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We systematically study the nuclear level densities of superheavy nuclei, including odd systems, using the
single-particle energies obtained with the Woods-Saxon potential diagonalization. We applied minimization over
many deformation parameters for the global minima-ground states, and the “imaginary water flow” technique on
a many-deformation energy grid for the saddle points, including nonaxial shapes. The level density parameters
are calculated by fitting the obtained results with the standard Fermi gas expression. The total potential
energy and shell correction dependencies of the level-density parameter are analyzed at the ground state and
saddle point. These parameters are compared with the results of a phenomenological approach. As shown, this
expression should be modified for the saddle points, especially for small excitation energy. The ratio of the
level-density parameter at the saddle point to that at the ground state is shown to be crucial for the survival
probability of a heavy nucleus.
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I. INTRODUCTION

Considerable progress in the experimental synthesis of new
superheavy nuclei has been achieved recently [1,2], and fur-
ther experiments on producing heavier elements are planned
with the constructed new “superheavy factory” at the Joint
Institute for Nuclear Research (JINR). The success in produc-
tion of superheavy nuclei mainly depends on how strongly
a hot compound nucleus, created in a complete fusion re-
action, is opposed to the fission process. Thus, the survival
probability, which takes into account the competition between
neutron emission and fission, plays an important role in the
formation of evaporation residues. The relative importance of
these two decay modes mainly depends on the corresponding
level densities. To estimate which of the decay processes wins
this competition, one should know the level densities at the
ground states and at the fission saddle points. Moreover, the
hight and position of the saddle point are crucial for estimation
of survival probability of an excited compound nucleus.

To calculate level densities, one can determine all eigen-
values, with their degeneracy, of the nuclear Hamiltonian and
then count how many of them are in the energy interval
of interest. Because the total number of states exponentially
increases with excitation energy above several MeV, the prob-
lem becomes treatable only statistically. There are a number
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of sophisticated combinatorial methods to do this; see for
example Refs. [3,4] where the parity, angular momentum,
pairing correlations, as well as collective enhancements are
explicitly treated based on the Gogny interaction. As shown
in Ref. [5], there is a general and exact scheme to calculate
the particle-hole level densities for an arbitrary single-particle
Hamiltonian taking into account the Pauli exclusion principle.
The role of microscopic level densities during the fission
process and their effect on the evolution of the nuclear shapes
and on the distribution of excitation energies can be found
in [6–9]. Nuclear level densities calculated within the rela-
tivistic mean-field theory are shown in [10]. Single-particle
level densities for various temperatures using a self-consistent
mean-field aproach are determined in [11] while in [12] level
density parameters are calculated with help of the Yukawa-
folded potential. The spin- and parity-dependent shell-model
nuclear level densities obtained with the moment method in
the proton-neutron formalism are presented in Ref. [13]. Di-
rect microscopic calculation of nuclear level densities in the
shell model Monte Carlo approach is presented in Ref. [14].
In practical applications we still must use a number of ap-
proximations and assumptions, and even corrections such as
superfluidity effect or collective rotational and vibrational en-
hancement.

Ultimately, the most important value in practical appli-
cations is the empirical level-density parameter a, which is
studied in this article. One should remember that the level
density at the saddle is not the same as that at the ground state.
Indeed, the energy available for occupation of the levels at the
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saddle point is lowered by the difference in the deformation
energy between the saddle and ground states. Another reason
is that the single-particle levels are distributed differently due
to the change of geometrical shape of the compound nucleus.
It is therefore crucial to find the right saddle point that governs
the fission process. To find all saddle points on energy hyper-
cube and than choose the proper one between them is quite a
demanding task.

Based on the fact that going from low to higher energies
the nuclear system reverts from a paired system to a system of
noninteracting fermions, one can successfully describe it with
the well-known Fermi-gas model. In this phenomenological
model, the pairing effect is taken into account with a constant
parameter �. In the Fermi-gas model, the average value of
the level-density parameter, which establishes the connec-
tion between the excitation energy and nuclear temperature,
is often assumed to depend linearly on the mass number A
[15]. In real situation, the level-density parameter is energy
dependent and gradually reaches an asymptotic value with
increasing energies above the neutron separation energy. The
phenomenological expression was introduced in Ref. [16] to
determine the energy and shell correction dependencies of the
level-density parameter.

The main goal of this paper is to combine the state-of-
the-art methods: the imaginary water flow technique on a
many-deformation space for saddles and multidimensional
minimization for ground states with the statistical approach
for calculation of level-density parameters at those extreme
(saddle and minima) points. We use the BCS model to cal-
culate the intrinsic level densities of superheavy nuclei with
Z = 112, 114, 116, 117, 118, and 120. As is known, this
formalism is successful in description of nuclear quantities
such as level density and isomeric ratio [17]. The ratio of
the level density parameter at the saddle point to that at the
ground state is important to calculate the survival probability
of an excited heavy nucleus. This ratio will be considered with
the energy dependence of neutron emission probability from
excited heavy and superheavy nuclei.

II. METHOD OF CALCULATION

We apply a two-step approach for level calculation. In the
first step, using the macroscopic-microscopic (MM) method,
we determine all necessary minima and saddle points. The
minima are calculated by using multidimensional minimiza-
tion while the saddle points by applying the imaginary water
flow technique (IWF) on multidimensional energy grids. In
the second stage, we use the statistical formalism allowing
us to estimate the level-density parameters at these extreme
points, employing the deformed single-particle spectra. Hav-
ing these results, competition between fission and neutron
emission is evaluated.

A. Ground states and saddle points

To calculate the potential energy surfaces, the MM method
is used. In the frame of this method the microscopic energy
is calculated by applying the Strutinski shell and pairing cor-
rection method [18] with the single-particle levels obtained

after diagonalization of the deformed Woods-Saxon potential
[19]. The np = 450 lowest proton levels and nn = 550 lowest
neutron levels from the Nmax = 19 lowest shells of the har-
monic oscillator are taken into account in the diagonalization
procedure. The standard values of h̄ω0 = 41/A1/3 MeV for the
oscillator energy and γ = 1.2h̄ω0 for the Strutinski smearing
parameter, and a six-order correction polynomial are used in
the calculation of the shell correction. For the macroscopic
part, we use the Yukawa plus exponential model [20] with the
parameters specified in Ref. [21]. The deformation dependent
Coulomb and surface energies are integrated by using the
64-point Gaussian quadrature.

For nuclear ground states, based on our previous tests and
results [22–24], we confined our analysis to axially symmetric
shapes parametrized by spherical harmonics expansion of the
nuclear radius truncated at β80 :

R(ϑ ) = cR0{1 + β20Y20 + β30Y30 + β40Y40

+β50Y50 + β60Y60 + β70Y70 + β80Y80}, (1)

where the dependence of spherical harmonics on ϑ is sup-
pressed and c is the volume-fixing factor depending on
deformation. In this case, the energy is minimized over seven
degrees of freedom specified in (1), by using the conjugate
gradient method. To avoid falling into local minima, the min-
imization is repeated dozens of times for each nucleus, with
randomly selected starting deformations. For odd systems, the
additional minimization over configurations is performed at
every step of the gradient procedure.

Triaxial and mass-asymmetric deformations are included
and the IWF method is used for finding the saddles. This
allows us to avoid errors inherent in the constrained mini-
mization approach [25–28]. This very efficient technique in
the study of fission barriers was first applied in Ref. [29].
To find saddles, the energy for each nucleus is calculated on
the five-dimensional (5D) deformation grid and then fivefold
interpolated in each dimension for the IWF search.

So, in order to find the proper first saddle point we use
a five-dimensional deformation space, with the expansion of
the nuclear radius

R(ϑ, ϕ) = cR0

{
1 + β20Y20 + β22√

2
[Y22 + Y2−2]

+β40Y40 + β60Y60 + β80Y80

}
, (2)

where the quadrupole nonaxiality β22 is explicitly included.
For each nucleus we generate the following 5D grid of defor-
mations:

β20 = 0.00 (0.05) 0.60,

β22 = 0.00 (0.05) 0.45,

β40 = −0.20 (0.05) 0.20, (3)

β60 = −0.10 (0.05) 0.10,

β80 = −0.10 (0.05) 0.10

of 29 250 points (nuclear shapes); the numbers in the paren-
theses specify the grid steps. Additionally, for odd and
odd-odd nuclei, at each grid point we look for low-lying
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configurations blocked by particles on levels from the tenth
below to the tenth above the Fermi level. Then, our primary
grid (3) was extended by the fivefold interpolation in all di-
rections. Finally, we obtained the interpolated energy grid of
more than 5 × 106 points. To find the first saddles on such a gi-
ant grid, we use the IWF method (see, e.g., [30,31]). The most
important properties of both ground states and saddle points
of heaviest nuclei with 98 < Z < 126 and 134 < N < 192,
obtained within our MM method, have been collected recently
in extended tables of Ref. [32].

B. Level-density parameters

Based on the superconducting formalism [33], the con-
stants (GN and GZ ) of the pairing interaction for neutrons and
protons are adjusted to obtain the ground-state pairing gaps
(�N and �Z ) of the MM method with the following equations:

N =
∑

k

(
1 − εN,k − λN

EN,k
tanh

βEN,k

2

)
, (4)

2

GN
=

∑
k

1

EN,k
tanh

βEN,k

2
(5)

for neutrons and

Z =
∑

k

(
1 − εZ,k − λZ

EZ,k
tanh

βEZ,k

2

)
, (6)

2

GZ
=

∑
k

1

EZ,k
tanh

βEZ,k

2
(7)

for protons at zero temperature. The quasiparticle energies

EN (Z ),k =
√

(εN (Z ),k − λN (Z ) )2 + �2
N (Z ) are calculated using

the single-particle energies (εN (Z ),k) of the Woods-Saxon po-
tential. Using the obtained values of the pairing constants, the
pairing gaps and chemical potentials (λN (Z )) are determined
by solving Eqs. (4)–(7) at given temperatures (T = 1/β).
Then, setting the obtained values in the following equations,
the excitation energies (U = UZ + UN ), entropies (S = SZ +
SN ), and intrinsic level densities (ρ) are calculated:

EZ,N (T ) =
∑

k

εk

(
1 − εk − λZ,N

Ek
tanh

βEk

2

)
− �2

Z,N

GZ,N
, (8)

UZ,N (T ) = EZ,N (T ) − EZ,N (0), (9)

SZ,N (T ) = 2
∑

k

{
ln[1 + exp(−βEk )] + βEk

1 + exp(βEk )

}
,

(10)

ρ = exp (S)

(2π )
3
2

√
D

, (11)

where D is the determinant of the matrix composed of the
second derivatives of the entropy with respect to β and μ =
βλ. The calculations were repeated using the single-particle
level energies obtained with the Woods-Saxon potential at
the saddle point. In the BCS calculations of the saddle point
the pairing constants were taken from the ground-state re-
sults. Above the critical temperature (Tcr) the pairing gap

vanishes and all thermodynamical quantities revert to those
of a noninteracting Fermi system. Generally, larger density of
states close to the Fermi surface at the saddle point leads to
larger pairing correlation and as a consequence larger value
of the critical temperature in comparison to the ground state.
In the mass region considered, the critical temperatures for
neutrons and protons are up to 0.42 MeV at the ground state
and 0.52 MeV at the saddle point. The corresponding total
excitation energies are Ucr ≈ 5.14 MeV at the ground state
and Ucr ≈ 11.27 MeV (with respect to the ground state) at
the saddle point. Fitting the calculated values of intrinsic level
density at an specified excitation energy with the back-shifted
Fermi gas expression

ρFG(U ) =
√

π

12a
1
4 (U − �)

5
4

exp(2
√

a(U − �), (12)

one can obtain the level density parameter a(U ) as a function
of excitation energy. In the calculations, the energy back-shifts
are taken as � = 24/

√
A, 12/

√
A, and 0 MeV for even-even,

odd, and odd-odd isotopes, respectively. Energy and shell cor-
rection (δEsh) dependencies of the level density parameter can
be described with the following phenomenological expression
[16]:

a(A,U ) = ã(A)

[
1 + 1 − exp[−(U − �)/ED]

U − �
δEsh

]
, (13)

where ED is known as the damping parameter and indicates
how the shell effect in the level-density parameter damps with
increasing U . We would like to emphasise that we obtain the
damping parameter and the asymptotic value ã of the level
density parameter by analyzing the calculated energy depen-
dent level-density parameter with Eq. (13) for each considered
nucleus separately. However, for practical reasons, we also
want to stay at the phenomenological level. To do this one
can find systematics of ã as this value smoothly depends on
the mass number (see Ref. [16])

ã = αA + βA2. (14)

The damping parameter in turn can be approximated as

ED = A1/3/γ0. (15)

Here, α, β, and γ0 are the parameters providing the best fit of
the calculated energy dependent level density parameters in
the nuclei considered.

C. Survival probability

Finally, the most important seems to be the use of this
formalism to estimate the probability of survival of the
synthesized nucleus. The survival probability of heavy and
superheavy nuclei is proportional to the ratio of neutron
emission width (�n) to fission width (� f ) [34]. This ratio is
calculated as

�n

� f
= gA2/3

K0

∫ U−Bn

0 ερGS(U − Bn − ε)dε∫ U−B f

0 ρSP(U − B f − ε)dε
, (16)

where g is the neutron intrinsic spin degeneracy, K0 ≈
10 MeV [34], and Bn and B f are neutron separation energy and

034309-3



A. RAHMATINEJAD ET AL. PHYSICAL REVIEW C 103, 034309 (2021)

4
3 2

2

1

1
1

1

0

0

0

0
0

-1

-1

-1
-1

-1
-2

-2

-2

-2

-2-3
-3

-3

-3
-4 -4

-4

-5-6

0.0  0.1  0.2  0.3  0.4  0.5  0.6

�20

0.0

 0.1

 0.2

 0.3

 0.4

� 2
2

-7

-5

-3

-1

 1

 3

 5
296Lv

gsgs

spsp

FIG. 1. Potential energy landscape projected onto the (β20, β22)
plane for 296Lv. The possible fission path is shown by the dashed line
from the ground state (gs) to the saddle point (sp). Energy (in MeV) is
calculated relative to the macroscopic energy at the spherical shape.

fission barrier height, respectively. Here, ρGS and ρSP are the
level densities calculated at the ground state and saddle point,
respectively. Based on the Fermi gas model, the following
analytical expression of �n/� f can be obtained [34]:

�n

� f
= 4A2/3a f (U − Bn − �n)

K0an
[
2a1/2

f (U − B f − � f )1/2 − 1
]

× exp
[
2a1/2

n (U − Bn − �n)1/2 − 2a1/2
f (U − B f − � f )1/2

]
,

(17)

where � f and �n are the back-shifts in the Fermi gas level
densities at the saddle point and ground state, respectively.
Assuming only neutron emission and fission decay channels,
the neutron emission probability is written as

�n

�tot
= �n/� f

1 + �n/� f
, (18)

and is strongly affected by the ratio

a f

an
= aSP(A,U − B f )

aGS(A − 1,U − Bn)
, (19)

which should be calculated and discussed for the superheavy
nuclei considered.

III. RESULTS AND DISCUSSION

A. Proton and neutron single-particle spectra

As we want to compare the behavior of the level densities
at saddles in relation to that at the ground state, we start
with a description (giving an example) of their determination,
which is crucial for further work. As mentioned in Sec. II, the
determination of the fission barrier in multidimensional space
requires hypercube calculations and application of the IWF
technique on the hypercube. The potential energy surface for
296Lv, as an example, is shown in Fig. 1 on the (β20; β22) plane
obtained by minimizing energy on the five-dimensional grid
(3) with respect to β40, β60, β80. The landscape modification
obtained by including quadrupole nonaxiallity deformation
β22 in (2) is important for the picture of the first saddle points.

FIG. 2. Proton single-particle spectrum along the fission path for
296Lv (see Fig. 1). The Fermi level is indicated by the dotted line.

The strong reduction of axial barrier, by about 2 MeV, due to
this effect is clearly seen on the map. One should keep in mind
that the energy mapping in multidimensional space becomes a
problem. A reduction of dimension via the minimization over
some deformations often leads to an energy surface composed
of disconnected patches, corresponding to multiple minima
in the auxiliary (those minimized over) dimensions. This is
why the real saddle point found with the IWF technique in
full deformation space may be located in a slightly different
place than the one shown in Fig. 1. An example of a fission
path starting from a nearly spherical ground state and ending
on a triaxial saddle point is shown in Fig. 1 by a red dashed
line. Along the fission path the orders of the Woods-Saxon
single-particle levels are shown in Figs. 2 and 3 for protons
and neutrons, respectively. The evolution of the Fermi level
(λp(n)) is traced by black dotted lines in both cases.

Our calculations show that Eq. (13) for a(A,U ) gives a
good agreement with the BCS calculations at the ground state,
in which the values of the shell corrections are significant.
This is fully supported by the single-particle spectra shown in
Fig. 2 for protons and in Fig. 3 for neutrons, from which one
can see the importance of shell effects. First, clearly visible
is a well-known large energy gap for Z = 114 and a much
smaller, although still distinct one for Z = 120 at the ground
states. This obviously contributes to the significant value of
the shell effect in the ground state. When approaching the
saddle point the spectrum becomes more complicated with
a lot of level crossings. However, it is clear that the single-
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FIG. 3. The same as in Fig. 2, but for the neutron single-particle
spectrum.

particle spectrum at the saddle is quite uniform and this is
why the shell correction energy is expected to be rather small.

We obtain an even more complicated picture of single-
particle states after diagonalization of the deformed Woods-
Saxon potential for neutrons. A sufficiently wide energy gap
at N = 184 is confirmed at the ground state. There is smaller
but clear energy gap at N = 178. The single-particle spectrum
is denser for neutrons than that for protons.

B. Level-density parameter

The comparisons of energy dependencies of the level-
density parameter a(A,U ) from the fit of the calculated level
densities with Eq. (12) and those obtained from Eq. (13) are
presented in Fig. 4 for 292Fl, 296Lv, and 300120 nuclei. As
seen, there is a very good agreement of these dependencies
at U � 15 MeV. Analyzing mass number dependence of the
asymptotic level density parameters with Eq. (14), we find
the coefficients α = 0.09 MeV−1, β = 2.89 × 10−5 MeV−1

for the ground state [see Fig. 5(a)]. These values are close to
those obtained in Ref. [35]. Damping parameters calculated
independently for every nuclear systems at the ground states
are shown in Fig. 5(b). Despite the rather scattered nature of
this parameter for use in Eq. (13), one can try still to find a
universal value for ED. As found, the ground-state damping
parameters are in average close to ED ≈ 15 MeV. Our results
in Fig. 5(b) show that in the nuclei considered the value of
ED can be calculated with Eq. (15) taking γ0 = 0.423 MeV−1.
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(c)

FIG. 4. Comparison of energy dependencies of the ground-state
level-density parameters obtained by fitting the calculated level den-
sities (11) with the Fermi-gas expression (12) at the ground state
(solid lines) and those obtained with the phenomenological expres-
sion (13) (dashed lines) for nuclei 292Fl (a), 296Lv (b), and 300120 (c).

This value is close to that obtained in Ref. [36] from the
analysis of neutron resonance densities and low-lying nuclear
levels.

In Fig. 6, the energy dependencies of the saddle-point a
calculated for 292Fl, 296Lv, and 300120 are compared with
the phenomenological model (13). At the saddle point, the
shell corrections are rather small or even close to zero and,
thus, Eq. (13) is unsuitable to describe the calculated val-
ues of a(A,U ). Replacing the pure shell correction, taken
as indicated just from the diagonalization of the deformed
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FIG. 5. (a) Mass number dependence of the asymptotic ground-
state level-density parameter ã(A) obtained with the phenomeno-
logical expression (13) (symbols). The fit of ã(A) with Eq. (14) is
shown by the solid line. (b) The corresponding damping parameters
(symbols) in Eq. (13) are approximated by ED = A1/3/0.423 (dashed
line).

Woods-Saxon potential in Eq. (13) by (δEsh − �N − �Z ),
we have much better agreement with the results of direct
calculations. This supports the idea of considering damping of
both pairing and shell effects at the saddle point where these
effects are comparable. We obtain the following coefficients:
α = 0.122 MeV−1 and β = −7.3 × 10−5 MeV−1 in the mass
dependence (14) of ã. It should be noted that, as in the case
of the ground state, we got practically linear dependence of
the parameter ã with mass number, as β is only of the order
of ≈10−5 in both ground state and saddle points. Comparison
between the values of ã at the saddle point with the result of
Eq. (14) is shown in Fig. 7(a). Damping parameters calculated
independently for every nuclear systems at saddle points are
shown in Fig. 7(b). As seen in Fig. 7(b), the saddle-point
damping parameters are close to ED ≈ 17 MeV for A < 290.
Though the formal fit results in small value of ED at the saddle
point for A > 290, in the calculation of the survival proba-
bility one can use larger ED because the shell effects at the
saddle points are small in these nuclei and their damping rate
weakly influences the level density parameter in accordance
with Eq. (13). Indeed, if the value of |δEsh| is small, then the
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FIG. 6. The same as in Fig. 4, but for the saddle point. The
calculated values of a (solid lines) are compared with those from
the phenomenological expression (13) with (dashed lines) and with-
out (dash-dotted lines) replacement of the shell correction δEsh by
δEsh − �Z − �N .

second term in the parentheses in Eq. (13) is much smaller
than unity.

The ratio aSP(A,U − B f )/aGS(A,U ) of the level-density
parameter at the saddle point to that at the ground state is
shown in Fig. 8(a) for the Z = 114 isotopic chain at various
excitation energies U . The shell effects, which are evident in
the a ratios at U � 20 MeV, decrease at higher energies. In
Fig. 8(b), the shell effects (U = 0) are presented at the ground
state (solid line) and saddle point (dashed line) for various
Fl isotopes. Thought the shell effects at the ground state are
of most importance, they cannot be disregarded at the saddle
point. So, the topographic theorem [37], that the shell effects
disappear at the saddle point and the fission barrier is just
equal to the shell energy as the nucleus posses at the ground
state, is only approximately valid for superheavy nuclei.
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FIG. 7. The same as in Fig. 5, but for the asymptotic saddle-
point level-density parameter ã(A) and the saddle-point damping
parameter ED. Here, the damping parameters are approximated by
ED = A1/3/0.381 (dashed line) for A < 290.

C. Fission and neutron emission probabilities

Because the statistical approach is used here, the details
of the fission path variability between extremes are not that
important. Only the thresholds that prohibit specific decay
are required: the separation energy with the mass of daughter
nucleus for decay via neutron emissions and the height of
fission barrier.

To validate our calculations of the level densities, first we
compare the calculated fission probabilities � f /�tot for 236U
and 240Pu with the available experimental data. In Fig. 9, the
energy dependence of � f /�tot calculated with Eqs. (16)–(18)
is shown for 236U and 240Pu together with the experimental
data from Ref. [38]. In this calculation the values of Bn are
obtained from the experimental binding energies and the B f

values are taken as the experimental highest fission saddles,
i.e., the first saddle for 240Pu [39] and second saddle for
236U [36]. As seen, the expression (17) gives results close
to those of the numerical calculations with Eq. (16). A good
agreement with the empirical values seen in Fig. 9 gives us
confidence for the reliable predictions of fission and neutron
emission probabilities in the region of heavy nuclei. The val-
ues of Bn and B f calculated in Ref. [31] result in � f /�tot
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FIG. 8. For AFl isotopes, (a) the ratios of the level density pa-
rameters at the saddle point and ground state are shown at the
excitation energies 20 MeV (solid line), 40 MeV (dashed line), and
60 MeV (dotted line). At the saddle point the excitation energy is
decreased by the hight Bf of the fission barrier. (b) The values of
shell corrections at the ground state (solid line) and the ones at the
saddle point (dashed line), and the heights of fission barriers (dotted
line) are presented as functions of mass number A at zero excitation
energy.

values which are less, within the factor of 2, but just as
dependent on energy. At U > 25 MeV, the difference is about
10–20%.

In the spirit of canonical transition-state theory (TST) [40]
the probability ratio for two selected decay types (transi-
tions) is proportional to the number of states available for
each of them in the appropriate energy range (saturating to-
tal available energy). This means that the excitation energy
dependence of �n/� f is strongly affected by the difference
between the fission barrier height and neutron binding energy;
see schematic Fig. 10.5 in [41] or Fig. 9 in [42]. Application
of TST in practice can be found, e.g., in [42–45]. As seen from
Eq. (16), at a f ≈ an an increasing �n/� f with the excitation
energy is expected at (B f + � f ) − (Bn + �n) < 0, and the
opposite trend is expected at (B f + � f ) − (Bn + �n) > 0.
However, our calculations show that, in the nuclei consid-
ered, the a f values are on average ≈10–30% larger than an.
Because of the exponential nature of the survival probability
(17), the ratio a f /an strongly affects the ratio �n/� f . The
calculated ratios a f /an for Z = 117 and Z = 120 isotopic
chains are shown in Fig. 10 for various excitation energies,
together with the corresponding phenomenological results
obtained with Eq. (13). As seen, the shell and pairing ef-
fects decrease with excitation energy and ratios a f /an reach
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FIG. 9. The dependence of fission probability � f /�tot on excita-
tion energy for the fissioning nuclei 236U (a) and 240Pu (b). The results
obtained with Eq. (16) (blue solid line) and analytical expression (17)
(red dashed line) are compared with the experimental data (symbols)
from Ref. [38].

asymptotic values more or less equal to 1.1. As a consequence
of the disappearance of quantum effects, the visible strong
staggering of a f /an weakens significantly with excitation.
One can also see that the approximate formula [Eq. (13)]
works very well in the whole range of excitation energy for
all considered nuclei.

The dependence of a f /an on excitation energy for 284Fl
(green solid line), 288Fl (red dot-dashed line), and 292Fl (blue
dashed line) isotopes is shown in Fig. 11. In all presented Fl
cases a f /an values clearly deviate from 1; for example for
284Fl at maximum it is about 1.35. The course of variability
of this ratio as a function of excitation energy is similar in
all three flerovium nuclei. At first it grows quite quickly to
reach a maximum of about 20 MeV and then slowly falls.
Only for very high excitation energies do the curves saturate
to an asymptotic value less than 1.1.

In Fig. 12, the energy dependence of neutron
emission probability is shown for 278Cn, 294Og, and
296,298120. As follows from the expression (17), the
general increase of �n/�tot with the excitation energy
for 278Cn and 296,298120 is due to positive values of the
derivative of the exponential part,

√
an/(U − Bn − �n) −√

a f /(U − B f − � f ) > 0. Similarly, the condition√
an/(U − Bn − �n) − √

a f /(U − B f − � f ) < 0 for the
294Og [Fig. 12(b)] nucleus leads to a decrease of �n/�tot with
increasing excitation energy. These exact numerical results
are shown in Fig. 12 by solid blue lines. Note that depending
on the superheavy system the scale of �n/�tot is different.
The local variations seen in �n/�tot curves at lower energies
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FIG. 10. For Z = 117 (a) and Z = 120 (b) isotopic chains, the
ratios of the level density parameter of the mother nucleus at the
saddle point to that of the daughter nucleus after neutron separation
at the ground state at U = 25 (solid black line), 35 (solid blue line),
45 (solid red line), and 65 MeV (solid green line). The corresponding
phenomenological results of Eq. (13) are shown by dashed lines.

may be caused by the already discussed strong shell and
pairing effects in a f /an. This study proves how important and
even decisive is the role of energy dependent level-density
parameters at the saddle point and ground state. We have
shown that the phenomenological expression (13) seems to

10 20 30 40 50 60 70 80 90

U (MeV)

1

1.1

1.2

1.3

1.4

a f/a
n

FIG. 11. The dependencies of af /an (19) on excitation energy
for 284Fl (green solid line), 288Fl (red dot-dashed line), and 292Fl (blue
dashed line).
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FIG. 12. The dependence of neutron emission probability on ex-
citation energy for 278Cn (a), 294Og (b), 296120 (c), and 298120 (d).
The increasing trend for 278Cn and 296,298120 nuclei and decreasing
trend for the 294Og nucleus are in agreement with the positive or
negative sign of the derivative of the exponential part in (17). Nu-
merical calculations are shown by blue solid lines and the results of
expression (17) are depicted by red dashed lines.

be suitable for Eq. (17) to describe the energy dependence of
�n/�tot. Results of these approximate calculations are shown
by red dashed lines in Fig. 12. Only for Z = 120 do both
results vary noticeably for very large excitation energy values,
which, however, are not important to us here.

IV. CONCLUSIONS

Since, the nuclear level density is of special importance
for the cross section calculations and nuclear structure studies

in general, we devoted this article to this quantity. It takes
on special significance for superheavy nuclei in which we
are dealing with extremely low probabilities of their pro-
duction. The level-density parameter was evaluated here by
fitting of obtained numerical and exact results to the well
known Fermi gas expression. The single-particle energies
were calculated within the microscopic-macroscopic model
based on the diagonalization of the deformed single-particle
Woods-Saxon potential. The Yukawa-plus exponential model
for macroscopic energy calculation was used. We carried out
our analysis not only for the ground states but also for the
saddle points, which is new in these kinds of calculations.
The energy and shell correction dependencies of the level-
density parameter of superheavy nuclei at these extremes
were studied and compared with the well-known Ignatyuk
expression.

The following conclusions can be drawn:
(i) We have shown that a phenomenological approach

based on the Ignatyuk formula agrees well when one cal-
culates energy dependence of the level-density parameter at
the ground state and strongly disagrees, particularly for small
excitation energies, at the saddle point configurations. Thus,
Eq. (13) cannot be safely used for the saddle at low excitation
energies.

(ii) The investigated ratio of the level-density parameter at
the saddle point to that at the ground state, which is a very
important factor in evaluation of the probability of fission, in
comparison to the probability of neutron emissions, is far from
unity, especially for not too hot nuclear systems.

(iii) As shown, the “topographic theorem” can be applied
with some caution to nuclei having a substantial saddle point
shell correction.

(iv) We also note a substantial difference in average level-
density parameters between mother nucleus at saddle point
and daughter nucleus after neutron emission, with a distinct
staggering effect visible at the same time. Having nuclear level
densities at saddles and ground states, one can directly or nu-
merically evaluate competition between neutron emission and
fission. Numerically determined damping parameters have a
weaker effect on the saddle point compared to the ground
state.

With the obtained �n/�tot one can calculate the sur-
vival probabilities of excited superheavy nuclei without
involving any free parameters. Indeed the binding en-
ergies, fission thresholds, shells corrections, and finally
level densities calculated on the same basis are quite
important.
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