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Unbound spectra of neutron-rich oxygen isotopes predicted by the Gamow shell model

J. G. Li,1 N. Michel ,2,3 W. Zuo,2,3 and F. R. Xu 1,*

1School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

3School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 27 June 2020; revised 17 January 2021; accepted 22 February 2021; published 5 March 2021)

The Gamow shell model has shown to efficiently describe weakly bound and unbound nuclear systems, as
internucleon correlations and continuum coupling are both taken into account in this model. In the present work,
we study neutron-dripline oxygen isotopes. It is hereby demonstrated that the presence of continuum coupling
is important for the description of oxygen isotopes at dripline, and especially to assess the eventual bound or
unbound character of 28O. Our results suggest that the ground state of 28O is weakly unbound and is similar to
the narrow resonant 26O ground state. Predictions of weakly bound and resonance excited states in 24–26O are
also provided. The asymptotes of the studied many-body states are analyzed via one-body densities, whereby the
different radial properties of well bound, loosely bound, resonance states are clearly depicted.
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I. INTRODUCTION

The study of nuclei near the dripline is one of the
most important topics of interest in current nuclear physics.
The comprehension of the properties of exotic nuclei near
driplines and of the stability of nuclei in general is a challenge
for nuclear theory. Neutron-rich oxygen isotopes are particu-
larly interesting for that matter. Due to the presence of atypical
features, such as halos, resonance ground states, and fairly
broad low-lying unbound states, neutron-rich oxygen isotopes
offer an important testing ground to understand the structure
of neutron-rich nuclei in extreme conditions, insofar as both
their experimental and theoretical studies can be thoroughly
performed.

22,24O have doubly magic nature for the neutron number
N = 14, 16 [1–4]. Experiments have shown that 25,26O are
unbound [5], which suggests that 24O is the heaviest bound
isotope of the oxygen chain [5,6]. The ground states of 25,26O
are unbound by about 835 and 18 keV with respect to the
ground state of 24O, respectively [5]. The barely unbound
property of the ground state of 26O is a strong incentive
to ponder about the bound or unbound character of 28O.
Several low-lying states in 25–26O have been reported in ex-
periments. In 25O, 1/2+ excited state, located at 3.3 MeV
above the ground state, is suggested in Ref. [7]. Experiments
have shown that the ground state of 26O exhibits two-neutron
decay [5,6]. An unbound excited 2+ state in 26O has also
been detected experimentally [5]. Clearly, a proper theoretical
description of this 2+ state in 26O is a challenge for theoretical
models [5].

Contrary to well-bound nuclei which can be treated as
closed quantum systems, dripline nuclei are open quantum

*frxu@pku.edu.cn

systems, as they can be weakly bound or unbound with respect
to nucleon emission. Continuum coupling has been shown
to play an important role in loosely bound and unbound
nucleonic systems [8,9]. The proper treatment of contin-
uum coupling has always been a challenging problem for
theoretical methods [10]. The Gamow shell model (GSM)
[8,9,11] is an appropriate tool for that matter. GSM allows
to describe many-body bound states and resonances within a
unique framework, where both internucleon correlations and
continuum coupling are included. Continuum coupling arises
from the use of the Berggren ensemble containing bound,
resonance, and continuum one-body states, so that it is present
at the basis level [12]. GSM has been successfully applied
to many situations of physics interests. For example, one
can mention the halo structures of 6,8He [13] and 11Li [14],
the spectra and correlation densities of psd-shell neutron-
rich nuclei [15], neutron-rich oxygen isotopes [7,16,17], and
proton-rich isotonic systems of 16O [18], where the use of
effective field theory (EFT) [19,20] to generate the residual
nucleon-nucleon interaction in GSM has been introduced.

Several models have been applied to describe neutron-
rich oxygen isotopes [16,17,21–31]. Ab initio calcula-
tions [16,21,23–28,30,31] with the in-medium similarity
renormalization group (IM-SRG) [27–29], coupled-cluster
(CC) [21,25], and many-body perturbation theory (MBPT)
[16,26,31] have shown that three-body forces should be
included to describe the binding energy saturation of the
heaviest oxygen isotopes. However, these calculations bear a
large theoretical uncertainty in 18–26O. This renders compari-
son with experimental data difficult, and accurate predictions
can be hardly made in neutron-rich oxygen isotopes. In ad-
dition, results arising from ab initio calculations depend on
realistic nuclear forces used (a short summary of the IM-SRG
calculations based on different chiral nuclear forces can be
found in Ref. [17]). Continuum coupling effect is absent in the
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IM-SRG calculations [24,27,28] and shell model calculations
[20,32,33] based on phenomenological effective interactions.
The inclusion of continuum effect within the continuum shell
model (CSM) [34] allows to predict that 28O is unbound.
The GSM calculations using the Furutani-Horiuchi-Tamagaki
(FHT) effective nuclear force [35,36] give loosely bound
ground states for 26O and 28O [17]. However, the theoretical
uncertainties are of the order of 500 keV in the calculations of
Ref. [17], which is comparable to neutron separation energy in
25–28O. It is then difficult to make predictions for oxygen iso-
topes at neutron dripline using the FHT Hamiltonian, which
is fitted with experimental data [17]. The same phenomenon
is found in the proton dripline isotonic systems of 16O [18],
where the use of EFT to generate the nucleon-nucleon interac-
tion could provide with a better reproduction of experimental
data compared to the FHT framework. Consequently, we will
use EFT to devise the Hamiltonian to generate the nuclear
states of neutron-dripline oxygen isotopes in this paper.

This paper is organized as follows. The GSM basis
features, the used model space and Hamiltonian, and the
optimization procedure to find the parameters of the Hamil-
tonian will be described in Sec. II. In particular, we will
emphasize the use of EFT and A-dependence in the nucleon-
nucleon interaction. The effect of three-body forces will also
be discussed in neutron-rich isotopes. We will then report and
discuss our results in Sec. III. They consist of the spectra of
oxygen isotopes and of one-body densities of the associated
nuclear states. In particular, the four-neutron separation en-
ergy of 28O will be assessed in our calculation. Low-lying
resonances are predicted in 23–28O and the properties of those
states will be analyzed from the one-body densities of their
valence neutrons.

II. METHOD

GSM is a multiconfiguration shell model framework
[8,9,11] based on the use of the one-body Berggren basis [12].
The Berggren basis consists of bound, resonance, and scatter-
ing one-body states generated by a finite-depth potential [12],
with a completeness relation for each partial wave,∑

n

|φn〉〈φ̃n| +
∫

L+
|φ(k)〉〈φ̃(k)|dk = 1, (1)

where |φn〉 is a bound or resonance state, |φ(k)〉 are con-
tinuum states considered along a contour in the complex
plane, denoted as L+. The tilde sign in Eq. (1) indicates that
we use the Berggren metric, allowing for complex-energy
eigenvalues [12]. The L+ contour starts from k = 0, peaks
at a given kp value in the lower complex plane, goes back
to the real k axis in km and extends to infinity afterwards,
as illustrated in Fig. 1 of Ref. [16]. The L+ contour has to
encompass the resonance states of the finite sum of Eq. (1)
[12]. Both bound and resonance states can be expanded using
Eq. (1) [12]. The L+ contour is truncated at k = kmax on the
real k axis. In the present paper, we take a large enough L+
momentum truncation of kmax = 5 fm−1 for the calculations
of neutron-rich oxygen isotopes. The L+ contour of Eq. (1)
must be discretized in practical applications. For this, the
Gauss-Legendre quadrature has proved to be the most efficient

discretization scheme, as numerical precision is achieved with
30–50 discretized states [8,9,16]. Therefore, GSM provides
with continuum coupling at basis level, and inter-nucleon
correlations are present via configuration mixing. GSM is
then the tool of choice to describe multinucleon systems of
complex structure at driplines, where continuum degrees of
freedom are prominent.

We will work in the picture of a core plus valence neu-
tron. For this, the closed-shell nucleus 22O is selected to be
the inner core. The one-body potential is mimicked by a
Woods-Saxon (WS) potential, whose parameters are adjusted
to reproduce the single-particle spectrum of 23O [37]. The
two-body interaction is of the pionless EFT character [19],
to which an A-dependence is added in order to account for the
effect of three-body force. Similar methods have been used
for the description of sd-shell nuclei with real-energy shell
model [32] and proton-rich nuclei in the A ≈ 20 region with
GSM [18]. Owing to the few data that can enter the optimiza-
tion procedure, only the leading-order (LO) nucleon-nucleon
interaction of the EFT interaction [38–40] are used in the
present work. In then pionless EFT framework [38–40], the
LO nucleon-nucleon interaction in momentum space reads

〈p′|V LO
NN |p〉 = CS + CT (σ1σ2), (2)

where the p′ and p are the outgoing and incoming relative
momenta, respectively, and the interaction only contains spin-
independent and spin-dependent terms. We can separate the
interaction into a spin singlet channel 1S0 and a spin triplet
3S1, as follows:

〈p′|V LO
NN |p〉 = CS0

1 − Pσ

2
+ CS1

1 + Pσ

2
, (3)

where Pσ = 1
2 (1 + σ1σ2) is the spin exchange operator. CS0 =

(CS − 3CT ) and CS1 = (CS + CT ) are interaction strengths for
the 1S0 and 3S1 channels, respectively. In the present GSM
calculations of neutron-rich oxygen isotopes with the 22O
core, the active valence nucleons are only neutrons. Due to
the Pauli exclusion principle, the 3S1 channel should not be
present. Therefore, only the 1S0 channel contributes to the
interaction, and only the strength CS0 needs to be determined
(by fitting available experimental data of the studied oxygen
isotopes).

The EFT interaction is often renormalized by way of a
momentum-dependent regulator function, see Ref. [19] for
details. Recently, in Refs. [20,41,44], it was shown that the
EFT interactions can be regularized in the HO basis within
a limited model space, and the approach gave converged
calculations for heavier nuclei. Moreover, the approach au-
tomatically cutoff the high-momentum parts, and therefore no
additional momentum-dependent regulator function is neces-
sary. The similar treatment has been employed in the recent
works to renormalize the EFT interaction [20,41–44]. In prac-
tice, one has to choose the oscillator frequency h̄w and the
considered maximum shell number Nmax of the momentum-
space HO basis. Then, the cutoff is given by [41–44]

� =
√

2(Nmax + 2 + 3/2)h̄/b, (4)

where b is oscillator length, b ≡ √
h̄/(μw), and the μ is

the reduced mass of the two-nucleon system. To include the
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effects of three-body force, an A-dependent two-body factor
is multiplied to the two-body matrix elements of the EFT
interaction. The A-dependent two-body factor is standard and
reads as [45]

F2b =
(

Acore + 2

A

)e

, (5)

where A is the number of nucleons of the nucleus, Acore is the
number of nucleons of the inner core, and e is the exponent
parameter.

In the GSM calculations, one can choose the sd partial
waves as the active model space for valence neutrons out-
side the 22O core. The parametrized interaction strength is
then dependent on the model space chosen. Though effects
from higher partial waves (e.g., the p f partial waves) may
be included through the parametrization of the interaction,
we will see that the inclusion of the p f partial waves in the
active space makes sense for some cases of unbound isotopes
beyond the dripline. For example, in 28O, the N = 20 Fermi
surface is over the 0d3/2 orbital, and hence configurations
with neutrons occupying the sd and p f continua should be
considered as active components in shell model calculations.
In the present work, we will mainly choose the sd p f space
for the GSM calculations, but the calculations using the sd
space will be also displayed for comparison. As we will see,
the energy differences between calculations using the sd and
sd p f spaces are indeed small. Due to the high centrifugal
barrier of the partial waves bearing � > 3, their influence on
wave function asymptotes is negligible.

In the Berggren basis with the 22O core, the 1s1/2 or-
bital is bound, and 0d3/2 is a resonance, while the p and
f partial waves are nonresonant scattering continua. How-
ever, due to the high centrifugal barrier of f partial waves,
their components in the many-body wave functions should
be localized inside the nucleus. In addition, contrary to the s
and d channels, the f partial waves have no resonant poles.
Therefore, it should be reasonable that the f partial wave
is represented within the harmonic oscillator (HO) basis, to
reduce the model space dimension and computational task.
The sd p partial waves are expanded in the Berggren basis.
The Berggren basis contours for the sd p partial waves are
defined with kp = (0.15,−0.10), km = (0.30, 0), and kmax =
(5.0, 0) fm−1 in the complex-momentum space (see above for
notations). Each segment is discretized by ten points along
with the L+ contour. The f partial waves are represented by
six HO shells. It has been checked that the used representation
for sdpf partial waves is sufficient to give converged results for
the considered nuclei.

Due to the explosive growth of the model space dimension
in GSM, it is necessary to truncate the GSM model space
by limiting the number of occupied scattering states. In fact,
we can only have two neutrons at most in the nonresonant
continuum (denoted as 2p-2h truncations) to obtain tractable
dimensions when using discretized Berggren basis contours.
To reduce the computational cost and obtain better conver-
gences, we use natural orbitals [46] as one-body states instead
of Berggren basis states. Natural orbitals are the eigenstates
of the scalar density matrix of the considered many-body state
[46]. Therefore, they recapture a large part of the strength of

TABLE I. The optimized strength CS0 (in 10−2 MeV−2 [19]) of
the EFT LO interaction using different momentum cutoffs � (in
MeV) in GSM calculations within the sd p f and sd model spaces.
The different momentum cutoffs are obtained in Eq. (4) from vary-
ing the oscillator frequency h̄w (in MeV) in a model space with
Nmax = 10.

h̄w 8 10 12 15

� 318 356 390 436
sdpf −0.0572 −0.0492 −0.0466 −0.0449
sd −0.0709 −0.0645 −0.0621 −0.0620

many-body systems, so that the occupation of natural orbitals
by valence nucleons decreases very quickly with the radial
quantum number of natural orbitals. Recent applications of
natural orbitals in GSM showed that one typically needs three
to five natural orbitals per partial wave, comparing with the 30
discretized states needed at least when using a Berggren basis
contour [15,47]. Hence, the GSM model space dimension
is much reduced, so that it is possible to perform calcula-
tions with 3p-3h truncations, whereby convergence is well
obtained. The scalar density matrix of the many-body state
must clearly be calculated in a GSM truncated space. The
GSM model space defined with 2p-2h truncations has shown
to provide with almost converged scalar density matrices. As
a consequence, by using the described two-step calculation,
one could achieve convergence in the GSM many-body space
while diagonalizing a GSM Hamiltonian matrix of tractable
dimension.

The strength of the EFT interaction is optimized to re-
produce the binding energies of 24–26O [37]. For the WS
potential of the 22O core, we fix the diffuseness a = 0.65 fm,
the radius R0 = 3.15 fm, and the spin-orbit strength Vls =
7.5 MeV, only the V0 is adjusted by fitting the experimental
single-particle spectrum of 23O [37]. The � dependence of the
fitted central strength V0 reads V0 = 51.33 MeV if � = 0 and
V0 = 52.60 MeV if � � 1.

The EFT interaction often depends on a cutoff in mo-
mentum space. To assess this dependence, we will consider
different momentum cutoffs � obtained from varying the
oscillator frequency h̄w = 8, 10, 12, and 15 MeV in a model
space with Nmax = 10, corresponding to the � = 318, 356,
390, and 436 MeV, respectively, whose interactions are la-
beled by EFT(318), EFT(356), EFT(390), and EFT(436),
respectively. In order to proceed with the optimization
procedure of binding energies in 24–26O, we firstly devise A-
independent EFT(318), EFT(356), EFT(390), and EFT(436)
interactions. The optimized strength of CS0 of the EFT in-
teraction is shown in Table. I. Binding energies are slightly
overbound using EFT(318), whereas the calculations us-
ing EFT(356), EFT(390), and EFT(436) well reproduce the
binding energies of 24−26O (see Fig. 1). Thus, A-dependent
two-body factors are needed for EFT(318). We will then
multiply the initial strength of CS0 in Table. I obtained with
EFT(318) by an A-dependent two-body factor. We adjusted
the A-dependent two-body factor in order to reproduce the
two-neutron separation energy of the 26O. We obtained that
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FIG. 1. Energies of ground states in 24–28O, calculated by GSM
within the sd p f (upper) and sd (lower) model spaces, using the
EFT(318), EFT(356), EFT(390), EFT(436), and FHT interactions,
with A-independence (A-indep) or A-dependence (A-dep) (see text
for definitions). Results are compared with data available [5,49],
represented by a star. The data for 25,26O and 27,28O are taken from the
experiment [5] and evaluations given in AME2016 [49], respectively.

the exponent parameter appearing in Eq. (5) is e = 0.4, which
is consistent with that in Refs. [18,20,32]. It may be under-
stood that a soft interaction usually needs a modification from
the effect of three-body interaction.

III. RESULTS

Continuum coupling starts to be an important part of
neutron-rich oxygen isotopes heavier than 24O. While 24O
is doubly magic, being mostly built from the well-bound
(1s1/2)2 configuration above the 22O core [4], oxygen iso-
topes beyond 24O mainly occupy configurations involving the
unbound 0d3/2 orbital [5,48]. The ground state of 26O has
been shown to decay via dineutron emission, with an energy
just about 18 keV above the ground state of 24O [5]. 26O is
thus slightly unbound, then directly pointing out the question
whether 28O is bound or not, which is, in fact, still open [6,17].

We calculated the energies of the ground states of
24–28O with GSM within sd p f active space, using the fitted
EFT(318), EFT(356), EFT(390), and EFT(436) interactions
(see Sec. II). The obtained χ2 deviation in our GSM cal-
culations is about 100 keV for all considered interactions,
so that the fitted Hamiltonian can be deemed to be optimal.

GSM calculations using the EFT(318), EFT(356), EFT(390),
and EFT(436) interactions are depicted in Fig. 1 along with
available data [5,49] and the GSM calculations based on a
fitted FHT interaction using sd p partial waves in Ref. [17].

GSM calculations with A-independent EFT(318) and FHT
interactions both provide a slightly overbound ground state
for 26O. The energy of the ground state of 26O is too bound
by 200 keV using the EFT(318) interactions and by 30 keV
using the FHT interaction, compared with experimental data
[5]. However, the energy of the ground state of 26O becomes
more bound with the FHT interaction if one includes the f
partial waves in the GSM model space [17]. Moreover, when
using the FHT interaction, the obtained ground-state energy
of 24O is less bound by 600 keV, compared with experimental
data. Consequently, if one makes the FHT interaction more
binding in order to reproduce the experimental energy of the
ground state of 24O, the 26O ground state will depart even
more from experimental data. The tendency of the FHT in-
teraction to overbind many-body nuclear systems had also
been noticed when considering the proton-rich isotones of 16O
[18]. In the absence of genuine three-body force in the Hamil-
tonian, overbinding can only be counterbalanced by using
A-dependent Hamiltonians, see Eq. (5). Indeed, A-dependent
EFT(318) interactions reproduce experimental data well us-
ing this approach (see Fig. 1). Note that an A-dependent
Hamiltonian using an EFT interaction could also successfully
describe the proton-rich isotones of 16O [18]. The GSM cal-
culations using EFT(356), EFT(390), and EFT(436) without
A-dependence provide a good description of the experimen-
tal data associated to neutron-rich oxygen nuclei. Therefore,
the A-dependent EFT(318) and the A-independent EFT(356),
EFT(390), and EFT(436) interactions provide good agree-
ments of the 23–26O ground states with experimental data,
where, in particular, the two-neutron separation energy of 26O
is about 20 keV. The calculated ground state of 28O is unbound
in all three cases and located about 700 keV above the ground
state of 24O. The unbound character of 28O obtained in our
calculations suggests that the neutron dripline of oxygen is
located at 24O.

In Fig. 1, we also show the calculations using only the sd
partial waves as the active shell model space. The interaction
strength of CS0 is then refitted, as shown in Table I. It is
seen that the energy differences between calculations using
the sd p f and sd spaces are indeed small. All the calcula-
tions within sd spaces provide that the 25–28O are unbound,
which are close to experimental data and calculations within
sd p f space. However, the calculations using sd space provide
that the ground state of 26O is unbound about 300 keV, a
little higher than experimental value which is about 20 keV
unbound [5]. Though the energy difference obtained using
the two different spaces is small, the calculation within spdf
space seems to be more reasonable.

After pondering about the theoretical aspects of our Hamil-
tonians, we now compare our results with other nuclear
models. Many theoretical works [23,25,26,28,34] have been
done to explain the properties of the oxygen isotopes at
neutron dripline. Ab initio IM-SRG calculations [27,28] lead
to the conclusion that the 25–28O are unbound, whereas the
theory-experiment difference on the two-neutron separation
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energy of 26O is about 2 MeV. 26O is slightly bound by about
500 keV with respect to 24O, and 28O is unbound in realis-
tic shell model calculations [26]. In shell model calculations
using the effective USDB [32] and YSOX [33] interactions,
both 26,28O isotopes are unbound and the theory-experiment
differences on the binding energy of 26O are about 0.3 and
1 MeV in USDB and YSOX calculations, respectively, when
compared to experimental data. However, the above calcu-
lations did not take into account continuum coupling. CC
calculations [21] including continuum coupling predicted that
25,26O are unbound about 400 keV and 100 keV with respect to
24O, respectively. CC results are then in good agreement with
experimental data. 28O is found to be unbound with respect
to the 24O about 4 MeV in CC calculations. However, the
experimental energy differences between light and heavy oxy-
gen isotopes are not correctly reproduced by CC calculations
[21]. The continuum shell model (CSM) using USDB inter-
action [34] provided a weakly unbound 26O ground state and
unbound 28O. Our results, obtained from GSM calculations,
show the same trend as those arising from CSM for 24–28O.
Recently, ab initio GSM calculations [30] based on realistic
nuclear force, including p f partial waves in the GSM model
space, provided unbound 26,28O ground states by about 0.6 and
1.5 MeV with respect to the 24O ground state, respectively.

In Fig. 1, GSM calculations using the A-dependent
EFT(318) and the A-independent EFT(356), EFT(390), and
EFT(436) interactions provide good agreements of the 23–26O
ground states with experimental data. Furthermore, all the cal-
culations give similar results. In the following, we will employ
the EFT(356) interaction to calculate the low-lying states of
the neutron-rich oxygen isotopes and associated observables.
We also checked that the calculated one-body densities are not
sensitive to the EFT interactions used.

To further study dripline nuclei, we use GSM to calculate
the one-body density of the ground states of the neutron-rich
18–28O oxygen isotopes. The 18–22O isotopes are considered
by using an 16O core and the same two-body EFT(356) in-
teraction. Parameters of the WS potential of 16O are taken
from Ref. [9]. The calculated energies of the ground states of
18–22O have been checked to be close to experimental data.
The one-body densities of unbound states are complex in
GSM, because unbound states are resonant and hence bear
a complex energy. The imaginary part of the calculated one-
body density is small compared to the real part in a bound
state or resonance with a narrow width. However the imagi-
nary part of the one-body density of a resonance state with a
large width is comparable with the real part in the asymptotic
region, and the real part starts to oscillate in the asymptotic
region. We will only consider the real part of the one-body
density in the following. The results are shown in Fig. 2. The
one-body densities of Fig. 2 support our first conclusion based
on energetics only, i.e., that 25–28O are located beyond the
neutron dripline and that 24O is the last bound oxygen isotope.
Indeed, the one-body densities of the 18–22O are localized in
the nuclear region (see Fig. 2). As continuum coupling is
exactly treated, this localization property is not an artifact
arising from basis-dependence, on the contrary, reflects the
well bound, weakly bound, or loosely unbound character of

FIG. 2. Radial one-body density multiplied by radius squared,
denoted by r2ρ(r), of the ground states of oxygen neutron-rich 18–28O
isotopes as a function of the radius r (in fm).

these nuclei. It is clearly seen that the one-body densities
of 25,27O, which start to oscillate in the asymptotic region,
become negative after a given radius and can no longer be
seen on the figure. These oscillations appear because 25,27O
have sizable resonance widths, close to 100 keV.

The ground states of 26O and 28O are unbound, but bear
negligible widths. Hence, their one-body densities resemble
that of a loosely bound state, i.e., they decrease exponen-
tially but slowly, so that they have a halo-like structure. As
one considers resonance states, these one-body densities will
eventually start to increase in modulus without bounds. How-
ever, due to the small character of particle-emission widths,
this increase occurs for radius well beyond 20 fm. Combining
the results of Figs. 1 and 2, we suggest that the ground state of
28O exhibits four-neutron decay by way of 2n-2n emission via
the 26O ground state. The four-neutron emission of the 28O
ground state has also been suggested in other works, using
few-body methods [50] and GSM using MBPT [30].

Due to the good agreement with experimental data, ob-
tained with GSM for binding energies of the neutron-rich
oxygen isotopes using the EFT(356) interaction, one can
make predictions concerning the unbound excited states of the
23–26O isotopes. Their spectra are presented in Fig. 3, along
with available experimental data [37]. For the 27,28O, only
the ground states are considered in the present work, which
are shown in the Fig. 1. Firstly, the experimentally known
low-lying states of 23–26O isotopes are well reproduced in
GSM. The largest theory-experiment differences encountered
in the calculated energies are about 350 keV in 23–26O nuclei
when compared with experimental data [37]. One can give the
example of the 2+ excited state of 24O (see Fig. 3). Calculated
widths are of the order of 10 to 100 keV, agreeing well with
experimental data. All the calculated unbound states have
a width of at most 240 keV, while experimental widths do
not exceed 100 keV. Consequently, one can predict that the
23–26O isotopes possess low-lying spectra consisting of narrow
resonance states, whose widths should be expected to be about
50–100 keV.
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FIG. 3. GSM calculations of low-lying positive-parity states of
23–26O using the EFT(356) interaction, along with experimental data
[5,37]. Resonance state is indicated with a green shade, and its width
is written above (or below) the level in keV.

Similarly to the oxygen ground states of Fig. 2, let us
consider the one-body densities of the unbound spectra of the
23–26O isotopes (see Fig. 4). Due to the unbound character of
excited states, their one-body densities typically oscillate in
the asymptotic region. One obtains the exponentially decaying
densities in r � 20 fm for the excited 25O(1/2+) and the 26O
ground states. This is because their widths are almost zero.
The one-body densities which start to oscillate around r ≈ 13
fm are associated to the eigenstates with large widths. Indeed,
the 23O(3/2+) and 24O(1+) excited state bear a width of about
230 keV, which is dominated by the occupation of the 0d3/2 or-
bital. Comparatively, the 25O ground state and 24O(2+) excited
state have widths equal to 64 keV and 87 keV, respectively, so
that their densities start to oscillate at a slightly larger radius
of r ≈ 16 fm. Consequently, the asymptotes of the one-body
densities in 23–26O isotopes are in accordance with the narrow
or broad character of the calculated eigenstates.

An interesting excited state is the 1/2+ excited state of
25O. It is located above the ground state of 23O and below
the excited states of 24O, with its main configuration being

FIG. 4. Similar to Fig. 2, but for the excited states (and also the
ground states in 25,26O for comparison) of the neutron-dripline oxy-
gen isotopes calculated with GSM using the EFT(356) interaction.

22O ⊗(1s1/2)1(0d3/2)2. The 1s1/2 orbital is bound, and pairing
makes the wave function of the two paired 0d3/2 neutrons less
spreading in space. These lead to a reduction in the width
of the 1/2+ excited configuration 22O ⊗(1s1/2)1(0d3/2)2. The
wave function of the ground state of 26O is dominated by
the configuration 22O ⊗(1s1/2)2(0d3/2)2, so that 25O(1/2+)
and the ground state of 26O differ mainly by one well-bound
neutron. Thus, due to a very small width of the 25O 1/2+

excited state and a large spectroscopic factor with the ground
state of 26O, the 1/2+ excited state of 25O might be a candidate
for two-neutron radioactivity at neutron dripline.

IV. SUMMARY

We have applied GSM to unbound neutron-rich oxygen
isotopes, where continuum coupling and internucleon corre-
lations are both included. Due to the inert character of the
ground state of 22O, we could build a Hamiltonian from a
WS potential mimicking the effect of the 22O core, above
which valence neutrons interact. An EFT framework was used
to generate interactions. For the EFT interaction, only the
leading-order nucleon-nucleon interaction was considered.
Calculations with different interactions are performed. It is
found that an A-dependence in the EFT(318) two-body inter-
action is needed to compensate for the absence of three-body
forces, while the dependence is not necessary when using the
EFT(356), EFT(390), and EFT(436) interactions.

All the devised interactions can satisfactorily reproduce the
energies of low-lying states in neutron-rich 23–26O isotopes,
EFT(356) interaction was used to assess the asymptotic prop-
erties of the unbound ground and excited states of the 23–26O
isotopes. One can estimate the two-neutron separation energy
of 26O, of the order of 18 keV. 28O was found to be unbound
by about 700 keV above the ground state of 24O. Due to its
very small particle-emission width, our calculations suggest
that 28O has a four-neutron decay of the form 2n-2n via the
ground state of 26O. The 25–28O ground states are found to be
resonances, so that one infers that 24O is the heaviest bound
oxygen isotope.

It was also demonstrated that the asymptotes of one-body
densities follow the narrow or broad resonance character of
considered eigenstates. Indeed, one-body densities either bear
a slow exponential decay, similar to that appearing in halo
nuclei, for moderate radii when the particle-emission width is
negligible, or exhibit oscillations after a radius r ≈ 10–15 fm
in the case of resonances bearing a width larger than 50 keV
typically.

We can make predictions of possible unbound excited
states in 25,26O. Indeed, one could identify low-lying excited
states with widths smaller than 250 keV, which can be ex-
pected to be narrow resonances experimentally. Moreover, the
25O(1/2+) excited state was found to bear a very small width
and to differ from the 25O ground state mainly by a well bound
1s1/2 orbital. Thus, the 25O(1/2+) excited state has a large
spectroscopic factor with the ground state of 26O and then
might be a two-neutron emitter.

GSM has showed to be very efficient to describe loosely
bound and resonance states at neutron dripline, where both
energies and widths can be well calculated. The particle emis-
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sion width obtained in the GSM is the total width which
includes all possible partial decays. It can be expected that
the GSM calculations should be useful for future experiments
dealing with particle emissions in nuclei around driplines.
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