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Microscopic origin of reflection-asymmetric nuclear shapes
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Background: The presence of nuclear ground states with stable reflection-asymmetric shapes is supported by
rich experimental evidence. Theoretical surveys of odd-multipolarity deformations predict the existence of pear-
shaped isotopes in several fairly localized regions of the nuclear landscape in the vicinity of near-lying single-
particle shells with �� = � j = 3.
Purpose: We analyze the role of isoscalar, isovector, neutron-proton, neutron-neutron, and proton-proton
multipole interaction energies in inducing the onset of reflection-asymmetric ground-state deformations.
Methods: The calculations are performed in the framework of axial reflection-asymmetric Hartree-Fock-
Bogoliubov theory using two Skyrme energy-density functionals and density-dependent pairing force.
Results: We show that reflection-asymmetric ground-state shapes of atomic nuclei are driven by the odd-
multipolarity neutron-proton (or isoscalar) part of the nuclear interaction energy. This result is consistent with
the particle-vibration picture, in which the main driver of octupole instability is the isoscalar octupole-octupole
interaction giving rise to large E3 polarizability.
Conclusions: The necessary condition for the appearance of localized regions of pear-shaped nuclei in the
nuclear landscape is the presence of parity doublets involving �� = � j = 3 proton or neutron single-particle
shells. This condition alone is, however, not sufficient to determine whether pear shapes actually appear, and,
if so, what the corresponding reflection-asymmetric deformation energies are. The predicted small reflection-
asymmetric deformation energies result from dramatic cancellations between even- and odd-multipolarity
components of the nuclear binding energy.

DOI: 10.1103/PhysRevC.103.034303

I. INTRODUCTION

While the vast majority of atomic nuclei have either spheri-
cal or ellipsoidal (prolate or oblate) ground-state (g.s.) shapes,
some isotopes exhibit pearlike shape deformations that intrin-
sically break reflection symmetry. Experimental evidence for
such shapes comes from characteristic properties of nuclear
spectra, nuclear moments, and electromagnetic matrix ele-
ments [1,2]. Pear-shaped even-even nuclei display low-energy
negative-parity excitations that are usually attributed to oc-
tupole collective modes. For that reason, pear-shaped nuclei
are often referred to as “octupole deformed.”

There are two regions of g.s. reflection-asymmetric shapes
that have been experimentally established over the years: the
neutron-deficient actinides around 224Ra and the neutron-rich
lanthanides around 146Ba. Nuclear theory systematically pre-
dicts these nuclei to be pear shaped (see Ref. [3] for a recent
survey of theoretical results). Other regions of pear-shaped
nuclei predicted by theory, i.e., lanthanide nuclei around
200Gd as well as actinide and superheavy nuclei with 184 <

N < 206 are too neutron rich to be accessible by experi-
ment [3–7]. In general, deformation energies associated with

reflection-symmetry breaking shapes are much smaller than
those related to stable ellipsoidal shapes [8,9]. Consequently,
for octupole-deformed nuclei, beyond mean-field methods are
needed for a quantitative description, see, e.g., Refs. [10–13].

According to the single-particle (s.p.) picture, the ap-
pearance of pear-shaped deformations can be attributed
to the mixing of opposite-parity s.p. shells [14,15]. In
the macroscopic-microscopic (MM) approach, the macro-
scopic energy favors spherical shapes. Therefore, stable
refection-asymmetric shape deformations obtained in the MM
method [9,16] can be traced back to the shape polarization
originating from proton and neutron s.p. levels interacting via
parity-breaking fields. Since shell corrections are computed
separately for protons and neutrons, the results are usually
interpreted in terms of deformation-driving proton or neutron
shell effects. The proton-neutron interactions are indirectly
considered in the macroscopic energy with the assumption of
identical proton and neutron shape deformation parameters,
which follow those of the macroscopic term.

In general, in the description based on the mean-field
approach, nuclear shape deformations result from a cou-
pling between collective surface vibrations of the nucleus
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and valence nucleons. Such a particle-vibration coupling [17]
mechanism can be understood in terms of the nuclear Jahn-
Teller effect [18,19]. The tendency towards deformation
is particularly strong if the Fermi level lies just between
close-lying s.p. states. In such a case, the system can be-
come unstable with respect to the mode that couples these
states. Simple estimates of the particle-vibration coupling
(Jahn-Teller vibronic coupling) for the quadrupole mode
(multipolarity λ = 2) [20,21] demonstrate that its contribution
to the mass quadrupole moment at low energies doubles the
quadrupole moment of valence nucleons. The Hartree-Fock
(HF) analysis [22,23] confirmed this estimate. It showed that
the main contribution to the quadrupole deformation energy
comes from the attractive isoscalar quadrupole-quadrupole
term, which can be well approximated by the neutron-proton
quadrupole interaction.

When it comes to reflection-asymmetric deformations, the
leading particle-vibration coupling is the one due to the
octupole mode (multipolarity λ = 3). This coupling gener-
ates a vibronic Jahn-Teller interaction between close-lying
opposite-parity s.p. orbits that may result in a static reflection-
asymmetric shape. For g.s. configurations of atomic nuclei,
such pairs of states can be found just above closed shells
and involve a unique-parity intruder shell (�, j) and a normal-
parity shell (� − 3, j − 3) around particle numbers Noct = 34,
56, 88, and, 134 [1]. Indeed self-consistent calculations sys-
tematically predict pear shapes for nuclei having proton and
neutron numbers close to Noct.

To understand the origin of reflection-asymmetric g.s. de-
formations, in this study we extend the quadrupole-energy
analysis of Refs. [22,23] to odd-multipolarity shapes. To
this end we decompose the total Hartree-Fock-Bogoliubov
(HFB) energy into isoscalar, isovector, neutron-neutron (nn),
proton-proton (pp), and neutron-proton (np) contributions of
different multipolarities.

This paper is organized as follows. In Sec. II we esti-
mate the octupole polarizability and coupling strengths of
the octupole-octupole interaction. Section III describes the
multipole decomposition of one-body HFB densities and the
HFB energy. The results of our analysis calculations and an
analysis of trends are presented in Sec. IV. Finally, Sec. V
contains the conclusions of this work.

II. SIMPLE ESTIMATE OF LOW-ENERGY
OCTUPOLE COUPLING

In this section, we follow Refs. [20,21], which used a
schematic particle-vibration coupling Hamiltonian consist-
ing of a spherical harmonic-oscillator one-body term and a
multipole-multipole residual interaction. This model was used
in the early paper [22] in the context of quadrupole defor-
mations. The model Hamiltonian with the octupole-octupole
interaction is

Ĥ = Ĥ0 + 1
2κ0Q̂0Q̂0 + 1

2κ1Q̂1Q̂1, (1)

where Q̂0 = Q̂n + Q̂p and Q̂1 = Q̂n − Q̂p are single-particle
octupole isoscalar and isovector operators, respectively, and
Ĥ0 is a spherical one-body harmonic-oscillator Hamiltonian.
For the case of high-frequency octupole oscillations (giant

octupole resonances), the coupling constants of the isoscalar
and isovector octupole-octupole interactions, κ0 and κ1, re-
spectively, can be written as:

κ0 = −4π

7

Mω2
0

A〈r4〉 , κ1 = πVsym

A〈r6〉 , (2)

where ω0 is the oscillator frequency, Vsym is the repulsive
symmetry potential (∼130 MeV), and M is the nucleon mass.
Since the isovector coupling constant κ1 is positive, the g.s.
neutron and proton deformations are expected to be similar,
as assumed in the MM approaches.

Within the Hamiltonian (1), the g.s. octupole polarizability
of the nucleus is given by [20]

χ3,τ = − κτ

κτ + C(0)
3

, (3)

where τ = 0 or 1 and C(0)
3 is the restoring force parameter.

There are two types of octupole modes involving s.p. transi-
tions with �N = 1 or 3, where N is the principal oscillator
quantum number. The corresponding restoring-force parame-
ters are

C(0)
3 (�N = 1) = 16π

21

Mω2
0

A〈r4〉 , (4)

C(0)
3 (�N = 3) = 3C(0)

3 (�N = 1). (5)

By using the estimate in Ref. [20]

Vsym

Mω2
0

≈ 2.9
〈r4〉
〈r2〉 , (6)

one obtains:

χ3,0(�N = 1) = 3, χ3,0(�N = 3) = 1/3. (7)

The isovector octupole polarizabilities are obtained in a simi-
lar way by assuming a uniform density distribution:

χ3,1(�N = 1) = −0.78, χ3,1(�N = 3) = −0.54. (8)

While the collective octupole modes couple the �N = 1
and 3 transitions, the low-frequency mode is primarily associ-
ated with the �N = 1 excitations. At low energies, associated
with nuclear ground states, the strength coefficients in Eq. (2)
should be renormalized by factors (1 + χ3,τ ) to account for
the coupling to high-energy octupole collective vibrations. We
indicate them by κ̃τ = (1 + χ3,τ )κτ . Following Ref. [22], we
rearrange the octupole-octupole Hamiltonian into nn, pp, and
np parts with the coupling constants

κ̃nn = κ̃pp = κ̃0 + κ̃1, κ̃np = κ̃0 − κ̃1. (9)

By assuming the average values of octupole polarizabilities
χ3,0 ≈ 2 and χ3,1 ≈ −0.4, the ratio of the coupling constants
becomes

κ̃nn

κ̃np
= κ̃pp

κ̃np
≈ 0.27. (10)

We can thus conclude that the octupole-octupole np inter-
action may indeed be viewed as being responsible for the
development of the octupole deformation.
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III. MULTIPOLE EXPANSION OF DENSITIES
AND HFB ENERGY

In self-consistent mean-field approaches [24–26] with
energy-density functionals (EDFs) based on two-body func-
tional generators, the total energy of a nucleus is expressed
as:

E = Tr(T ρ) + 1
2 Tr(�ρ) + 1

2 Tr(�̃ρ̃ ). (11)

Here T is the kinetic energy operator, � and �̃ are mean fields
in particle-hole (p-h) and particle-particle (p-p) channels, re-
spectively, and ρ and ρ̃ are one-body p-h and p-p density
matrices, respectively. (Instead of using the standard pairing
tensor [24], here we use the tilde representation of the p-p
density matrix [27].) The mean fields � and �̃ are defined as

T + � = δE

δ′ρ
, (12)

�̃ = δE

δ′ρ̃
, (13)

where δ′ denotes the variation of the total energy that neglects
the dependence of the functional generators on density, that
is, the mean fields (12) and (13) do not contain so-called
rearrangement terms [25].

A. Multipole decomposition

As observed in Ref. [22], the density matrices and mean
fields can be split into different multipole components as

ρ = ρ[0] + ρ[1] + ρ[2] + ρ[3] + . . . (14a)

ρ̃ = ρ̃[0] + ρ̃[1] + ρ̃[2] + ρ̃[3] + . . . , (14b)

� = �[0] + �[1] + �[2] + �[3] + . . . (14c)

�̃ = �̃[0] + �̃[1] + �̃[2] + �̃[3] + . . . , (14d)

where ρ[λ], ρ̃[λ], �[λ], and �̃[λ] are rank-λ rotational compo-
nents of ρ, ρ̃, �, and �̃, respectively. Traces appearing in
Eq. (11) are invariant with respect to unitary transformations,
and, in particular, with respect to spatial rotations. Therefore,
the traces act like multipolarity filters projecting the total en-
ergy on a rotational invariant. In this way, when the multipole
expansions (14) are inserted in the expression for the total
energy (11), only diagonal terms remain:

E = E[0] + E[1] + E[2] + E[3] + . . . , (15)

where

E[λ] = 1
2 Tr(�[λ]ρ[λ] ) + 1

2 Tr(�̃[λ]ρ̃[λ] ). (16)

In the above equation, we add the kinetic energy to the
monopole energy E[0] since T is a scalar operator, which
implies Ekin = Tr(T ρ) ≡ Tr(T ρ[0] ). Therefore we define

E[0] = Ekin + 1
2 Tr(�[0]ρ[0] ) + 1

2 Tr(�̃[0]ρ̃[0] ). (17)

When parity symmetry is conserved, only even-λ multi-
polarities appear in Eqs. (14) and (15). In Refs. [22,23], this
allowed for analyzing the monopole (λ = 0), quadrupole (λ =
2), and higher even-λ components. In the present work, we
analyze broken-parity self-consistent states and focus on the

reflection-asymmetric (odd-λ) components of the expansion.
As our multipole expansion is defined with respect to the
center of mass of the nucleus, the integral of the isoscalar
dipole density ρ[1], namely, the total isoscalar dipole moment,
vanishes by construction. Nevertheless, the dipole density ρ[1]

and dipole energy E[1] can still be nonzero.
In the spherical s.p. basis, the expansions (14) can be

realized by the angular-momentum coupling of basis wave
functions. Since the HFB equation is usually solved in a de-
formed basis, an explicit basis transformation is then needed.
Moreover, the direct angular-momentum coupling does not
benefit from the fact that Skyrme EDFs only depend on
(quasi)local densities, which is the property that greatly sim-
plifies the HFB problem. Inspired by the latter observation,
in this work, we determine the multipole expansions of
(quasi)local densities and (quasi)local mean fields directly in
the coordinate space.

With axial symmetry assumed, particle density ρ(r) can be
decomposed as [28]

ρ(r) =
∑

J

ρ[λ](r)YJ,M=0(
), (18)

where

ρ[λ](r) =
∫

d
ρ(r)Y ∗
J,M=0(
). (19)

An identical decomposition can be carried out for all isoscalar
(t = 0) and isovector (t = 1) (quasi)local p-h densities [29]
�t ≡ {ρt , τt , �ρt , Jt ,∇ · Jt }, plus local neutron (q = n) and
proton (q = p) pairing densities ρ̃q. The p-h densities depend
on neutron and proton densities in the usual way:

�0 = �n + �p, �1 = �n − �p. (20)

Our strategy is to use the energy-density expression for the
time-even total energy (11),

E =
∫

d3r
{

h̄2

2m
τ0(r) + H(r) + H̃(r)

}
, (21)

where the standard Skyrme energy densities read [29,30]:

H(r) =
∑
t=0,1

Ht (r), (22a)

H̃(r) =
∑

q=p,n

H̃q(r), (22b)

and where

Ht (r) = Cρ
t ρ2

t (r) + C�ρ
t ρt (r)�ρt (r)

+Cτ
t ρt (r)τt (r) + CJ

t J 2
t (r)

+C∇J
t ρt (r)∇ · Jt (r), (23a)

H̃q(r) = 1

4
Vq

[
1 − V1

(
ρ(r)

ρ0

)γ ]
ρ̃2

q (r). (23b)

For simplicity, the Coulomb energy is not included in
Eq. (21); it will be discussed later.
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It is convenient to rewrite the energy densities (23) in terms
of local p-h and p-p potentials as

Ht (r) = Vt (r)ρt (r) +
∑

i j

Vt i j (r)Jt i j (r), (24a)

H̃q(r) = Ṽq(r)ρ̃q(r), (24b)

where

Vt (r) = Cρ
t ρt (r) + C�ρ

t �ρt (r)

+Cτ
t τt (r) + C∇J

t ∇ · Jt (r), (25a)

Vt i j (r) = CJ
t Jt i j (r), (25b)

Ṽq(r) = 1

4
Vq

[
1 − V1

(
ρ(r)

ρ0

)γ ]
ρ̃q(r), (25c)

with indices i, j denoting the components of the spin-current
tensor density Jt i j (r) in three dimensions. In analogy to
Eqs. (18) and (19), we then determine the multipole ex-
pansions of the local potentials (25). In this way, the total
energy (15) can be decomposed into multipole components:

E[λ] =
∫

d3r

[∑
t=0,1

{
Vt[λ](r)ρt[λ](r) +

∑
i j

Vt i j[λ](r)Jt i j[λ](r)

}

+
∑

q=p,n

Ṽq[λ](r)ρ̃q[λ](r)

]
. (26)

Finally, the same strategy can be applied to the Coulomb
energy, which contributes to the multipole terms of Eq. (15)
through the multipole expansions of direct and exchange po-
tentials:

ECoul
[λ] =

∫
d3r

[
1

2
V dir

[λ] (r) + 3

4
V exc

[λ] (r)

]
ρp[λ](r), (27)

where

V dir(r) = e2
∫

d3r′ ρp(r′)
|r − r′| , (28)

V exc(r) = −e2

[
3

π
ρp(r)

] 1
3

. (29)

B. Isospin and neutron-proton energy decomposition

In the isospin scheme, the total energy can be written as

E = Et=0 + Et=1 + ECoul + Epair, (30)

where

Et = Ekin δt0 +
∫

d3rHt (r), (31a)

Epair =
∑

q=p,n

∫
d3rH̃q(r). (31b)

Note that the kinetic energy Ekin is included in the isoscalar
energy Et=0. The Coulomb energy ECoul is separated out be-
cause the Coulomb interaction breaks the isospin symmetry.
The pairing functional is not isospin invariant either as the
neutron and proton pairing strengths differ.

By decomposing the isoscalar and isovector p-h densities
�t into the neutron and proton components (20), the total
energy can be expressed in the neutron-proton scheme [22]:

E = Ekin + Enn + E pp + Enp. (32)

In Eq. (32), the individual Eqq′
components (q, q′ = n or p):

Eqq′ =
∫

d3r[Hqq′ (r) + δqq′H̃q(r)], (33)

are defined through the energy densities Hqq′ and H̃q, which
are bilinear in the densities �q or ρ̃q. Note that the Coulomb
energy ECoul is included in the proton energy E pp. As
discussed earlier, all the energy terms entering the isospin
and neutron-proton decompositions can be expanded into
multipoles.

IV. RESULTS

The systems we studied are even-even barium, radium,
and uranium isotopes. They are predicted to have stable
pear shapes at certain neutron numbers [3]. For compari-
son, we also calculate ytterbium isotopes, which have stable
quadrupole but no reflection-asymmetric deformations. We
performed axial HFB calculations using the code HFBTHO

(v3.00) [31] for two Skyrme EDFs given by SLy4 [32] and
UNEDF2 [33] parametrizations. We used the mixed-pairing
strengths of Vn = −325.25 MeV and Vp = −340.06 MeV
(SLy4) and Vn = −231.30 MeV and Vp = −255.04 MeV
(UNEDF2). For UNEDF2, we did not apply the Lipkin-
Nogami treatment of pairing; instead, we took the neutron
pairing strength Vn to reproduce the average experimental
neutron pairing gap for 120Sn, �n = 1.245 MeV. The proton
pairing strength Vp was adjusted proportionally based on the
default values of Vn and Vp.

In the first step, we performed parity-conserving calcula-
tions by constraining the octupole deformation to zero and
determined the corresponding equilibrium quadrupole defor-
mation β

(0)
2 . At the fixed value of β

(0)
2 , we varied β3 from 0

to 0.25. In the HFBTHO code, multipole constraints are actu-
ally applied to quadrupole (Q20) and octupole (Q30) moments
related to β2 and β3 through

β2 = Q20/

(√
16π

5

3

4π
AR2

0

)
, β3 = Q30/

(√
16π

7

3

4π
AR3

0

)
,

(34)

where A is the mass number, R0 = 1.2 fm × A1/3, and

Q20 = 〈2z2 − x2 − y2〉, Q30 = 〈z(2z2 − 3x2 − 3y2)〉.
(35)

Figure 1 shows reflection-asymmetric deformation ener-
gies �E (β3) = E (β3) − E (β3 = 0) determined for 224Ra and
146Ba obtained in this way. We see that UNEDF2 gives a
higher octupole deformability than SLy4 in both nuclei. This
is consistent with the results of Ref. [3].

A. Multipole expansion of the deformation energy

The convergence of the multipole expansion (15) provides
a check on the accuracy of our results. In Fig. 2, we show the
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3

E 
(M

eV
)

UNEDF2
SLy4

146Ba
224Ra

FIG. 1. The deformation energies, �E (β3) = E (β3) − E (β3 =
0), as functions of β3 for 224Ra (dashed lines) and 146Ba (solid lines)
calculated at β

(0)
2 with the SLy4 (circles) and UNEDF2 (triangles)

EDFs.

energy difference,

Ediff(λ) =
λ∑

λ′=0

E[λ′] − E (36)

for 224Ra at two values of the octupole deformation, β3 = 0.05
and 0.15. We see that at β3 = 0.15, the multipole components
decrease exponentially with λ, with the monopole component
off by about 150 MeV and the sum up to λ = 9 exhausted
up to about 20 keV. At a small octupole deformation of
β3 = 0.05, high-order contributions decrease. As expected,
the octupole component brings now less energy as compared
to the quadrupole one. The results displayed in Fig. 2 convince
us that cutting the multipole expansion of energy at λ = 9
provides sufficient accuracy.

Figure 3 shows how the reflection-asymmetric deformation
energy builds up. It presents the four leading multipole com-
ponents �E[λ](β3) = E[λ](β3) − E[λ](β3 = 0), for λ = 0 − 3,
of the deformation energies shown in Fig. 1. We can see
that the pattern of contributions of different multipolari-

0 1 2 3 4 5 6 7 8 9

E d
if

f 
 (

M
eV

)

224Ra, SLy4

3=0.15

3=0.05

10
3

10
2

10
1

10
0

10
1

10
2

FIG. 2. Convergence of Ediff(λ) (36) for 224Ra computed with
SLy4 at β3 = 0.05 (dashed line) and 0.15 (solid line).

SLy4 UNEDF2

146Ba

224Ra

E
(M

eV
)

3

[�
[�

[�[�

(a) (b)

(c) (d)

FIG. 3. Multipole components, �E[λ](β3) = E[λ](β3) −
E[λ](β3 = 0), of the total deformation energy shown in Fig. 1,
plotted for λ = 0–3 as functions of the octupole deformation β3 at
β

(0)
2 . Top (bottom) panels show results for 224Ra (146Ba) obtained

with the SLy4 (left) and UNEDF2 (right) EDFs.

ties is fairly generic: it weakly depends on the choice of
the nucleus or EDF. Figure 3 clearly demonstrates that the
main driver of reflection-asymmetric shapes is a strong at-
tractive octupole energy �E[3]. The attractive dipole energy
�E[1] is much weaker. The monopole and quadrupole en-
ergies are repulsive along the trajectory of β3 (with a fixed
quadrupole deformation β

(0)
2 ) and essentially cancel the oc-

tupole contribution. Indeed, one can note that while individual
multipole components can be of the order of tens of MeV,
the total reflection-asymmetric deformation energy shown
in Fig. 1 is an order of magnitude smaller. Therefore, the
final reflection-asymmetric correlation results from a large
cancellation between individual multipole components, and
even a relatively small variation of any given component can
significantly shift the net result. In addition, as discussed in
Sec. IV C below, higher-order multipole components (λ > 3)
can be important for the total energy balance.

B. Isospin and neutron-proton structure of the octupole
deformation energy

To analyze the origin of the octupole energy �E[3], in
Fig. 4 we show its isospin and neutron-proton components
as defined in Eqs. (31a) and (33). Again, a generic pattern
emerges. In all cases, the octupole energy is almost equal
to its isoscalar part �Et=0

[3] . The isovector energy �Et=1
[3] is

indeed very small, even if the studied nuclei have a significant
neutron excess; this is consistent with the simple estimates
of Sec. II. The contribution from the pairing energy �Epair

[3]
is also practically negligible. In the neutron-proton scheme,
the np component always clearly dominates the nn and pp
terms. The latter two are very small for UNEDF2 and hence
�E[3] ≈ �Et=0

[3] ≈ �Enp
[3] for this EDF. For SLy4, the nn and

pp terms provide larger contributions to the octupole defor-
mation energy, accompanied by a reduction of the np term.
Regardless of these minor differences between the EDFs, we
can safely conclude that it is the isoscalar octupole component
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E [

3
] 
(M

eV
)

3

(a) (b)

(c) (d)

SLy4 UNEDF2

146Ba

224Ra

FIG. 4. Similar to Fig. 3 but for different isospin and neutron-
proton components of the octupole energy �E[3].

(or the np octupole energy component) that plays the domi-
nant role in building up the nuclear octupole deformation.

C. Reflection-asymmetric deformability along isotopic chains

At this point, we are ready to study structural changes
that dictate the appearance of nuclear reflection-asymmetric
deformations. The results shown in Figs. 3 and 4 tell us that
a mutual cancellation of near-parabolic shapes of different
components of the deformation energy results in a clearly non-
parabolic dependence of the total deformation energy, as seen
in Fig. 1. Therefore, to track back the positions and energies
of the equilibrium reflection-asymmetric deformations to the
properties of specific interaction components is not easy. To
this end, we analyze the properties of reflection-asymmetric
deformabilities of nuclei, that is, we concentrate on the curva-
ture of reflection-asymmetric deformation energies at β3 = 0.
To investigate the variation of the reflection-asymmetric de-
formability with neutron number, we performed SLy4-HFB
calculations for the isotopic chains of even-even 138–152Ba,
214–232Ra, and 216–234U isotopes, which are in the region of
reflection-asymmetric instability, as well as 166–180Yb, which
are expected to be reflection symmetric [3]. In Fig. 5 we show
the baseline quadrupole deformations β

(0)
2 . For the Ba, Ra, and

U isotopic chains, spherical-to-deformed shape transitions are
predicted slightly above the neutron magic numbers. The con-
sidered open-shell Yb isotopes are all predicted to be well
deformed.

As a quantitative measure of the octupole deformability,
we analyze the deformation energy �E = E (β3 = 0.05) −
E (β3 = 0) calculated at a small octupole deformation of
β3 = 0.05, with the quadrupole deformation fixed at β

(0)
2 . We

have checked that for different energy components, curvatures
�E/β2

3 are stable within about 1% up to β3 = 0.05, so val-
ues of �E taken at β3 = 0.05 constitute valid measures of
the octupole stiffness. In Fig. 6 we show the values of �E
calculated for the four studied isotopic chains. We see that the
negative values of �E delineate regions of neutron numbers

2
(

3
=

0
)

Neutron number

(a) (b)

(c)

(d)U

Ba Ra

Yb

FIG. 5. Equilibrium quadrupole deformations β
(0)
2 as functions

of N for the isotopic chains of (a) Ba, (b) Ra, (c) U, and (d) Yb
computed with the SLy4 EDF.

where reflection-asymmetric deformations set in in Ba, Ra,
and U isotopes [3].

We now study �E[λ], the multipole components of the total
deformation energy, for the four isotopic chains considered
to see whether they could provide insights into the neutron-
number dependence of octupole deformations. Figure 7 shows
that the answer is far from obvious. Indeed, we observe
strong cancellations of contributions coming from different
multipole components of the reflection-asymmetric deforma-
tion energy. For example, both the repulsive monopole and
attractive octupole components are an order of magnitude
larger than the total deformation energies shown in Fig. 6.
Therefore, we can expect that in order to understand the
behavior of the deformation energies, higher-order multipole
components �E[λ] should be considered. Indeed, it has been
early recognized that higher-order deformations can strongly
influence the octupole collectivity of reflection-asymmetric
nuclei [34–41].

To better see accumulation effects with increasing multi-
polarity and subtle fluctuations at different orders, in Fig. 8

(a) (b)

(c) (d)

Neutron number

E 
(M

eV
)

U

Ba Ra

Yb

FIG. 6. Similar to Fig. 5 but for the deformation energy �E =
E (β3 = 0.05) − E (β3 = 0).
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(a) (b)

(c) (d)

Neutron number

E
 (

M
eV

)

U

Ba Ra

Yb

FIG. 7. Similar to Fig. 5 but for the deformation energies
�E[λ] = E[λ](β3 = 0.05) − E[λ](β3 = 0) for λ = 0–3.

we plot multipole components of the octupole deformability
summed up to λmax. Noting dramatically different scales of
Figs. 6 and 8, we see that summations up to about λ = 5
or 7 are needed for the results to converge. Although the
octupole component contributes by far most to the creation
of the reflection-asymmetric deformation energy, its effect is
counterbalanced by a very large monopole component and,
therefore, even higher multipole components are instrumental
in determining the total reflection-asymmetric deformability.
This aspect is underlined in the results shown in Figs. 9
and 10, where we separately show analogous sums of only
odd-λ (odd parity) and even-λ (even parity) components, re-
spectively. It is clear that the octupole polarizability is a result
of a subtle balance between positive (repulsive) effect of the
even-parity multipoles and negative (attractive) effect of the
odd-parity multipoles.

(a) (b)

(c) (d)

Neutron number

E
m

ax
] (

M
eV

)

U

Ba Ra

Yb
0
1
2
3
4

5
6
7
8
9

FIG. 8. Similar to Fig. 7 but for the deformation energies �E =
E (β3 = 0.05) − E (β3 = 0) with multipole components summed up
from λ = 0 to λmax. The values of λmax are listed in the legend.
The regions of deformed isotopes exhibiting reflection-asymmetric
instability in Fig. 6 are marked by shading.

(a) (b)

(c) (d)

Neutron number

E
m

ax
] (

M
eV

)

U

Ba Ra

Yb
3

5

7

9

1

FIG. 9. Similar to Fig. 8 but for the cumulative sum involving
odd-λ multipoles only.

D. Relation to shell structure

To gain some insights into the shell effects behind the
appearance of stable reflection-asymmetric nuclear shapes,
Figs. 11 and 12 show, respectively, the s.p. level diagrams
for 176Yb and 224Ra as functions of β2. While such diagrams
cannot predict symmetry breaking effects per se, they can
often provide qualitative understanding.

The well-deformed nucleus 176Yb is characteristic of a stiff
octupole vibrator. Indeed, its nucleon numbers (Z = 70, N =
106) lie far from the octupole-driving numbers Noct. Due to
the large deformed Z = 70 gap around β2 = 0.32, there are
no s.p. states of opposite parity and the same projection 


of the total s.p. angular momentum on the symmetry axis
that could produce p-h excitations with appreciable λ = 3
strength across the Fermi level. As for the neutron s.p. levels,
the low-
 positive-parity states originating from the 1i13/2

shell lie below the Fermi level, which appreciably reduces the
1i13/2 ↔ 2 f7/2 strength. Because of the large quadrupole de-
formations of Yb isotopes considered, the s.p. orbital angular
momentum � of normal-parity orbitals is fairly fragmented

(a)

(b)

(c) (d)

Neutron number

E
m

ax
] (

M
eV

)

U

Ba
Ra

Yb

0

2
4

6
8

FIG. 10. Similar to Fig. 8 but for the cumulative sum involving
even-λ multipoles only.
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FIG. 11. Single-particle (canonical) neutron (top) and proton
(bottom) SLy4-HFB levels as functions of β2 (β3 = 0) for 176Yb.
Solid (dashed) lines indicate positive- (negative-)parity levels. Fermi
levels εF at N = 106 and Z = 70 are marked by dash-dotted lines.
The equilibrium deformation of 176Yb is indicated by a vertical
dotted line.

within the shell [42]. As seen in Figs. 10(d) and 9(d), all
multipole components of �E for 176Yb vary very smoothly
with neutron number.

The Nilsson diagram shown in Fig. 12 is characteristic of
transitional neutron-deficient actinides in which the octupole
instability is expected. The unique-parity shells, 1i13/2 proton
shell and 1 j15/2 neutron shell, are of particle character, which
results in an appearance of close-lying opposite-parity pairs
of Nilsson levels with the same low 
 values at intermedi-
ate quadrupole deformations. These levels can interact via
the octupole field, with the dominant π1i13/2 ↔ π2 f7/2 and
ν1 j15/2 ↔ ν2g9/2 couplings.

As seen in Figs. 9 and 10, in the regions of octupole in-
stability, the monopole and quadrupole deformation energies
become locally reduced while the octupole and dotriacon-
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3d3/2
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FIG. 12. Similar to Fig. 11 but for 224Ra. Fermi levels for even-
even Ra isotopes with N = 130–144 are marked by circles. They
have been shifted according to the position of the spherical 2g9/2

neutron and 1h9/2 proton shell. The equilibrium deformation of 224Ra
is indicated by a vertical dotted line.

tapole (λ = 5) contributions to �E grow. According to our
results, the effect of the dotriacontapole term is essential for
lowering �E around Noct. This not surprising as the main
contribution to the dotriacontapole coupling comes from the
�� = � j = 3 excitations [38,40], i.e., the octupole and do-
triacontapole correlations are driven by the same shell-model
orbits. Interestingly, it is the attractive λ = 5 contribution
to �E rather than the octupole term that exhibits the local
enhancement in the regions of octupole instability.

The shallow octupole minima predicted around 146Ba
result from an interplay between the odd-λ deformation en-
ergies, which gradually increase with N [see Fig. 9(a)] and
the even-λ deformation energies, which gradually decrease
with N [see Fig. 10(b)]. Again, the dotriacontapole moment
is absolutely essential for forming the octupole instability.
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V. CONCLUSIONS

In this work, we used the Skyrme-HFB approach to study
the multipole expansion of interaction energies in both isospin
and neutron-proton schemes in order to analyze their role
in the appearance of reflection-asymmetric g.s. deformations.
The main conclusions and results of our study can be summa-
rized as follows:

(i) Based on the self-consistent HFB theory, reflection-
asymmetric ground-state shapes of atomic nuclei
are driven by the odd-multipolarity isoscalar (or, in
neutron-proton scheme, np) part of the nuclear inter-
action energy. In a simple particle-vibration picture,
this can be explained in terms of the very large
isoscalar octupole polarizability χ3,0(�N = 1) = 3.

(ii) The most favorable conditions for reflection-
asymmetric shapes are in the regions of transitional
nuclei with neutron and proton numbers just above
magic numbers. For such systems, the unique-parity
shell has a particle character, which creates favorable
conditions for the enhanced �� = � j = 3 octupole
and dotriacontapole couplings.

(iii) The presence of high-multipolarity interaction com-
ponents, especially λ = 5 are crucial for the emer-
gence of stable reflection-asymmetric shapes. Micro-
scopically, dotriacontapole couplings primarily come
from the same �� = � j = 3 p-h excitations that are
responsible for octupole instability. According to our
calculations, the attractive λ = 5 contribution to the

octupole stiffness is locally enhanced in the regions
of reflection-asymmetric g.s. shapes.

In summary, stable pearlike g.s. shapes of atomic nu-
clei result from a dramatic cancellation between even- and
odd-multipolarity components of the nuclear binding energy.
Small variations in these components, associated, e.g., with
the s.p. shell structure, can thus be instrumental for tilting
the final energy balance towards or away from the octupole
instability. One has to bear in mind, however, that the shell
effect responsible for the spontaneous breaking of intrinsic
parity is weak, as it is associated with the appearance of
isolated �� = � j = 3 pairs of levels (parity doublets) in
the reflection-symmetric s.p. spectrum. In this respect, the
breaking of the intrinsic spherical symmetry in atomic nu-
clei (presence of ellipsoidal deformations) is very common
as every spherical s.p. shell (except for those with j = 1/2)
carries an intrinsic quadrupole moment that can contribute to
the vibronic coupling.
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