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Global study of separable pairing interaction in covariant density functional theory
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A systematic global investigation of pairing properties based on all available experimental data on pairing
indicators has been performed for the first time in the framework of covariant density functional theory. It is
based on the separable pairing interaction of Tian, Ma, and Ring [Phys. Lett. B 676, 44 (2009)]. The optimization
of the scaling factors of this interaction to experimental data clearly reveals its isospin dependence in the neutron
subsystem. However, the situation is less certain in the proton subsystem since similar accuracy of the description
of pairing indicators can be achieved both with isospin-dependent and mass-dependent scaling factors. The
differences in the functional dependencies of scaling factors lead to uncertainties in the prediction of proton
and neutron pairing properties which are especially pronounced at high isospin and could have a significant
impact on some physical observables. For a given part of the nuclear chart the scaling factors for spherical nuclei
are smaller than those for deformed ones; this feature exists also in nonrelativistic density functional theories.
Its origin is traced back to particle-vibration coupling in odd-A nuclei which is missing in all existing global
studies of pairing. Although the present investigation is based on the NL5(E) covariant energy density functional
(CEDF), its general conclusions are expected to be valid also for other CEDFs built at the Hartree level.

DOI: 10.1103/PhysRevC.103.034310

I. INTRODUCTION

Pairing correlations play an extremely important role in
nuclear physics: the inclusion of pairing [particle-particle
(pp)] correlations is critical for open shell nuclei, and this is
an absolute majority of the nuclei in the nuclear chart (see
Refs. [1–3]). In principle the effective pp interaction is isospin
dependent with isoscalar (T = 0) and isovector (T = 1) parts.
However, only the isovector part is important since (i) the
vast majority of pairing effects emerge from this part (see
Refs. [1–3]) and (ii) there is no clear indications that the pp
interaction in the T = 0 channel is strong enough to produce
a pairing condensate (see Refs. [4,5]). That is a reason why
we consider only isovector pairing interaction between like
particles in the present paper.

It is well known that the pairing correlations play a signif-
icant role in the description of the ground state properties of
open-shell nuclei. However, the properties of rotating nuclei
and fission barriers are especially sensitive to fine details
of pairing interaction. For example, the experimental mo-
ments of inertia of low and medium spin rotational bands
and their evolution with spin cannot be described without
inclusion of pairing interaction [3,6]. In addition, the ac-
curacy of their description sensitively depends both on the
details of pairing interaction [such as its form (for example,
quadrupole pairing [7]) and strength (see Refs. [8–10])] and
on (at least, approximate) particle number projection (such
as Lipkin-Nogami method) (see Refs. [7–9,11,12]). The same
situation exists also in the description of fission barriers. It was
found in Ref. [13] that the pairing gap changes considerably
with deformation and that relativistic mean field (RMF)+BCS

calculations with constant gap do not provide an adequate
description of the barriers. Relativistic Hartree-Bogoliubov
(RHB) calculations show that there is a substantial differ-
ence in the predicted barrier heights between zero-range and
finite-range pairing forces even in the case when the pairing
strengths of these two forces are adjusted to the same value
of the pairing gap at the ground state (see Ref. [13]). For
zero range forces the barrier heights depend on the renor-
malization procedure. Note also that the details of pairing
are important for the description of transitional nuclei since
the modification of the strength of pairing could drive the
system from transitional in nature to spherical, and vice versa
(see the discussion of octupole deformed nuclei in Sec. V of
Ref. [14]).

The pairing correlations are an important building block
of different density functional theories (DFTs). Among these
nuclear DFT’s, covariant density functional theory (CDFT) is
one of most attractive since covariant energy density function-
als (CEDFs) exploit basic properties of QCD at low energies,
such as symmetries and the separation of scales [15]. They
provide a consistent treatment of the spin degrees of free-
dom, and they include the complicated interplay between
the large Lorentz scalar and vector self-energies induced on
the QCD level by the in-medium changes of the scalar and
vector quark condensates [16]. In addition, these functionals
include nuclear magnetism [17], i.e., a consistent description
of currents and time-odd mean fields important for odd-mass
nuclei [18], the excitations with unsaturated spins, magnetic
moments [19], and nuclear rotations [20,21]. Because of
Lorentz invariance no new adjustable parameters are required
for the time-odd parts of the mean fields [18]. Of course,

2469-9985/2021/103(3)/034310(18) 034310-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1993-8299
https://orcid.org/0000-0002-4220-2386
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.034310&domain=pdf&date_stamp=2021-03-11
https://doi.org/10.1016/j.physletb.2009.04.067
https://doi.org/10.1103/PhysRevC.103.034310


S. TEETI AND A. V. AFANASJEV PHYSICAL REVIEW C 103, 034310 (2021)

at present, all attempts to derive these functionals, defining
the particle-hole channel of the DFTs, directly from the bare
forces [22–25] do not reach the required accuracy. Note that
the same situation exists also in the nonrelativistic DFTs based
on zero-range Skyrme and finite-range Gogny interactions
(see Refs. [26,27] and references quoted therein). However,
in recent years modern phenomenological CEDFs have been
constructed [28–32] which provide an excellent description
of ground and excited states all over the nuclear chart [33–37]
with a high predictive power.

The pairing correlations and pairing indicators have been
subjects of a number of studies within the framework of den-
sity functional theories (DFTs). For example, it was shown in
Ref. [38] using Skyrme DFT that odd-even staggering (OES)
of binding energies in light atomic nuclei is strongly affected
by both nucleonic pairing and deformed mean field. Various
approximations in the extraction of pairing indicators as well
as in the calculations of pairing gaps in Skyrme DFT and
their comparison with experimental data were investigated
in Ref. [39]. The global analysis of pairing interaction was
performed with the SLy4 functional and contact pairing inter-
action with possible density dependence employing different
approximations such as the BCS, Hartree-Fock-Bogoliubov
(HFB), and HFB with approximate particle number projection
by means of the Lipkin-Nogami method in Ref. [40]. Other
interesting results on pairing properties obtained in Skyrme
DFT can be found in Refs. [41–45]. The mass dependence of
the average pairing gap values for neutrons and protons was
investigated in large scale Gogny DFT calculations with the
Gogny D1S functional in Ref. [46]. However, this analysis
is based on the comparison of experimental �(3) indicators,
extracted from binding energies, with theoretical averaged
pairing gaps calculated in even-even nuclei. This drawback
was removed in Refs. [47,48], in which experimental and
theoretical �(3) indicators were directly compared in several
isotope chains of spherical and deformed nuclei across the
nuclear chart (see Ref. [47]) in calculations with the D1S
Gogny force and in deformed actinides in calculations with
the D1M force (see Ref. [48]). Note that global analysis of
this kind is still absent in the Gogny DFT. Other publications
on particular aspects of the pairing interaction based on the
Gogny forces were recently reviewed in Ref. [49]. Note that
only nonrelativistic studies are mentioned here since the de-
tailed discussion of the pairing studies within the CDFT is
presented below.

In the literature on nuclear DFT several types of effective
pairing forces V pp have been used. The most simple force
is the seniority force of Kerman [3,50] with constant pairing
matrix elements G. This force is widely used, but is has many
limitations, e.g., correlations in pairs with higher angular
momentum are neglected, the scattering between pairs with
different shells is not constant in realistic forces, the coupling
to the continuum is not properly taken into account, and the
predictive power is limited. As an alternative a (contact) zero-
range δ force is used in many calculations and it is frequently
made density dependent to be more realistic (see, for exam-
ple, Refs. [40,43–45]). However, it is well known that these
forces have the problem that, for calculations in full space,
the pairing gap shows an ultraviolet divergence for any given

strength of the interaction (see the discussion in Ref. [13] and
references quoted therein).

Thus the search for more realistic pairing led to the use
of finite-range Gogny force in the pairing channel of DFTs.
Gogny derived his energy functional from a finite range force
of the Brink-Booker type, which allows one to avoid the com-
plicated problem of pairing cutoff [51]. This is because the
finite range guarantees that the force decreases as a function
of the momentum transfer and the gap equation converges
without any problems. This type of pairing based on the D1S
Gogny functional [52,53] (further called the Gogny pairing)
has been used in the CDFT framework in many applica-
tions related to the description of the ground state properties
[33,37,54], rotating nuclei [9,10,55], fission barriers [13], the
nuclei in the vicinity of the proton and neutron drip lines
[33,56], etc. Note that the pairing itself is a nonrelativistic
effect which affects only the occupation of the single-particle
states in the vicinity of the Fermi level; the impact of the
pairing field on the small components of the Dirac spinor can
be neglected to a very good approximation [57].

However, the use of the Gogny pairing is computationally
time and memory consuming. Thus, a separable pairing inter-
action of finite range was introduced as a simplification of the
Gogny pairing by Tian et al. in Ref. [58]. Its matrix elements
in r-space have the form

V (r1, r2, r′
1, r′

2)

= − f Gδ(R − R′)P(r)P(r′) 1
2 (1 − Pσ ) (1)

with R = (r1 + r2)/2 and r = r1 − r2 being the center-of-
mass and relative coordinates. The form factor P(r) is of
Gaussian shape:

P(r) = 1

(4πa2)3/2
e−r2/4a2

. (2)

The factor f is the scaling factor of the pairing force, which
in general is particle number dependent, i.e., f = f (Z, N )
(see Ref. [36]). The parameters G = 728 MeV fm3 and
a = 0.644 fm of this interaction, which are the same for
protons and neutrons, have been derived by a mapping of
the 1S0 pairing gap of infinite nuclear matter to that of the
Gogny force D1S [58] under the condition that f = 1.0. These
parameters are also used in the present paper. In finite nuclei,
the pairing gaps calculated with separable pairing interaction
and Gogny pairing are very close to each other (see Ref. [36]).
Because numerical calculations with separable pairing in-
teraction are less time consuming that those with Gogny
pairing, its use has become widespread in CDFT calculations
of ground state properties [36,37,59,60], fission properties
[61–63], the properties of rotating nuclei [64,65], and in many
beyond mean field and QRPA calculations [66–69] based on
the CDFT framework.

In many CDFT applications both the Gogny and separa-
ble pairing interactions have been used with scaling factor
f = 1.0. However, over the years it became clear that the
pairing force based on the D1S force does not fully take into
account the mass and particle dependencies of the experimen-
tal pairing. For the first time, this feature has been seen in the
cranked relativistic Hartree-Bogoliubov (CRHB) calculations
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of rotational properties of a few actinides in Ref. [70], and
later it was confirmed in more systematic CRHB calculations
of Ref. [10] in the same mass region. The analysis of odd-even
staggering in nuclear binding energies of spherical nuclei has
also revealed the need for mass or particle number depen-
dencies of the Gogny D1S pairing for the reproduction of
experimental pairing indicators [36,71]. These results indicate
that the pairing effects are underestimated for light nuclei and
overestimated for heavy ones when the Gogny D1S force is
used in the pairing channel. A similar situation exists also
for separable pairing interaction, the parameters of which are
defined by the fit to the Gogny D1S force [36].

It is necessary to recognize that the studies of particle
number dependencies of the Gogny and separable pairing
in the CDFT framework have been performed either in lo-
calized regions of nuclear chart or for specific types of
systems such as spherical nuclei in Refs. [36,71] or rotating
nuclei in Refs. [10,70]. As a consequence, even nowadays
these dependencies are neglected in many applications of the
CDFT. Thus, the goal of the present paper is to perform for
the first time a global study of separable pairing interaction
in the CDFT framework and optimize its particle number
dependencies.

The paper is organized as follows. Experimental pairing in-
dicators are discussed in Sec. II. The discussion of theoretical
pairing gaps is presented in Sec. III. Section IV is devoted to
the analysis of the results of the calculations and optimiza-
tion of pairing interaction. The extrapolation properties of
optimized separable pairing towards very neutron-rich nuclei
and related theoretical uncertainties are discussed in Sec. V.
Finally, Sec. VI summarizes the results of our paper.

II. EXPERIMENTAL PAIRING INDICATORS

There are several expressions for the pairing indicators in
the literature. These are three-, four-, and five-point indica-
tors1 given by

�
(3)
i (Q0) = πQ0

2
[B(Q0 − 1) − 2B(Q0) + B(Q0 + 1)], (3)

�
(4)
i (Q0) = πQ0

4
[B(Q0 − 2) − 3B(Q0 − 1)

+ 3B(Q0) − B(Q0 + 1)], (4)

�
(5)
i (Q0) = −πQ0

8
[B(Q0 + 2) − 4B(Q0 + 1) + 6B(Q0)

− 4B(Q0 − 1) + B(Q0 − 2)], (5)

which quantify the OES of binding energies. Here Q0 is equal
to either proton (Z) or neutron (N) number, πQ0 = (−1)Q0 is
the number parity in the respective subsystem, and B(Q) is
the (negative) binding energy of a system with Q particles.
In these equations, if the number of protons Z is fixed, then

1Note that these pairing indicators are derived from the Taylor
expansion of the nuclear mass in nucleon-number differences [39].
As a result, they depend on a number of assumptions, some of which
are strongly violated at shell closures (see the discussion in Sec. 4.2
of Ref. [39]).
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FIG. 1. Experimental neutron pairing indicators �(3)
ν (Z, N ),

�(4)
ν (Z, N ), and �(5)

ν (Z, N ) as a function of the neutron number N
for indicated isotopic chains of spherical nuclei.

i = ν and the indicator gives the neutron OES. Otherwise, we
obtain proton (i = π ) OES if the number of neutrons is fixed.
The number parity πQ0 is chosen in such a way that the OES
is positive irrespective of its centering at either even or odd
particle number Q0.

These experimental indicators are illustrated for spherical
nuclei in Figs. 1 and 2. The �(3) indicator shows a significant
odd-even staggering. This staggering is washed out when the
�(4) and �(5) indicators are used. The �(4) indicator gives an
expression which is asymmetric around the nucleus with Q0

and therefore offers two choices [39]. Thus, we use in further
studies the �(5) indicator which is symmetric and expected to
yield better decoupling from mean-field effects [39].

One should note that the peaks in these indicators (which
are especially pronounced for the �(3) ones) appear at Qshell

values corresponding to the shell closures or neighboring Q
values. These are the peaks in neutron pairing indicators at
N = 20 and N = 28 in the Ca isotopes, at N = 28 and N = 50
in the Ni isotopes, at N = 50 in the Sn isotopes, and at
N = 126 in the Pb isotopes (see Fig. 1). Similar peaks are
also seen in proton pairing indicators at Z = 20 in the N = 20
and N = 28 isotones, at Z = 50 in the N = 82 isotones, and
Z = 82 in the N = 126 isotopes (see Fig. 2). These peaks in
no way should be interpreted as an indication of increased
pairing correlations. This is connected with the fact that pair-
ing correlations either disappear or are significantly weakened
at shell closures (see discussion in Sec. IV of Ref. [36]) and
the peaks are not produced by pairing, but by the large or sub-
stantially increased shell gaps for closed-shell configurations.
Therefore, proton/neutron �(5) quantities corresponding to
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FIG. 2. The same as Fig. 1 but for proton indicators �(3)
π (Z, N ), �(4)

π (Z, N ), and �(5)
π (Z, N ) as a function of proton number Z for indicated

isotonic chains of spherical nuclei.

such peaks at proton/neutron shell closures and their close
vicinities do not represent pairing indicators and thus are
eliminated from the consideration.

It is interesting to estimate global relative differences in the
definition of experimental �(4) and �(5) indicators by means
of the function

Di = 1

nset
i

∑

Z,N

∣∣�(5)
i (Z, N ) − �

(4)
i (Z, N )

∣∣

�
(5)
i (Z, N )

× 100%. (6)

Here the sum runs over nset
i nuclei for which pairing indica-

tors are available and the subscript i indicates the subsystem
(proton or neutron). The analysis of all available experimental
data based on the AME2016 compilation of Ref. [72] (see, for
example, Figs. 3 and 4 below and their discussion) leads to
Dπ = 5.50% and Dν = 2.68% if the pairing indicators at Q =
Qshell are excluded from consideration and to improved values
of Dπ = 4.20% and Dν = 1.93% if the pairing indicators at
Q = Qshell, Qshell ± 2 are excluded from consideration. These
numbers suggest that, even on the level of experimental data,
the pairing indicators suffer from some degree of uncertainty
and are not uniquely defined.

It is necessary to recognize that all these definitions of the
OES of the binding energies do not provide a clean measure
of pairing correlations since they have contributions which are
not directly related to them. These include

(1) Non-negligible contributions in time-even and time-
odd mean fields from the response of the underlying
mean field to the blocking of a single-particle state in
odd-mass nuclei [18,38,39,73]. This includes also the
effects from the breaking of Kramer’s degeneracy of
the single-particle states in odd-A nuclei [18].

(2) The impact of the fact that the structure (in terms of
the Nilsson orbital) of the experimental ground states
in odd-A nuclei is reproduced globally only in approx-
imately 40% of the nuclei in the DFTs [74,75].2 As a
consequence, the impact of the blocked orbital on the
deformations and binding energies of the ground state
is expected to deviate somewhat (see, for example,
Fig. 4 in Ref. [75] for deformation effects) from that
expected for the case when the ground state is based on
the single-particle orbital with correct structure. These
facts are ignored in an absolute majority of the studies
of pairing via OES of binding energies. It is only in
Ref. [47] that this feature has been mentioned, but the
suggested recipe (not used by the authors of Ref. [47]
themselves), namely, the use of binding energy of the
one-quasiparticle configuration with correct Nilsson
structure in the calculations of OES, suffers from sub-
stantial uncertainties in the description of the energies
of the single-particle states in the DFT frameworks
[48,76].

(3) The impact of (quasi)particle-vibrational coupling on
the binding energies of odd-mass nuclei. This im-
pact is especially pronounced in spherical nuclei
[76,77].3 According to the quasiparticle-phonon model

2The inclusion of particle-vibrational coupling increases the ac-
curacy of the description of the single-particle configurations in
odd-A nuclei but such studies are limited to spherical nuclei (see
Refs. [76,77]).

3It is interesting that such features have already been mentioned
in seminal article of Dechargé and Gogny [78] where they indicated
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FIG. 3. Experimental neutron �(5)
ν (Z, N ) indicators as a function of neutron number N . Pairing indicators based both on measured and

estimated binding energies (see discussion in the beginning of Sec. IV) are included. The data are grouped into six panels according to
increasing proton number. This is done to illustrate both the isospin dependence and the impact of different shell closures on the �(5)

ν (Z, N )
indicators. The ranges of the neutron number and �(5)

ν (Z, N ) changes are the same in panels (b)–(f); this allows direct comparison of the slopes
of the �(5)

ν (Z, N ) values as a function of neutron number in these panels. Note that these ranges are different in panel (a). The experimental
data on binding energies are taken from the AME2016 mass evaluation (see Ref. [72]).

of Soloviev [2], the admixtures of the phonons to the
structure of the ground states in deformed rare-earth
and actinide odd-mass nuclei is relatively small (espe-
cially, when compared with spherical nuclei) [79–81].

(4) It was also found in Ref. [82] that the random-phase
approximation based part of the total shell correction,
which accounts for the neutron-proton pair-vibrational
correlation energy, contributes significantly to the cal-
culated odd-even mass differences, particularly in the
light nuclei.

that treating explicitly the residual interaction through configuration
mixing in odd and even nuclei is expected to lower the OES by
approximately 300 keV in the Sn isotopes.

Thus, one can conclude that the comparison of experimen-
tal pairing indicators extracted from binding energies with
theoretical results obtained from mean field type calculations
can reveal only general trends of pairing evolution as a func-
tion of particle numbers, and local differences between theory
and experiment are expected. One should also recognize that
global investigations of pairing at the beyond mean field level
are not possible nowadays. The analysis of pairing interaction
at the mean field level based on experimental data which by
definition includes beyond mean field effects suggest that the
latter should be to a degree treated as a “noisy” data, where the
noise is coming from neglected beyond mean field effects. As
a consequence, special attention has to be paid to the reduction
of the impact of the data which strongly deviate from general
trends (for example, by employing robust fitting procedures
(see Sec. IV below) as well as on the comparative analysis of
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FIG. 4. The same as in Fig. 3 but for the proton �(5)
π (Z, N ) indicators as a function of proton number Z .

different types of nuclei and different regions of the nuclear
chart.

III. THEORETICAL PAIRING GAPS

In the present paper, the relativistic Hartree-Bogoliubov
(RHB) approach is used in the calculations. The formalism
of this approach is discussed in detail in Refs. [33,36]. Thus,
we consider here only technical details related to pairing in-
teraction. Note that for this study we employ the NL5(E) [32]
covariant energy density functional (CEDF) which globally
outperforms well known NL3 [83] and NL3* [84] functionals
(see Ref. [32]).

The pair field �̂ in the RHB theory is given by

�̂ ≡ �n1n2
= 1

2

∑

n′
1n′

2

〈n1n2|V pp|n′
1n′

2〉κn′
1n′

2
. (7)

It contains the pairing tensor κ ,

κ = V ∗U T , (8)

and the effective interaction V pp in the particle-particle chan-
nel for which the separable pairing interaction of Eq. (1) is
used. In theoretical calculations we use pairing gap4

�uv =
∑

k ukvk�k∑
k ukvk

, (9)

which provides a better description of experimental pairing
indicators in the CDFT framework as compared with other
forms of pairing gaps (see Sec. IV in Ref. [36]).

For each even-even nucleus under consideration we define
neutron and proton scaling factors fν (Z, N ) and fπ (Z, N ) of

4The pairing gap �uv is related to the average of the state dependent
gaps over the pairing tensor. �uv averages over ukvk , a quantity which
is concentrated around the Fermi surface. However, because of the
fact that κ ∼ ∑

k ukvk diverges for the seniority force and for zero
range forces, �uv turns out to depend on the pairing window. This is,
however, no problem for the separable pairing of finite range used in
this investigation.
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separable pairing force [see Eq. (1)] from the condition

�i
uv(Z, N ) = �

(5)
i−cor (Z, N ), (10)

where �
(5)
i-cor(Z, N ) (defined below) stands for the experimen-

tal �(5)(Z, N ) pairing indicator corrected for the effects of
time-odd mean fields in odd-A nuclei. Here subscript i in-
dicates the subsystem (proton or neutron). This is done for
all even-even (Z, N ) nuclei for which either the experimental
�(5)

ν (Z, N ) indicator or the experimental �(5)
π (Z, N ) indicator

or both of them are available.
The �(5)

ν-cor and �(5)
π-cor indicators are determined by means

of Eq. (5) but with experimental binding energies of odd
nuclei Bodd-i(Z, N ) corrected for the impact of time-odd mean
fields (�Ei) via

Bodd-i
cor (Z, N ) = Bodd-i(Z, N ) + �Ei. (11)

This is equivalent to averaged removal of time-odd effects
from odd-A nuclei and allows us to compare the �(5)

ν-cor and
�(5)

π-cor indicators with the respective calculated �uv pairing
gaps which do not include time-odd mean fields. Note that
this leads to slight increase of the �(5)

ν-cor and �(5)
π-cor values as

compared with the �(5)
ν and �(5)

π ones.
The need for such a correction comes from the fact that

time-odd mean fields (nuclear magnetism in the CDFT frame-
work; see Refs. [18,85]) provide an additional binding in
odd-Z and odd-N nuclei but have no effect on binding energies
of even-even nuclei (see Ref. [18]). As a consequence, respec-
tive pairing indicators defined by Eqs. (3), (4), and (5) will be
modified (see also Sec. III D in Ref. [18] and Ref. [86]).

Note that additional bindings due to time-odd mean fields
only weakly depend on CEDF [18]. Thus, we use averaged
functions �EN and �EZ for additional bindings in odd-N and
odd-Z nuclei due to time-odd mean fields as defined for the
NL3 functional in Ref. [18], namely,

�Eν = 0.73N−0.58 [MeV],

�Eπ = 0.37Z−0.54 [MeV]. (12)

The powers of these expressions are similar for different
subsystems. On the other hand, the magnitudes in front of
the base of power differ considerably between proton and
neutron quantities, indicating weaker additional binding due
to time-odd mean fields for odd-proton nuclei.

The analysis based on the use of the �i
uv (Z, N ) pairing gaps

has the advantage that these quantities are calculated in even-
even nuclei. This allows one to avoid the complicated problem
of calculating the blocked states in odd-mass nuclei (see
Refs. [10,75] and the discussion below). On the other hand,
the validity of their use in the comparison with experimental
�

(5)
i (Z, N ) indicators is not obvious. It turns out, however,

that away from spherical shell closures, the �i
uv(Z, N ) values

come close to the calculated �
(5)
i (Z, N ) indicators [36]. To

verify that for the chains of spherical nuclei shown in Figs. 1
and 2 we compared the �

(5)
i (Z, N ) indicators, obtained in the

calculations without time-odd mean fields, with calculated
�i

uv (Z, N ) pairing gaps. In both types of calculations the
Gogny D1S force was used in the pairing channel. This analy-
sis is very similar to the one presented in Sec. IV of Ref. [36]

but performed without time-odd mean fields in odd-A nuclei.
It turns out that the average deviation between �

(5)
i (Z, N ) and

�uv (Z, N ) quantities for this set of nuclei is on the level of
approximately 5% if shell closure nuclei with Qshell and their
neighbors with Qshell ± 2 are excluded from consideration.
However, the proton and neutron scaling factors have to be
modified on average by only ≈2% to compensate for this
difference between the two quantities. This value defines the
accuracy of the approach and it is sufficient for the analysis of
global trends.

An alternative to the above described procedure would be
fully self-consistent calculations of binding energies of even-
even and odd-mass nuclei with the inclusion of the effects
of time-odd mean fields and blocking in odd-A nuclei. It
would lead to theoretical �

(5)
i (Z, N ) (or lower order) indica-

tors defined by Eq. (5) [Eqs. (3) and (4)] which can directly
be compared with experimental ones. Such an approach has
been employed for isotopic (with magic Z) and isotonic (with
magic N) chains of spherical nuclei and the set of deformed
actinides calculated with triaxial RHB computer code with
fixed scaling factors fν (Z, N ) and fν (Z, N ) in Refs. [10,36].
However, this alternative procedure has its own disadvantages.
First of all, systematic calculations within the CDFT [75] and
non-relativistic Skyrme DFT [74] showed that in more than
half of odd-A nuclei the single-particle structure of the ground
states cannot be reproduced. This means that the polariza-
tion effects in time-even (deformation) and time-odd channels
affecting the binding energies are not properly defined in
these odd-A nuclei. Second, the effects of particle-vibration
coupling will modify the binding energies of odd-A nuclei;
this effect is expected to be especially pronounced in spherical
systems (see Ref. [76]). Third, the definition of the ground
state in a given deformed odd-A nucleus requires the blocking
of approximately ten lowest in energy quasiparticle states
[75]; a somewhat smaller number of the states is needed to be
considered in spherical nuclei [36,39]. Numerical calculations
of the blocked solutions in odd-A nuclei are appreciably more
time consuming than the ones without blocking in even-even
nuclei. In addition, there are problems with the convergence
of such blocked solutions for some configurations [10,48,75].
Finally, global calculations using this procedure with the
optimization of scaling factors fν (Z, N ) and fπ (Z, N ) are
prohibitively time consuming.

IV. DISCUSSION

The binding energies given in the AME2016 mass evalu-
ation [72] can be separated into two groups: one represents
the nuclei with binding energies defined only from exper-
imental data, the other contains the nuclei with binding
energies depending in addition on either interpolation or
extrapolation procedures. As a consequence, there are the
�

(5)
i (Z, N ) indicators which are defined only by experimen-

tally measured binding energies and the �
(5)
i (Z, N ) indicators

which in addition depend on estimated binding energies.
For simplicity, we call the �

(5)
i (Z, N ) indicators (and re-

lated scaling factors) in the first and second groups as
“measured” and “estimated.” Based on the binding ener-
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Only transitional nuclei
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FIG. 5. The distribution of the scaling factors fν (Z, N ) of neutron pairing in the nuclear chart. Panel (a) shows all nuclei for which
experimental �(5)

ν (Z, N ) indicators can be defined. Note, however, that we exclude such indicators for N = 20, 50, 82, and 126. Panels (b), (c),
and (d) show scaling factors only for the nuclei whose ground states are either deformed, spherical, or transitional according to the calculations.
The nuclei with equilibrium deformations β2 satisfying the conditions |β2| � 0.02, 0.02 < |β2| < 0.15, and |β2| � 0.15 are considered to be
spherical, transitional, and deformed, respectively.

gies available in AME2016 evaluation one can define 612
neutron and 611 proton measured �

(5)
i (Z, N ) indicators and

110 neutron and 53 proton estimated �
(5)
i (Z, N ) indica-

tors. Altogether, there are 722 and 664 proton and neutron
“measured+estimated” �

(5)
i (Z, N ) indicators. Note that we

consider only even-even and odd nuclei in this paper since
the binding energies of odd-odd nuclei are affected by the
residual neutron-proton interaction of an unpaired proton and
neutron.

Experimental neutron and proton �
(5)
i (Z, N ) pairing in-

dicators are shown in Figs. 3 and 4 for different isotopic
and isotonic chains, respectively. The analysis of these fig-
ures reveals the following general features. First, there is a
substantial staggering of these indicators as a function of
respective particle numbers which is especially visible in light
nuclei and at spherical shell closures. Large peaks appear
in the experimental �

(5)
i (Z, N ) indicators at spherical shell

closures. In no way they should be considered as indication of
increased pairing: this is connected with the fact that pairing
correlations either disappear or are extremely weak in closed
shell nuclei in theoretical calculations. These peaks are not
produced by pairing, but by increased shell gap for closed-
shell configurations. Second, there is a general trend of the
reduction neutron/proton �

(5)
i (Z, N ) pairing indicators with

increasing proton/neutron numbers. Third, on average neu-
tron �(5)

ν (Z, N ) indicators for a given isotope chain decrease
with increasing neutron number (or equivalently isospin) (see
Fig. 3). This trend is disturbed at spherical shell closures,
which is especially visible at N = 50 in Fig. 3(b), at N = 50
and N = 82 in Fig. 3(c), and at N = 126 in Figs. 3(d) and 3(e).
Only actinides and light superheavy nuclei do not show this
trend [see Fig. 3(f)] but this feature is most likely due to the
presence of large deformed N = 162 shell gap (see Ref. [87])
which leads to an increase of the �(5)

ν (Z, N ) values in its
vicinity. This fact may also indicate that some fluctuations in
pairing indicators of lighter nuclei are also due to deformed
shell gaps. Fourth, if one excludes light nuclei, proton pairing
indicators show more constant (on average) proton �(5)

π (Z, N )
indicators for a given isotonic chain as a function of proton
number as compared with neutron �(5)

π (Z, N ) indicators for a
given isotopic chain as a function of neutron number (compare
Figs. 4 and 3). Again this trend is disturbed at spherical shell
closures, which is visible as the peaks in �(5)

π (Z, N ), espe-
cially at Z = 28 in Fig. 4(b), at Z = 50 in Fig. 4(c), and at
Z = 82 in Fig. 4(e).

Neutron and proton scaling factors fν (Z, N ) and fπ (Z, N )
defined from the condition of Eq. (10) are presented in Figs. 5
and 6. These figures reveal several general trends. First, the
scaling factors in both subsystems decrease with increasing
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FIG. 6. The same as Fig. 5 but for proton scaling factors fπ (Z, N ) of proton pairing. Note, however, that we exclude proton pairing
indicators for Z = 20, 50, and 82.

mass number. Second, neutron scaling factors fν (Z, N ) also
decrease with increasing isospin [see Fig. 5(a)]. However, this
trend is less pronounced in proton subsystem [see Fig. 6(a)].
Third, in a given part of nuclear chart the scaling factors for
spherical nuclei are smaller than those for deformed ones.5

This is clearly seen for neutron scaling factors fν (Z, N ) near
proton shell closures at Z = 20, 28, and 50 [see Figs. 5(a)
and 5(c)] and for proton scaling factors near neutron shell
closures at N = 50, 82, and 126 [see Figs. 5(a) and 5(c)]. The
comparisons of Figs. 5(b) and 5(c) for the neutron subsystem
and Figs. 6(b) and 5(c) for the proton subsystem also reveal
this feature. The origin of this feature could be related to the
impact of particle-vibration coupling (PVC) impact on the
binding energies of odd-mass nuclei. The PVC increases the
binding energies of odd-A nuclei (see Ref. [76,78]) and thus
reduces the pairing indicators. Its effect is more pronounced
in spherical nuclei as compared with deformed ones and thus

5Note that the analysis within the Skyrme DFT with zero-range
density-dependent pairing interaction also reveals that pairing inter-
action extracted from OES of binding energies is smaller in spherical
nuclei as compared with that in deformed ones [40]. The results of
the Gogny DFT calculations for a few isotope chains of spherical and
deformed nuclei presented in Ref. [47] reveal a similar situation: the
strength of pairing interaction as defined by the D1M Gogny forces
has to be decreased/increased in spherical/deformed nuclei in order
to reproduce experimental �(3) indicators.

in a given region of nuclear chart it leads to a suppression of
scaling factors in spherical nuclei as compared with the ones
in deformed nuclei. An alternative possible explanation of the
difference in pairing strength in spherical and deformed nuclei
is related to the differences in the single-particle densities in
the vicinity of the Fermi levels of such nuclei (see Sec. IV of
Ref. [40]). However, in general this effect should be taken into
account already at the mean field level with proper treatment
of pairing correlations.

It is interesting to see whether the approximate global
functional dependences of scaling factors can be defined and
which form of such dependences provides the best description
of extracted scaling factors on a global scale. For that we have
investigated the functionals dependencies6

fπ (Z, N ) = CπAαπ , fν (Z, N ) = CνAαν , (13)

fπ (Z, N ) = CπZαπ , fν (Z, N ) = CνNαν , (14)

6We also investigated functional dependencies of the fi(Z, N ) =
CieαiN eβiZ and fi(Z, N ) = Cieαi[N/(N+Z )]eβi[Z/(N+Z )] (i = π, ν ) types
which depend on three parameters: Ci, αi, and βi. These expressions
represent the generalization of Eqs. (16) and (17) which depend on
two parameters. However, the addition of a third parameter improves
the goodness of fit only marginally as compared with that obtained
with two parameters in Table I and thus does not offer substantial
benefits in the light of existing limitations of the method. As a
consequence, they are not considered in further discussion.

034310-9



S. TEETI AND A. V. AFANASJEV PHYSICAL REVIEW C 103, 034310 (2021)

TABLE I. The parameters of global functional dependencies (see text for details) defined by the fits to the sets of “measured+estimated”
and “measured” scaling factors. The standard nonlinear least squares fitting is employed here. The bold style is used for RMSE of the best fit
in each group of functional dependencies.

Measured+estimated Measured

Ci αi RMSE Ci αi RMSE
1 2 3 4 5 6 7

fπ = Cπ Aαπ 1.529 −0.0672 0.0549 1.528 −0.0669 0.0550
fπ = Cπ Zαπ 1.455 −0.0695 0.0554 1.455 −0.0690 0.05536
fπ = Cπ |N − Z|απ 1.256 −0.04367 0.0567 1.256 −0.0433 0.0569
fπ = Cπ eαπ |N−Z| 1.176 −0.0025 0.0566 1.178 −0.00259 0.0569
fπ = Cπ eαπ [|N−Z|/(N+Z )] 1.156 −0.264 0.0685 1.154 −0.244 0.0685

fν = CνAαν 1.388 −0.0503 0.0614 1.404 −0.0524 0.0592
fν = CνNαν 1.369 −0.0536 0.0594 1.382 −0.0554 0.0572
fν = Cν |N − Z|αν 1.249 −0.0471 0.0529 1.253 −0.0478 0.0511
fν = Cνeαν |N−Z| 1.154 −0.0024 0.0561 1.159 −0.00255 0.0548
fν = Cνeαν [|N−Z|/(N+Z )] 1.192 −0.551 0.0577 1.191 −0.535 0.0578

fπ (Z, N ) = Cπ |N − Z|απ , fν (Z, N ) = Cν |N − Z|αν , (15)

fπ (Z, N ) = Cπeαπ |N−Z|, fν (Z, N ) = Cνeαν |N−Z|, (16)

fπ (Z, N ) = Cπeαπ
|N−Z|
N+Z , fν (Z, N ) = Cνeαν

|N−Z|
N+Z (17)

in order to see whether mass, particle number, and isospin
dependencies can be disentangled. Here the indices π and ν

stands for proton and neutron quantities, respectively. Sepa-
rate scaling factors for proton and neutron subsystems reflect
explicit breaking of the isospin symmetry in the pairing en-
ergy functional, which is standard in nearly all pairing forces
(see, for example, Refs. [39,40,88]).

The functional dependencies given by Eqs. (13)–(17) are
determined by means of nonlinear least-squares fitting to the
set of proton and neutron scaling factors presented in Figs. 5
and 6. Note that we eliminate from this data set the scal-
ing factors for N = Z since they show enhanced values as
compared with neighboring nuclei [see Figs. 5(a) and 6(a)].
This enhancement is due to Wigner energy which affects
both binding energies of the N = Z nuclei and related pairing
indicators. These features are also a reason why in functional
dependencies including isospin we use |N − Z| instead of
(N − Z ). However, only a few scaling factors are available
for light nuclei on the proton-rich side of the N = Z line [see
Figs. 5(a) and 6(a)] for which (N − Z ) < 0. Thus, in general,
the impact of modulus in |N − Z| on the quality of the fit is
expected to be small.

The fitting is performed by Curve Fitting ToolboxTM soft-
ware of MATLAB. The goodness of fit is defined by root
mean squared error (RMSE). The main disadvantage of least
squares fitting is its sensitivity to outliers. Outliers can have
a large influence on the fit because squaring the residuals
magnifies the effects of these extreme data points. Thus, in
addition to standard nonlinear least squares fitting we also
employ robust nonlinear least squares fitting with bisquare
width regression scheme. This scheme minimizes a weighted
sum of squares, where the weight given to each data point
depends on how far the point is from the fitted line. The points
located near the line get full weight and the points farther from

the line obtain reduced weight. The points that are farther from
the line than would be expected by random chance get zero
weight.

The results of these fits are presented in Tables I, II, and
III. One can see that the parameters and the goodnesses of fit
depend very little on whether “measured+estimated” or only
“measured” scaling factors are used (see Table I). The RMSEs
are almost the same in the proton subsystem for the fits to both
sets of data but in the neutron subsystem they slightly increase
when going on from the fit to only “measured” scaling factors
to the fit which includes “measured+estimated” ones. Thus,
in the following discussion we will consider only the fits to
“measured+estimated” scaling factors in order to have access
to the larger set of data with high isospin.

For the proton subsystem, the best fit is obtained for
functional dependence of Eq. (13) (see Table I). Figure 7(a)
compares the distribution of scaling factors as a function of
mass number A with a fitted curve. They both show a general

TABLE II. The same as Table I but for the case of robust non-
linear least square fitting based on the bisquare width regression
scheme. Note that only “measured+estimated” scaling factors are
used in the fit. The RMSEs from column 4 of the Table I are shown
in column 5 [labeled as RMSE(A)].

Ci αi RMSE RMSE(A)
1 2 3 4 5

fπ = Cπ Aαπ 1.555 −0.0706 0.0515 0.0549
fπ = Cπ Zαπ 1.471 −0.0722 0.0529 0.0554
fπ = Cπ |N − Z|απ 1.248 −0.0421 0.0513 0.0567
fπ = Cπ eαπ |N−Z| 1.169 −0.00235 0.0491 0.0566
fπ = Cπ eαπ [|N−Z|/(N+Z )] 1.167 −0.358 0.0596 0.0685

fν = CνAαν 1.36 −0.0462 0.0598 0.0614
fν = CνNαν 1.355 −0.0511 0.0582 0.0594
fν = Cν |N − Z|αν 1.24 −0.0446 0.0501 0.0529
fν = Cνeαν |N−Z| 1.147 −0.00216 0.0521 0.0561
fν = Cνeαν [|N−Z|/(N+Z )] 1.19 −0.573 0.0485 0.0577
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FIG. 7. Proton [ fπ (Z, N )] and neutron [ fν (Z, N )] scaling factors as a function of mass number A. Open circles, squares, and diamonds are
used for spherical, transitional, and deformed nuclei, respectively. Top panels include all available scaling factors, while bottom panels show
only those for the nuclei with Z > 20, N > 20. Solid green lines correspond to global functional dependencies given by Eqs. (13) with the
parameters from Table I for top panels and from Table III for bottom panels.

trend of the decrease of scaling factors with increasing mass
number. In addition, the oscillations of the scaling factors,
averaged for a given range of A, with respect to the fitted curve

TABLE III. The same as Table II but for the case when light
nuclei with N < 20 and Z < 20 are excluded from consideration.
The RMSEs from column 4 of the Table II are shown in column 5
[labeled as RMSE(B)).

C α RMSE RMSE(B)
1 2 3 4 5

fπ = Cπ Aαπ 1.578 −0.0739 0.0496 0.0515
fπ = Cπ Zαπ 1.458 −0.0699 0.0504 0.0529
fπ = Cπ |N − Z|απ 1.242 −0.0406 0.0502 0.0501
fπ = Cπ eαπ |N−Z| 1.165 −0.00226 0.0476 0.0491
fπ = Cπ eαπ [|N−Z|/(N+Z )] 1.163 −0.353 0.0564 0.0596

fν = CνAαν 1.360 −0.0462 0.0574 0.0598
fν = CνNαν 1.355 −0.0510 0.0557 0.0582
fν = Cν |N − Z|αν 1.237 −0.0438 0.0479 0.0501
fν = Cνeαν |N−Z| 1.145 −0.00212 0.0503 0.0521
fν = Cνeαν [|N−Z|/(N+Z )] 1.192 −0.595 0.0462 0.0485

as a function of mass number are clearly visible, especially for
spherical and transitional nuclei. The largest spread of scaling
factors from fitted curves are seen for the light nuclei. This is
not surprising considering the fact that these nuclei are soft
in deformation degrees of freedom so that the correlations be-
yond mean field are expected to play an enhanced role in their
structure. For this reason also the quality of mass description
in light nuclei in the CDFT is also lower than in medium and
heavy mass regions (see Ref. [36]). Comparable to Eq. (13),
goodness of fit is obtained also with functional dependencies
given by Eqs. (14), (15), and (16) (see Table I). The quality
of the fit and the spreads of scaling factors with respect of the
fitted curve are illustrated by the example of the functional
dependence of fπ (Z, N ) = Cπeαπ |N−Z| type in Fig. 8. There
is a general trend of the decrease of the fitted fπ curve and
individual scaling factors with the increase of isospin factor
|N − Z|. The largest spread of the scaling factors with respect
of the fitted curve is observed at low isospin. The worst fit
of proton scaling factors is provided by the functional depen-
dence of Eq. (17) (see Table I) and Fig. 9(a)).

It is interesting to see how these conclusions will be
modified if the least reliable data points are excluded from
consideration. These are typically the points (outliers) which
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FIG. 8. The same as Fig. 7 but as a function of isospin factor |N − Z|. Solid green lines correspond to global functional dependencies given
by Eqs. (15) with the parameters from Table I for top panels and from Table III for bottom panels.

are located far away from the fitted curve. They can be caused,
for example, by the limitations of the mean field approxi-
mation and the neglect of beyond mean field effects. These
effects are expected to be especially important in light nu-
clei or for the pairing indicators, the determination of which
involves two types of the nuclei (for example, transitional
and deformed ones). Table II shows how the RMSEs are
modified when robust nonlinear least squares fitting based on
the bisquare width regression scheme is used instead of the
standard one. One can see that in all cases it improves RMSEs.
The fitting protocol based on the fπ (Z, N ) = Cπ eαπ |N−Z| func-
tional dependence becomes the best, and is closely followed
by the functional dependences of Eqs. (13), (14), and (16).
The exclusion of light nuclei leads to further improvement in
the RMSEs (see Table III) but does not modify the conclusions
obtained based on the results of Table II. Figures 7(c), 8(c),
and 9(c) compare fitted curves based on the parameters of
Table III with the distribution of respective individual scaling
factors. One can see that in all cases the number of outliers
is decreasing drastically [as compared with Figs. 7(a), 8(a)
and 9(a)] and the distribution of individual scaling factors
becomes more condensed around the fitted curve.

Similar features have also been observed for the neutron
subsystem. The majority of outliers are produced again by the

light nuclei [compare Figs. 7(d), 8(d), and 9(d) with Figs. 7(b),
8(b), and 9(b)] and their removal leads to the improvement of
goodness of fit (compare Tables II and III). Robust nonlinear
least squares fitting based on the bisquare width regression
scheme improves RMSEs in all fits as compared with the
standard one (compare Tables I and II). However, the principal
difference as compared with the proton subsystem is the fact
that isospin dependence (in one or another form) of neutron
scaling factors is substantially favored as compared with the
mass or neutron number dependences given by Eqs. (13)
and (14) in all fits. The best RMSEs are provided either by
the fν (Z, N ) = Cν |N − Z|αν (Table I) or by the fν (Z, N ) =
Cνeαν

|N−Z|
N+Z (Tables II and III) functional dependencies. How-

ever, in the light of their closeness in terms of RMSEs and
the approximations used in this study it is impossible to give
a clear preference to one or another.

The present study clearly favors the functional dependen-
cies of scaling factors (and, thus of pairing interaction) which
depend on the isospin in neutron subsystem. The situation
is more mixed in the case of the proton subsystem since
functional dependencies of scaling factors on mass/particle
numbers produce RMSEs which are only slightly above those
produced by functional dependencies which include isospin.
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FIG. 9. The same as Fig. 7 but as a function of isospin factor I = |N−Z|
N+Z . Solid green lines correspond to global functional dependencies

given by Eqs. (17) with the parameters from Table I for top panels and from Table III for bottom panels.

The origin of this feature is not completely clear. However,
the possible origin could be related to the fact that the RPA
neutron-proton pair-vibrational correlation energy is expected
to decrease numerically with increasing neutron excess due to
an increasing mismatch of the occupations of single-neutron
and single-proton levels (see Ref. [82]). This could lead to
more pronounced isospin dependence of neutron pairing as
compared with the proton one.

To our knowledge, the isospin dependence of the Gogny
pairing interaction in the Gogny DFT has not been studied
so far. The isospin dependence of pairing interaction has been
revealed by several global studies in the framework of Skyrme
DFT (see Refs. [43,44]). However, it is necessary to point out
that the isoscalar-density dependence used in these works is
phenomenological and it is not motivated by any arguments
based on the microscopic theory of effective interaction [44].

In the light of substantial differences in the scaling factors
of spherical and deformed nuclei within the given region of
the nuclear chart discussed above it is interesting to repeat
the analysis but with the restriction to only scaling factors
defined in deformed nuclei. The results of such analysis are
summarized in Table IV. One can see that the exclusion of
spherical and transitional nuclei from the fitting leads to a

substantial improvement in RMSEs (compare Table IV with
Table I). This is especially the case for proton functional
dependencies which on average improve by approximately
25% with the best (≈30%) and worst (≈10%) improvements
provided by the fπ (Z, N ) = CπAα and fπ (Z, N ) = Cπeαπ

|N−Z|
N+Z

functional dependencies. The improvements in RMSEs are
smaller in the neutron subsystem, with an average improve-
ment over the set of considered functional dependencies being
on the level of ≈14%. The best improvements (around 20%)
are achieved for the fν (Z, N ) = Cν |N − Z|αν and fν (Z, N ) =
Cνeαν

|N−Z|
N+Z functional dependencies. The exclusion of light

nuclei with Z < 20 and N < 20, which are expected to be
significantly affected by beyond mean fields effects, leads
to further improvement in the RMSEs (see Table IV) and
this effect is especially pronounced in the standard nonlinear
least squares fit. One should also note that the restriction to
deformed nuclei reduces the impact of outliers. This is seen in
the fact that the transition from standard to robust fit does not
always reduce RMSEs; this feature is especially pronounced
for the set which excludes light nuclei.

Despite all these changes, the general conclusions obtained
for the full set of data on scaling factors including different
types of nuclei are not affected by the transition to data which
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TABLE IV. The parameters of global functional dependencies defined by the fits to the set of “measured+estimated” scaling factors. Note
that in this fit only scaling factors defined from deformed nuclei are used. Both the standard (labeled as “Standard fit”) and robust (labeled as
“Robust fit”) nonlinear least squares fits are used here. The results of the fits are presented in the “A/B” format. Here “A” corresponds to the
results of the fit to the set of data including all scaling factors of deformed nuclei, while “B” corresponds to the ones which exclude all light
nuclei with Z < 20 and N < 20. Bold style is used for RMSE of the best fit in each group of functional dependencies.

Standard fit Robust fit

Ci αi RMSE Ci αi RMSE
1 2 3 4 5 6 7

fπ = Cπ Aαπ 1.801/1.840 −0.0992/−0.1030 0.0364/0.0349 1.792/1.877 −0.0980/−0.1072 0.0373/0.0361
fπ = Cπ Zαπ 1.646/1.671 −0.0983/−0.1019 0.0392/0.0386 1.642/1.684 −0.0978/−0.1039 0.0409/0.0400
fπ = Cπ |N − Z|απ 1.323/1.289 −0.0589/−0.0518 0.0434/0.0355 1.315/1.296 −0.0576/−0.0535 0.0387/0.0356
fπ = Cπ eαπ |N−Z| 1.201/1.180 −0.0031/−0.0026 0.0434/0.0335 1.187/1.178 −0.00279/−0.0026 0.0379/0.0348
fπ = Cπ eαπ [|N−Z|/(N+Z )] 1.163/1.188 −0.3050/−0.4870 0.0651/0.0459 1.190/1.189 −0.4970/−0.5020 0.0511/0.0473

fν = CνAαν 1.465/1.414 −0.0603/−0.0533 0.0531/0.0501 1.482/1.414 −0.0626/−0.0534 0.0531/0.0513
fν = CνNαν 1.444/1.410 −0.0644/−0.0592 0.0506/0.0481 1.474/1.421 −0.0688/−0.0608 0.0503/0.0490
fν = Cν |N − Z|αν 1.283/1.256 −0.0538/−0.0474 0.0420/0.0393 1.282/1.264 −0.0535/−0.0495 0.0406/0.0388
fν = Cνeαν |N−Z| 1.084/1.147 −0.0376/−0.0021 0.0481/0.0425 1.082/1.145 −0.0330/−0.0020 0.0433/0.0417
fν = Cνeαν [|N−Z|/(N+Z )] 1.084/1.209 −0.0378/−0.673 0.0474/0.0347 1.077/1.208 −0.0395/−0.6740 0.0370/0.0352

are based only on deformed nuclei. In the neutron subsys-
tem, the fν (Z, N ) = Cν |N − Z|αν and fν (Z, N ) = Cνeαν

|N−Z|
N+Z

functional dependencies are still favored over other types of
functional dependencies and there is still no way to give
a clear preference to one or another. In the proton subsys-
tem, the best description of the data is still provided by
two competing functional dependencies of fπ (Z, N ) = Cπ Aα

and fπ (Z, N ) = Cπeαπ
|N−Z|
N+Z types, which have different depen-

dence on the isospin.

V. EXTRAPOLATION TO VERY NEUTRON-RICH NUCLEI

It is important to evaluate the evolution of expected uncer-
tainties in the predictions of pairing properties with increasing
neutron number N and approaching the neutron drip line. For
this purpose we selected the Yb isotope chain in which such
evolution has been studied for different classes of CEDFs for
constant fπ = fν = 1.075 in Ref. [89].

Figure 10 compares the variations of neutron and proton
scaling factors as a function of neutron number N for dif-
ferent functional dependencies studied in the present paper.
For the neutron subsystem, the best RMSEs are provided
by fν (Z, N ) = Cνeαν

|N−Z|
N+Z and fν (Z, N ) = Cν |N − Z|αν func-

tional dependencies (see Tables I, II, and III). However, the
preference of one over another depends on whether the stan-
dard or robust nonlinear least squares fitting is used and
whether light nuclei are excluded from consideration. While
neutron scaling factors obtained with these two dependen-
cies are similar (within the accuracy of the present method)
for experimentally known nuclei, they differ substantially for
very neutron-rich nuclei. The scaling factors defined by the
fν (Z, N ) = Cνeαν

|N−Z|
N+Z functional dependence show significant

reduction on approaching the neutron drip line, while those
based on fν (Z, N ) = Cν |N − Z|αν reveal smaller decrease.
The total reductions of the scaling factors on going on from
N = 78 to N = 180 are 20.2% and 10.7% for these two types

of functional dependencies. The functional dependencies of
the fν (Z, N ) = Cνeαν |N−Z|, fν (Z, N ) = CνAαν , and fν (Z, N ) =
CνNαν types provide less accurate fits (see Tables I, II, and
III). In the Yb isotopes, the first one provides scaling fac-
tors which are very similar to those obtained by fν (Z, N ) =
Cνeαν

|N−Z|
N+Z , while the last two deliver neutron scaling factors

which only weakly decrease with increasing neutron num-
ber and which are close to the constant fν = 1.075 used
in Ref. [89].

The situation is more complex in the proton subsystem
because, in contrast to the neutron one the functional depen-
dencies which include isospin do not get a clear preference
over those which depend on mass or proton numbers (see
Tables I, II, and III). As a consequence, the two best (in terms
of RMSEs) functional dependencies, namely, fπ (Z, N ) =
Cπeαπ |N−Z| and fπ (Z, N ) = CπAαπ provide drastically differ-
ent predictions for evolution of proton scaling factors as a
function of neutron number [see Fig. 10(b)]. The former one
shows drastic decrease of fπ with increasing neutron number,
while the latter one is characterized by only modest decrease
with an average value close to the constant fπ = 1.075 used in
Ref. [89]. The least accurate functional dependencies given by
Eqs. (15) and (17) provide predictions located between these
two cases [see Fig. 10(b)]. The fπ (Z, N ) = CπZαπ functional
dependence provides an N-independent fπ value which is
close to the fπ = 1.075 one used in Ref. [89].

Table V shows proton and neutron scaling factors and pair-
ing gaps in the very neutron-rich 240Yb nucleus, located in the
vicinity of the two-neutron drip line, calculated with different
functional dependencies for scaling factors. In the neutron
subsystem, the two best functional dependencies given by
fν (Z, N ) = Cν |N − Z|αν and fν (Z, N ) = Cνeαν

|N−Z|
N+Z provide

predictions for neutron scaling factors which differ by ≈8%.
This results in neutron pairing gaps which differ by more
than 30%. Note, however, that these two functional depen-
dencies predict neutron scaling factors and pairing gaps which
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FIG. 10. The variations of neutron and proton scaling factors as a function of neutron number N in the Yb (Z = 70) isotopes. Functional
dependencies of Eqs. (13)–(17) are given here in inset with the parameters defined in Table III. The pairs of functional dependencies with
the best and worst RMSEs are shown by thick solid and thin dashed lines. The dot-dashed thin line is used for the functional dependence
located (in terms of RMSE) in between of these pairs. Vertical orange dashed lines are used to indicate the span of neutron numbers for which
experimental information on binding energies are available in the Yb isotopes.

are substantially lower than those obtained by functional de-
pendencies with scaling factors dependent either on mass or
particle numbers. As discussed above, the situation is more
complex in the proton subsystem where our analysis cannot
reveal a clear preference for functional dependence of proton
scaling factors. This is also seen in Table V which shows
that two best dependencies given by fπ (Z, N ) = Cπeαπ |N−Z|
and fπ (Z, N ) = CπAαπ provide quite drastic differences in the
predicted values of proton scaling factors and pairing gaps
in 170Yb.

TABLE V. Proton and neutron scaling factors and pairing gaps
(�π

uv and �ν
uv) in the 240Yb nucleus calculated with indicated func-

tional dependencies. The fi = const(Z ) = 1.075 values are scaling
factors used for the Yb isotopes in Ref. [89]. The results obtained
with two best and two worst (in terms of RMSEs of Table III)
functional dependencies for scaling factors are shown by bold and
italic values respectively.

fπ �π
uv fν �ν

uv

1 2 3 4 5

fi = const(Z ) 1.075 1.519 1.075 1.373
fi = CiAαi 1.052 1.400 1.056 1.279
fπ = Cπ Zαπ or fν = Cν (N )αν 1.083 1.567 1.042 1.215
fi = Ci|N − Z|αi 1.030 1.272 1.011 1.042
fi = Cieαi |N−Z| 0.929 0.764 0.926 0.704
fi = Cieαi[|N−Z|/(N+Z )] 1.004 1.155 0.930 0.720

These uncertainties in proton and neutron pairing at high
isospin could have some impact on the predicted location
of the two-neutron drip line (see Ref. [89]) and substantial
impact on the heights of fission barriers of neutron-rich nu-
clei. The latter sensitively depend on the strength of pairing
interaction (see Ref. [13]) and the reduction of only neutron
pairing at high isospin (similar to the one seen in 170Yb)
could increase the static fission barriers by approximately 1
MeV. This could have a significant effect on the r process in
actinides and superheavy nuclei (see discussion in Ref. [63]).

VI. CONCLUSIONS

A systematic global investigation of pairing properties
based on all available experimental data on pairing indicators
has been performed for the first time in the framework of
covariant density functional theory. It is based on separable
pairing interaction of Ref. [58] and covariant energy density
functional NL5(E) [32]. The main results can be summarized
as follows:

(1) The optimization of functional dependencies of proton
and neutron scaling factors has been performed across
the experimentally known nuclear chart. It clearly re-
veals isospin dependence of neutron pairing with the
forms of neutron scaling factors fν (Z, N ) = Cνeαν

|N−Z|
N+Z

and fν (Z, N ) = Cν |N − Z|αν providing the best and
comparable descriptions of experimental data. The sit-
uation is less clear in the proton subsystem since two
best (and comparable in terms of the description of
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experimental data) functional dependencies, namely,
fπ (Z, N ) = Cπeαπ |N−Z| and fπ (Z, N ) = CπAαπ , differ
drastically with respect of the impact of isospin. The
direct comparison of theoretical and experimental pair-
ing indicators extracted from binding energies may
help to resolve these uncertainties. However, there is
no guarantee that this can be achieved at the mean field
level because of potential impact of beyond mean field
effects on the binding energies.

(2) The differences in the functional dependencies of
scaling factors lead to uncertainties in the prediction
of proton and neutron pairing properties which are
expected to become especially pronounced at high
isospin. They are expected to have some impact on
the predicted location of the two-neutron drip line (see
Ref. [89]). However, even higher impact is expected on
physical observables which extremely sensitively de-
pend on the pairing. These are the moments of inertia
of rotational bands (see Refs. [9,10]) and the heights
of fission barriers (see Ref. [13]). For example, the
reduction of only neutron pairing at high isospin (sim-
ilar to the one seen in 170Yb) could increase the static
fission barriers by approximately 1 MeV and have a
significant effect on fission cycling in the r process in
actinides and superheavy nuclei (see the discussion in
Ref. [63]).

(3) Our analysis reveals that in a given part of nuclear
chart the scaling factors for spherical nuclei are smaller
than those for deformed ones. This result is similar
to the ones obtained earlier in nonrelativistic Skyrme
and Gogny DFTs (see Refs. [40,47]. Thus, its origin
has to be traced back to missing physics which is ne-
glected in all three approaches. The particle-vibration
coupling in odd-mass nuclei is the most likely source
of such physics. It is well known that it increases the
binding energies of odd-A nuclei (see Refs. [76,78])
but does not have an impact on binding energies of
even-even nuclei. As a consequence, when extracted
from experimental binding energies (which by default
include PVC effects), the pairing indicators are re-
duced as compared with those which do not include
PVC effects. This effect is especially pronounced in
spherical nuclei. Since scaling factors fν and fπ are
fitted to experimental pairing indicators, this leads to
a suppression of scaling factors in spherical nuclei as
compared with the ones in deformed nuclei.

(4) The present analysis is based on the NL5(E) CEDF
which is similar in structure to well known NL3 and
NL3* functionals but provides better description of
the ground state properties on a global scale [32].
However, it is reasonable to expect that the results
about functional dependencies of scaling factors for
separable pairing interaction will also be valid for the
majority of CEDFs built at the Hartree level, such
as those used in global studies of Refs. [36,68,90].
This is due to the fact that all of them have low

Lorentz effective masses and thus similar densities of
the single-particle states in the vicinity of the Fermi
levels as well as similar evolution of these states as a
function of particle numbers across the nuclear chart
(see Refs. [48,75,87,89]).

The need for optimization of separable pairing interac-
tion of Ref. [58] across the nuclear chart should not be that
surprising. First of all, there is no microscopic theory of
pairing which would provide the required form and strength
of pairing for the CDFT calculations. The discussion on
the use of the same interaction in the particle-particle and
particle-hole channels is still ongoing but this issue is still
dependent on the point of view of the DFT practitioners (see,
for example, the discussion in Sec. 2.1 of Ref. [49] and in
Sec. 2.1 of Ref. [9]). The common stance in the CDFT and
in nonrelativistic Skyrme DFT is that there is no fundamental
reason to have the same interaction in both the particle-hole
and particle-particle channels because of the use of effec-
tive forces. Thus, the Gogny D1S force was adopted in the
1990s for CDFT applications [9,54] and later replaced by the
less numerically demanding separable pairing interaction of
Ref. [58]. Some differences between the CDFT calculations
with the Gogny D1S force in the pairing channel and Gogny
DFT calculations are expected, but interestingly enough they
are not that significant (see the discussion in Refs. [12,48,70]).

Although the Gogny force is considered as a benchmark for
effective pairing forces [49], it is unclear how well this force
performs globally even in the Gogny DFT framework when
theoretical and experimental pairing indicators extracted from
binding energies are confronted. This is because of the ab-
sence of such global studies. One should also remember that
the calibration of the matrix elements of the Gogny D1S
force in the pairing channel has been based on OES in tin
isotopes [51] and the description of pairing indicators de-
viate appreciably from experimental data in some isotopic
chains calculated in Ref. [47]. Thus, the Gogny D1S force
to which the separable pairing interaction of Ref. [58] has
been fitted should in no way be considered as a force op-
timized in the pairing channel especially in the context of
CDFT studies. For example, nonuniqueness of the defini-
tion of the pairing channel by different Gogny forces is
seen in the calculations of rotational properties of superde-
formed bands of the A ≈ 190 mass region in the CDFT
framework [9]. The present approach improves the description
of the pairing by separable interaction of Ref. [58] based
on the D1S Gogny force by introducing phenomenological
isospin and particle/mass dependencies of the strength of this
interaction.
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