kanada-En’yo and K. Ogata, Phys. Rev. C 100, 064616

(2019).

034312-9

https://doi.org/10.1103/PhysRevC.31.2274
https://doi.org/10.1143/PTP.119.403
https://doi.org/10.1103/PhysRevC.100.064311
https://doi.org/10.1103/PhysRevC.102.024317
https://doi.org/10.1103/PhysRevLett.120.182501
https://doi.org/10.1134/S106377881606020X
https://doi.org/10.1088/0031-8949/89/5/054023
http://arxiv.org/abs/arXiv:1911.08734
https://doi.org/10.1093/ptep/ptaa092
https://doi.org/10.1103/PhysRevLett.81.5291
https://doi.org/10.1143/PTPS.142.205
https://doi.org/10.1103/PhysRevC.56.1844
https://doi.org/10.1143/PTP.106.1153
https://doi.org/10.1143/PTP.64.1608
https://doi.org/10.1143/PTP.39.91
https://doi.org/10.1143/PTP.62.1018
https://doi.org/10.1103/PhysRevC.60.064304
https://doi.org/10.1143/PTP.117.655
https://doi.org/10.1103/PhysRevC.96.034306
https://doi.org/10.1103/PhysRevC.101.064308
https://doi.org/10.1103/PhysRevC.24.476
https://doi.org/10.1016/0375-9474(82)90162-2
https://doi.org/10.1016/0375-9474(95)00338-1
https://doi.org/10.1103/PhysRevC.100.064616

