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The semimicroscopic particle-hole dispersive optical model is adopted for a description of main properties of
isoscalar giant multipole resonances (up to L = 3) in medium-heavy closed-shell nuclei. The main properties
are characterized by the strength distribution, transition density, and partial and total probabilities of direct one-
nucleon decay. The model is implemented to describe characteristics of the mentioned resonances in the 208Pb
nucleus, taken as an example. Calculation results are compared with available experimental data.
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I. INTRODUCTION

A detailed description of any giant resonance (GR) [1,2]
includes the following characteristics: (i) strength distribution
for a large excitation-energy interval, (ii) energy-dependent
double transition density (which depends only on nuclear
structure) and projected one-body transition density (associ-
ated with a given one-body probing operator), and (iii) partial
and total probabilities of direct one-nucleon decay. In order to
get such a description, within theoretical approaches, the main
relaxation modes of high-energy particle-hole-type [(p-h)-
type] states associated with GRs should be together taken into
account. These relaxation modes include Landau damping,
coupling of the mentioned (p-h)-type states to the single-
particle continuum, and the coupling to many-quasiparticle
configurations (the spreading effect). The recently devel-
oped particle-hole dispersive optical model (PHDOM) [3]
accounts for the above-described relaxation modes. PHDOM
is a microscopically based extension of the standard [4]
and nonstandard [5] versions of the continuum-random-phase
approximation (cRPA) to taking the spreading effect into
account. Within the PHDOM, which is a semimicroscopic
model, Landau damping and coupling to the continuum
are considered microscopically (in terms of a mean field
and p-h interaction), while the spreading effect is treated
phenomenologically (in terms of a properly parametrized
energy-averaged p-h self-energy term). The imaginary part of
this term determines the real part via a dispersive relation-
ship. The current PHDOM version has been implemented to
describe the simplest photonuclear reactions accompanied by
excitations of the isovector giant dipole resonance in a number
of neutron-closed-shell nuclei [6], the main properties of the
isoscalar giant monopole resonance in 208Pb [7,8], properties

of isobaric analog resonance and its overtone in the mentioned
parent nucleus [9]. Weak violations of model unitarity (caused
by the method of taking the spreading effect into account) and
methods of unitarity restoration have been studied in Ref. [8].

In the present work, we adopt the PHDOM current version
for a description of the main properties of the isoscalar giant
multipole resonances (ISGMPRs) (up to L = 3) together with
the overtones of isoscalar giant monopole and quadrupole res-
onances in medium-heavy closed-shell nuclei. A cRPA-based
description of isoscalar bound states, including the 1− spuri-
ous state related to center-of-mass motion, is also taken into
consideration. The model is implemented to describe charac-
teristics of the mentioned resonances in the 208Pb nucleus,
taken as an example. Calculation results are compared with
available experimental data.

This work is motivated by the following possibilities: (i)
to check abilities of the model in describing the strength
distribution of isoscalar non-spin-flip GRs with taking into
account the isobaric symmetry and translation invariance of
the model Hamiltonian [integral characteristics of the distri-
bution are compared with related results obtained within the
microscopic RPA-based approach of self-consistent Hartree-
Fock (HF) using Skyrme-type forces (SFs) [2,10]]; (ii) to get a
microscopic input (the projected energy-dependent one-body
transition density [7]) for an analysis (based on the distorted
wave Born approximation) of (α,α′)-scattering cross sections
of ISGMPRs excitation [11,12] [as a rule, the quasiclassical
collective-model (energy-independent) transition densities are
used in such an analysis (see, e.g., Refs. [13,14])], and (iii)
to realize the unique ability of the model in describing the
branching ratios for direct one-nucleon decay of ISGMPRs.
The above-listed points allow us to state that the use of
PHDOM opens new possibilities in describing properties of
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non-spin-flip isoscalar GRs when compared with widely used
(HF-based RPA + SF) approaches (see, e.g., the review paper
of Ref. [15]). Some preliminary results of the present study
are given in Ref. [16].

In Sec. II, we give the PHDOM basic equations and
relations for describing ISGMPRs. The choice of model pa-
rameters, calculation results, and a comparison with available
experimental data are presented in Sec. III. Section IV con-
tains a discussion of the results and conclusive remarks.

II. BASIC EQUATIONS AND RELATIONS

Since the PHDOM is an extension of the cRPA versions
to taking the spreading effect into account, most of the equa-
tions and relations of these approaches are similar. So, the
basic equation for implementing the PHDOM is the Bethe-
Goldstone-type equation for the energy-averaged (local) p-h
Green function. In applying to the description of ISGMPRs in
spherical nuclei, this Green function (or p-h propagator) can
be expanded in spherical harmonics:

Ã(�r, �r′, ω) =
∑

LM
(rr′)−2ÃL(r, r′, ω)YLM (�n)Y ∗

LM (�n′), (1)

where ω is the excitation energy. If the p-h interaction respon-
sible for long-range correlations in the isoscalar and isovector
non-spin-flip channels is taken in the form of Landau-Migdal
forces

F (�r1, �r2) → (F (r1) + F ′ �τ1�τ2)δ(�r1 − �r2), (2)

one gets the equation for the p-h propagator radial components

ÃL(r, r′, ω) = AL(r, r′, ω) +
∫

AL(r, r1, ω)F (r1)

× ÃL(r1, r′, ω)dr1/r2
1 . (3)

Here, the radial component (rr′)−2AL(r, r′, ω) of the “free” p-
h propagator, which relates to the model of noninteracting and
independently damping p-h excitations, is the key quantity in
the PHDOM-based description of corresponding ISGMPRs.
The explicit expression for this quantity is discussed below.
As a comment to Eq. (3), we note that weak mixing of L �= 0
ISGMPRs with respective isoscalar giant spin-multipole reso-
nances due to the mean-field spin-orbit part is neglected.

The p-h propagator of Eq. (3) determines the corre-
sponding component of the energy-averaged double transition
density ρ(�r, �r′, ω) = ∑

LM (rr′)−2
ρL(r, r′, ω)YLM (�n)Y ∗

LM (�n′)
by the relation

ρL(r, r′, ω) = − 1

π
ImÃL(r, r′, ω). (4)

In accordance with the spectral expansion of the p-h
propagator, the double transition density of Eq. (4) deter-
mines the energy-averaged strength function SL(ω) related
to an isoscalar non-spin-flip external field (probing opera-
tor) VLM (�r) = VL(r)YLM (�n) (VL(r) is supposed to be a real
quantity):

SL(ω) =
∫

VL(r)ρL(r, r′, ω)VL(r′)drdr′. (5)

It is noteworthy that due to the method of treating the
spreading effect within PHDOM, the double transition density
cannot be factorized in terms of one-body transition densities.
Within the model, the strength function of Eq. (5) can be eval-
uated in a simpler way. For this aim, we define the so-called
effective field ṼL(r, ω) by the integral relation∫

ÃL(r, r′, ω)VL(r′)dr′ =
∫

AL(r, r′, ω)ṼL(r′, ω)dr′. (6)

In accordance with Eqs. (3) and (6), the effective field
obeys the equation

ṼL(r, ω) = VL(r) + F (r)

r2

∫
AL(r, r′, ω)ṼL(r′, ω)dr′, (7)

which is simpler than Eq. (3). An alternative expression for
the strength function follows from Eqs. (4)–(6):

SL(ω) = − 1

π
Im PL(ω), (8)

where PL(ω) is the respective polarizability:

PL(ω) =
∫

VL(r)AL(r, r′, ω)ṼL(r′, ω)drdr′. (9)

Since the methods, used for describing hadron-nucleus
scattering accompanied by GR excitation, employ only one-
body transition density (see Refs. [11–13]), it is desirable
to factorize approximately the double transition density of
Eq. (4). It can be done in terms of the projected (one-body)
transition density ρVL (r, ω) related to a given probing operator
and defined as follows [7]:

ρVL (r, ω) =
∫

ρL(r, r′, ω)VL(r′)dr′/S1/2
L (ω). (10)

Using Eqs. (5)–(10), one gets the following expressions,
which are formally valid also in cRPA:

SL(ω) =
[∫

ρVL (r, ω)VL(r)dr

]2

, (11)

1

r2
ρVL (r, ω) = − 1

π
ImṼL(r, ω)

/[
F (r)S1/2

L (ω)
]
. (12)

All the considered quantities related to ISGMPRs are de-
termined, in fact, by elements of the free p-h propagator
AL = Ann̄

L + App̄
L (below the indexes “n” and “p” related to

the neutron and proton subsystems are, as a rule, omitted
for brevity’s sake). We note here that the basic Eqs. (3)
and (7) are derived in the approximation (N−Z ) � A, where
A = N + Z is the number of nucleons. The expression for
the free p-h propagator, in which the continuum and spread-
ing effect are approximately taken into account, has been
derived for closed-shell nuclei in a rather general form [3].
This expression adopted in Ref. [7] to describe within the
PHDOM the isoscalar giant monopole resonance [i.e., to
get the quantity AL=0(r, r′, ω)] contains the occupation num-
bers nμ, the single-particle radial bound-state wave functions
r−1χμ(r), and energies εμ, with μ = nr,μ, jμ, lμ, (μ) ≡ jμ, lμ
being the set of bound-state quantum numbers, and the
Green functions g(λ)(r, r′, ε = εμ ± ω) of the single-particle
radial Schrodinger equation, which contains the complex
term [−iW (ω) + P (ω)] fμ fW S (r), added to a mean field, with
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W (ω) and P (ω) being the imaginary and real parts of the
intensity of the energy-averaged p-h self-energy term respon-
sible for the spreading effect, and fW S (r) and fμ are the
Woods-Saxon function and its diagonal matrix element, re-
spectively. The expression for AL(r, r′, ω) can be obtained
from that for AL=0(r, r′, ω), given in details in Ref. [7], by
the substitution of the kinematic factors:

tL=0
(λ)(μ) = (2 jμ + 1)1/2

√
4π

δ(λ),(μ) → tL
(λ)(μ)

= 1√
2L + 1

〈(λ)‖YL‖(μ)〉. (13)

The results of strength function calculations can be veri-
fied, using the weakly model-dependent energy-weighted sum
rule EWSRL = ∫

ωSL(ω)dω [1]:

EWSRL = 1

4π

h̄2

2M
A

〈(
dVL(r)

dr

)2

+ L(L + 1)

(
VL(r)

r

)2〉
.

(14)
Here, the averaging 〈. . .〉 is performed over the nuclear density
n(r) = nn(r) + np(r). In the next section, the strength func-
tions SL(ω) calculated for the 208Pb nucleus are presented
in terms of the relative energy-weighted strength functions
(fractions of EWSRL),

yL(ω) = ωSL(ω)/EWSRL, (15)

normalized by the condition xL = ∫
yL(ω)dω = 1. [We omit

the factor (2L + 1) in Eq. (14) in accordance with the defini-
tion used for strength functions of Eqs. (5) and (8).]

The choice of the radial part of probing operators VL(r)
used for describing ISGMPRs within PHDOM depends on the
nature of the considered resonance. The position dependen-
cies of VL=2, 3(r) are taken as rL, because the isoscalar giant
quadrupole and octupole resonances (ISGQR and ISGOR, re-
spectively) are related to main-tone collective excitations. The
signature of these excitations is a nearly nodeless radial de-
pendence of projected transition densities ρVL (r, ω) [Eqs. (10)
and (12)] taken at ω = ωL(peak)—the energy of the main
maximum of the respective strength function. The isoscalar
giant monopole and dipole resonances (ISGMR and ISGDR,
respectively) can be considered as the overtone excitations.
The respective main tones are related to the spurious states
(SSs): the 0+ ground state and the 1− state associated with
center-of-mass motion. The signature of an arbitrary overtone
is the appearance of an extra node in the radial dependence of
the projected transition density taken at the main maximum of
the overtone GR strength function. To suppress excitation of
the above-mentioned spurious states, the radial dependence
of the probing operators is taken as VL=0(r) = r2 − η0〈r2〉
and VL=1(r) = r(r2 − η1〈r2〉). To avoid violation of PHDOM
unitarity, the parameter η0 is taken equal to unity [8]. Spurious
isoscalar 1− excitations are described by the polarizability
PSS

L=1(ω) related to the isoscalar dipole operator, having the
radial part V SS

L=1(r) = r. From the condition that the mentioned
polarizability related to this operator has a maximum at ω =
ωSS

L=1 close to zero excitation energy, one gets the strength of
the isoscalar part of Landau-Migdal forces [17] (see Sec. III
and the Appendix). Being determined by the effective field

Ṽ SS
L=1(r, ω → ωSS

L=1), the radial part of the 1− spurious-state
transition density ρSS

L=1(r)/r2 (see Sec. III and the Appendix)
might be used to find the parameter η1 in the expression for
the radial part of the second-order isoscalar dipole probing
operator from the condition

∫
VL=1(r)ρSS

L=1(r)dr = 0. Among
the overtones of real isoscalar GRs, the overtones of monopole
and quadrupole GRs (ISGMR2 and ISGQR2, respectively)
have the lowest excitation energies [17,7]. The radial part of
the respective probing operators V ov

L (r) = r2(r2 − ηov
L 〈r2〉)

(L = 0, 2) contains the adopted parameter ηov
L . To suppress

main-tone excitation, this parameter can be found from the
condition

∫
V ov

L (r)ρVL (r, ωL(peak))dr = 0. The main-tone GR
is placed at the distant low-energy “tail” of the corresponding
overtone. All the above-considered overtones are related to
“breathing” modes of nuclear excitations.

The ability to estimate quantitatively the probabilities of
direct one-nucleon decay of GRs belongs to unique features
of PHDOM. Within the model (as in case of the nonstan-
dard cRPA version), the effective-field method is used for
such estimations [6,8,9]. The strength function for direct one-
nucleon decay of ISGMPR into the channel μ, corresponding
to population of the one-hole configuration μ−1 in the product
nucleus, is determined by the squared amplitudes of “direct +
semidirect” reactions induced by the external field VLM (�r) [8]:

S↑
L,μ(ω) =

∑
(λ)

nμ

(
tL
(λ)(μ)

)2
∣∣∣∣ ∫ χ∗

ε=εμ+ω,(λ)(r)

× ṼL(r, ω)χμ(r)dr

∣∣∣∣2

. (16)

Here, r−1χε>0,(λ)(r) is the radial one-nucleon continuum-state
wave function, having the standing-wave asymptotic behav-
ior. Being normalized to the δ function of the energy in the
W = P = 0 limit, this wave function obeys the mentioned
Schrodinger equation, in which the above-described complex
term is added to the mean field. The partial branching ratio for
direct one-nucleon decay of the ISGMPR into the channel μ,
b↑

L,μ, is determined by the strength functions of Eqs. (16), (8),
and (9):

b↑
L,μ =

∫
ω12

S↑
L,μ(ω)dω

/∫
ω12

SL(ω)dω. (17)

Here, ω12 = ω1 − ω2 is an energy interval that includes the
considered GR. The total branching ratio, b↑

L,tot = ∑
μ b↑

L,μ

(summation on the neutron and proton subsystems is also in-
cluded), determines the branching ratio for statistical (mainly
neutron) decay: b↓

L = 1 − b↑
L,tot . Note that in the cRPA limit

(W = P = 0) b↑
L,tot = 1 and b↓

L = 0.

III. DESCRIPTION OF ISGMPRs

Within the current PHDOM version employed for describ-
ing the main characteristics of ISGMPRs in the medium-
heavy closed-shell nuclei, the following input quantities are
used: (i) a realistic (Woods-Saxon-type) phenomenological
partially self-consistent mean field U (x) (described in detail
in Ref. [18]), (ii) the non-spin-flip part of Landau-Migdal
p-h interaction [Eq. (2)] with the isovector F ′ and isoscalar
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F (r) strengths related to the mean field due to approximate
restoration of isospin symmetry and translation invariance
of the model Hamiltonian, respectively, and (iii) the phe-
nomenological imaginary part W (ω) of the intensity of an
energy-averaged p-h self-energy term responsible for the
spreading effect.

(i) The mean field U (x) contains the isoscalar part U0(x),
including the central and spin-orbit terms; the isovector and
Coulomb parts U1(x) and UC (x), respectively, are taken as

U (x) = U0(x) + U1(x) + UC (x), (18)

U0(x) = −U0 fW S (r, R, a) + Uls
1

r

d fW S

dr
�l�s, (19)

U1(x) = 1

2
τ (3)v(r), UC (x) = 1

2

(
1 − τ (3))UC (r). (20)

Here, R = r0A1/3, r0 and a are the size and diffuseness
parameters, respectively; U0 and Uls are the strength pa-
rameters related to the isoscalar central and spin-orbit terms,
respectively (the quantity �l�s is taken in the fraction of h̄2);
v(r) = 2F ′n(−)(r) is the symmetry potential calculated self-
consistently via the neutron-excess density n(−)(r) = nn(r) −
np(r), and; UC (r) is the mean Coulomb field which is also
calculated self-consistently via the proton density np(r).

(ii) The isoscalar and isovector strengths of the non-spin-
flip part of Landau-Migdal p-h interaction are taken as F (r) =
C f (r) and F ′ = C f ′, C = 300 MeV fm3. From the above-
given expression for the symmetry potential, it follows that
Landau-Migdal parameter f ′ can be related to mean-field
parameters. The isoscalar strength f (r) is parametrized in
accordance with Ref. [19] as

f (r) = f ex + ( f in − f ex) fW S (r). (21)

The small parameter f in is usually taken as a universal
quantity, while the main parameter f ex in Eq. (21) is found for
each considered nucleus from the condition, that the energy
ωSS

L=1 of the spurious isoscalar dipole state is close to zero (see
Sec. II). The spurious-state energy and strength can be found
by parametrization of the inverse polarizability of Eq. (9)
related to spurious isoscalar dipole excitations:[

PSS
L=1(ω → 0)

]−1 = [
ω2 − (

ωSS
L=1

)2]/(
2xSS

L=1EWSRSS
L=1

)
.

(22)
In this expression, which follows from the spectral expansion
for the p-h Green function taken at low excitation energies
[see Eqs. (A1), and (A2) of the Appendix], the quantity xSS

L=1 is
the spurious-state fraction of the respective energy-weighted
sum rule of Eq. (14), xSS

L=1 = ωSS
L=1(MSS

L=1)2/EWSRSS
L=1, with

MSS
L=1 being the spurious-state excitation amplitude. The rea-

sonable choice of parameters f ex and f in means that within the
model used, the spurious-state energy is close to zero and the
spurious-state fraction of EWSRSS

L=1 is close to unity. Here, we
show also the expression for the 1− spurious-state transition

density [see Eqs. (A2), and (A3) of the Appendix],

ρSS
L=1(r) = r2

(
Ṽ

SS
L=1(r, ω → 0) − V SS

L=1(r)
)
MSS

L=1

/(
F (r)PSS

L=1(ω → 0)
)
, (23)

previously used (Sec. II).
Actually, the outlined method for the 1− spurious state

description can be used for the evaluation, within cRPA, of
the energy ωcoll

L , strength xcoll
L EWSRL/ωcoll

L , and transition
density ρcoll

L (r) of any isoscalar collective state below the
nucleon-escape threshold. In this case, the calculated inverse
polarizability can be presented in the form[

PL
(
ω → ωcoll

L

)]−1 = (
ω − ωcoll

L

)
ωcoll

L

/(
xcoll

L EWSRL
)
, (24)

which allows us to find the collective-state energy and
strength. The latter is usually described in terms of the reduced
EL-transition probability [B(EL), 0+ → Lπ ]/e2, where e is
the proton charge [1]. This quantity is related to the collective-
state strength as follows:

xcoll
L EWSRL/ωcoll

L = 4

2L + 1
[B(EL), 0+ → Lπ ]/e2. (25)

The factor 4 in this expression appears due to isobaric
structure of the external field related to EL transitions (L �= 1):
VEL ∼ e

2 (1 − τ (3) ). Equation (23) taken at ω → ωcoll
L can be

directly used to get the expression for the collective-state
transition density in terms of the related effective field.

(iii) Following Refs. [6–9], we take the imaginary part
of the intensity of the energy-averaged p-h self-energy term
responsible for the spreading effect as a three-parametric func-
tion of the excitation energy:

2W (ω) =
{

0, ω < �;

α(ω − �)2/[1 + (ω − �)2/B2], ω � �.

(26)
Here the adjustable parameters α, �, and B can be called as

the strength, gap, and saturation parameters, respectively. The
use of Eq. (26) for evaluation of the real part, P (ω), by means
of the proper dispersive relationship [3] leads to a rather
cumbersome expression, which can be found in Ref. [20].
The above-mentioned adjustable parameters are found from
the PHDOM-based description of observable total width (full
width at half maximum) and, to some extent, peak energy for
considered ISGMPRs in a given nucleus.

The strength (U0, Uls, f ′) and geometrical (r0, a) mean-
field parameters together with the parameters f ex, f in of
Eq. (21) are the independent input data used in implemen-
tation of PHDOM for describing ISGMPRs in medium-heavy
closed-shell nuclei. For the 208Pb nucleus taken as an appro-
priate example, the above-listed parameters are found from a
description of observable single-quasiparticle spectra in the
respective even-odd and odd-even nuclei. Table I contains
the mean-field parameters, the p-h interaction parameters, and

TABLE I. The list of mean-field and adjustable model parameters (notations are given in the text) used in calculations for 208Pb.

U0, MeV Uls, MeV fm2 f ′ r0, fm a, fm f ex f in α, MeV–1 B, MeV �, MeV

55.74 33.35 0.976 1.21 0.63 −2.66 0.0875 0.20 4.5 3.0
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FIG. 1. The phenomenological imaginary part W (ω) (solid line)
and real part P (ω) (thin line) of the energy-averaged p-h self-energy
term intensity, evaluated for 208Pb (the “spreading” parameters used
are given in Table I).

also adjustable (“spreading”) parameters. The latter determine
the quantities W (ω) and P (ω) (Fig. 1). Thus, all the main
characteristics of ISGMPRs (including L = 0, 2 overtones)
are described without the use of additional parameters.

In presenting the ISGMPR main characteristics calculated
within the current PHDOM version for the 208Pb nucleus,
we start from the relative energy-weighted strength functions
yL(ω) of Eq. (15). These functions are shown in Fig. 2 for
ISGMR and ISGMR2, Fig. 3 for ISGQR and ISGQR2, and
Fig. 4 for ISGDR and ISGOR. In Tables II and III, the follow-
ing ISGMPRs parameters deduced from calculated strength

FIG. 2. The relative energy-weighted strength functions calcu-
lated within PHDOM for ISGMR (solid line) and ISGMR2 (thin line)
in 208Pb.

FIG. 3. The same as in Fig. 2, but for ISGQR and ISGQR2.

functions SL(ω) of Eqs. (8) and (9) are given together with
available experimental data: the fraction of EWSRL, xL evalu-
ated for a large excitation-energy interval ω12, the main peak
energy (energies) ωL(peak), the centroid energy ω̄L evaluated
for a given energy interval within PHDOM and cRPA in a
comparison with the results of the self-consistent microscopic
approach of HF-based RPA using the SkT1 Skyrme force as-
sociated with m∗/m = 1 [10], the total width (the full width at
half maximum) L(FWHM), and the parameters ηL and ηov

L used
in the definition of the respective probing operator. The IS-
GMPRs parameters evaluated within cRPA (Tables II and III)
are obtained with the use of the small (energy-independent)
“technical” value 2W = 10 keV.

The 1− spurious-state parameters deduced from the calcu-
lated polarizability PSS

L=1(ω) of Eqs. (9) and (22), ωSS
L=1

∼= 20

FIG. 4. The same as in Fig. 2, but for ISGDR (solid line) and
ISGOR (thin line).
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TABLE II. The ISGMPRs parameters calculated for 208Pb together with available experimental data (notations are given in the text).

L, ηL ω1–ω2, MeV xL , % ω̄L , MeV ωL(peak), MeV L(FWHM), MeV

5–35 100 13.9 14.2 1.3 cRPA
0 5–35 103 14.5 14.2 4.2 PHDOM
η0 = 1 8–20 99 ± 15 13.96 ± 0.20 2.88 ± 0.20 expt. [14]

13.6 ± 0.2 3.6 ± 0.4 expt. [21]
7–60 13.92 SkT1

1 5–15 18 9.5 cRPA
(LE) 5–15 18 9.7 6.3; 11.8 PHDOM
η1 = 1.72 24 ± 15 13.26 ± 0.30 5.68 ± 0.50 expt. [14]

15–35 81 22.9 cRPA
1 15–35 83 23.5 23.9 7.0 PHDOM
(HE) 8–35 88 ± 15 22.20 ± 0.30 9.39 ± 0.35 expt. [14]
η1 = 1.72 22.5 ± 0.3 10.9 ± 0.9 expt. [21]

22.1 ± 0.3 3.8 ± 0.8 expt. [19]
16–60 23.40 SkT1

2 5–35 86 11.0 10.7 0.1 cRPA
5–35 90 11.3 10.6 2.7 PHDOM
8–35 100 ± 13 10.89 ± 0.30 3.0 ± 0.3 expt. [14]

10.9 ± 0.3 3.1 ± 0.3 expt. [23]
7–60 10.55 SkT1

3 5–15 17 8.4 cRPA
(LE) 5–15 19 8.7 5.8 1.1 PHDOM

15–35 60 19.8 18.9 0.3 cRPA
3 15–35 61 20.7 19.5 3.7 PHDOM
(HE) 8–35 70 ± 14 19.6 ± 0.5 7.4 ± 0.6 expt. [14]

19.1 ± 1.1 5.3 ± 0.8 expt. [24]
15–60 19.34 SkT1

keV and xSS
L=1

∼= 93%, are related to the chosen parameters f ex

and f in. As an example of describing within cRPA low-energy
isoscalar collective states (phonons) according to Eqs. (24)
and (25), we present in Table IV the calculated characteristics
of 3− and 2+ collective states in 208Pb.

The next main characteristic of the considered GRs is the
projected transition density of Eq. (10), ρVL (r, ω). Evaluated
within PHDOM these densities taken at the peak energy of
respective ISGMPR in 208Pb are shown in Figs. 5–8. In Figs. 7
and 8, the 1− spurious-state and low energy 3− transition
densities calculated within cRPA are also shown.

Turning to direct one-nucleon decay of the considered
ISGMPRs (Sec. II), we show the partial and total branch-

TABLE III. The overtone parameters calculated for ISGMR2 and
ISGQR2 in 208Pb (see text).

L, ηL ω1–ω2, MeV xL , % ω̄L , MeV ωL(peak), MeV

5–15 17 10.9 cRPA
0 5–15 18 11.1 10.0 PHDOM
ηov

0 = 2.43 15–45 81 27.1 cRPA
15–45 81 27.6 33.6 PHDOM
5–15 22 11.7 cRPA

2 5–15 22 11.4 10.7 PHDOM
ηov

2 = 1.73 15–45 78 26.0 cRPA
15–45 81 26.5 32.1 PHDOM

ing ratios, b↑
L,μ and b↑

L, evaluated within the PHDOM for
208Pb. The neutron branching ratios are given in Table V with
indication of the respective excitation-energy intervals. The
calculated partial branching ratios for direct one-proton decay

FIG. 5. The projected transition densities taken at the resonance
peak energy and calculated within PHDOM for ISGMR (solid line)
and high-energy ISGMR2 (thin line) in 208Pb.
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TABLE IV. Evaluated within cRPA parameters of isoscalar collective low-energy 3− and 2+ states in 208Pb in comparison with respective
experimental data [25] (see text).

Jπ ωcoll
L , MeV ωcoll

L, expt, MeV xcoll
L , % B(EL), 102L−1e2 fm2L Bexpt (EL), 102L−1e2 fm2L

3− 2.40 2.62 21 12.1 6.11 ± 0.09
2+ 4.42 4.09 14 4.0 3.18 ± 0.16

of ISGDR are compared with available experimental data in
Table VI.

IV. DISCUSSION OF RESULTS. CONCLUSIVE REMARKS

In the previous section, we presented the PHDOM-based
description of main properties of six ISGMPRs in the 208Pb
nucleus. The cRPA-based description of a few low-energy
bound isoscalar (p-h)-type states (including the 1− spurious
state related to center-of-mass motion) is also given.Most
of input quantities (enough for a cRPA-based description of
isoscalar and isovector non-spin-flip GRs), namely the mean-
field parameters and (p-h)-interaction strengths, are taken
from independent data with accounting for fundamental sym-
metries of the model Hamiltonian (Table I). Only two specific
parameters α and B (Table I) have been adjusted to get
within the model a reasonable description of experimental
total width and, to some extent, the peak energy of consid-
ered GRs. As it seen from Table II, the peak energies of
the monopole, quadrupole, and octupole resonances are well
described, while the peak energy of high-energy dipole reso-
nance is about 1.5 MeV higher than the experimental value.
As for the widths of these resonances, the calculated ISGMR
width is closer to the upper boundary of the experimental
value; the ISGQR width is closer to the lower boundary of
the experimental value. The high-energy components of IS-
GDR and ISGOR widths are significantly smaller than the
experimental data, which are rather contradictive. The scat-

FIG. 6. The same as in Fig. 5, but for ISGQR and high-energy
ISGQR2.

ter of respective experimental data doesn’t allow us now to
check more deeply the abilities of the model. The strength-
function calculations are verified by the use of respective
energy-weighted sum rules (Tables II–IV). The spreading shift
related to the centroid energy of considered GRs is found
relatively small (0.2–0.6 MeV), as it follows from comparing
the centroid energies evaluated within the PHDOM and the
cRPA (Table II). The spreading shift related to the ISGMPR
peak-energy (Table II) is in qualitative agreement with the
energy dependence of the real (dispersive) part of the intensity

FIG. 7. The projected transition density taken at the resonance
peak energy and calculated within PHDOM for high-energy ISGDR
(solid line), and the 1− spurious-state transition density calculated
within cRPA (thin line) for 208Pb.
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FIG. 8. The projected transition density taken at the resonance
peak-energy and calculated within PHDOM for high-energy ISGOR
(solid line), and the 3− state transition density calculated within
cRPA (thin line) for 208Pb.

of the energy-averaged (p-h) self-energy term P (ω) (Fig. 1).
It is noteworthy that the observed area of the ISGQR2 strength
concentration (around 26 MeV [22]) is in agreement with the
respective data of Table II. We note also that the centroid
energies of ISGMPRs calculated within cRPA and the micro-
scopic approach of HF-based RPA using the SkT1 Skyrme
force associated with m∗/m = 1 [10] are close (Table II).

The evaluated ISGMPR parameters given in Tables II and
III are deduced from strength functions SL(ω) calculated in a
large excitation energy interval. It is convenient to compare
the strength distributions for various GRs in terms of the
relative energy-weighted strength functions yL(ω) (Figs. 2–4).
As expected, the degree of strength concentration is decreased
with increasing GR excitation energy.

The main characteristics of ISGMPR include the projected
transition density ρVL (r, ω) considered in a large excitation
energy interval. The radial dependence of ρVL (r, ω = ωL(peak))
(Figs. 5–8) can be considered as a signature of considered GR.
The nodeless radial dependence is related to main-tone GRs

TABLE V. The partial and total branching ratios for direct one-
neutron decay of the ISGMPR into the channel μ. The evaluated
within PHDOM branching ratios (in %) for 208Pb are given with
indication of the respective excitation-energy intervals ω12 (in MeV)
(see text).

b↑
L=0,μ b↑

L=1,μ b↑
L=2,μ b↑

L=3,μ

μ−1\ω12 12.5–15.5 [26] 20–25 [27] 9–12 16–23
3p1/2 3.6 1.1 2.8 1.6
2 f5/2 18.0 5.4 1.5 5.9
3p3/2 7.5 2.6 5.8 3.8
1i13/2 0.8 11.4 0.2 5.9
2 f7/2 26.6 9.3 0.2 13.3∑

μ b↑
L,μ 56.5 29.8 10.5 30.5

(
∑

μ b↑
L,μ)expt 22 ± 6 [26] 23 ± 5 [27]

14.3 ± 3 [28] 10.5 [22]
b↑,n

L,tot 56.7 66.8 10.6 37.5

(ISGQR and ISGOR); the one-node radial dependence is re-
lated to first-order-overtone GRs (ISGMR, ISGDR, ISGQR2);
the two-node radial dependence is related to second-order-
overtone GRs (ISGMR2). The radial dependence of the 1−
spurious-state transition density ρSS

L=1(r) (Fig. 7) exhibits, nat-
urally, nodeless radial dependence.

A possibility to estimate the branching ratios for direct
one-nucleon decay of an arbitrary GR related to unique fea-
tures of the PHDOM-based approach is shown. The respective
relations given in Sec. II are, actually, obtained under the as-
sumption of a purely single-hole nature of the product-nucleus
states that are populated in the decay process. Therefore,
the calculated partial branching ratios can be considered as
an upper limit of possible values. In Table V, the evaluated
branching ratios for direct one-neutron decay of four ISGM-
PRs in the 208Pb nucleus are given together with available
experimental data. An approximately twofold excess of the
calculated values above the respective experimental values for
ISGMR and ISGDR is worth noting. This note is also valid for
the calculated values of the branching ratios for direct one-
proton decay of ISGDR (Table VI). However, the description
of experimental data is markedly improved upon multiplying
the calculated branching ratios b↑

L=1,μ by the experimental
values of spectroscopic factors Sμ for proton-hole states of
the product nucleus 207Tl. (The experimental spectroscopic

TABLE VI. The branching ratios (in %) for direct one-proton
decay of the ISGDR in 208Pb evaluated within PHDOM for the
excitation-energy intervals ω12 = 20 − 25 MeV (see text).

μ−1 b↑
L=1,μ Sμ [29] Sμb↑

L=1,μ (b↑
L=1,μ)expt [27]

3s1/2 3.4 0.55 1.9
2.3 ± 1.1

2d3/2 3.0 0.57 1.7
1h11/2 0.2 0.58 0.1

1.2 ± 0.7
2d5/2 4.1 0.54 2.2∑

μ b↑
L,μ 10.7 5.9 3.5 ± 1.8
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factors Sμ are close to unity for the majority of neutron-hole
states of the 207Pb nucleus, which are indicated in Table V.)

In conclusion, the particle-hole dispersive optical model
was adopted for describing the main properties of isoscalar
giant multipole resonances up to L = 3 in medium-heavy
closed-shell nuclei. The overtones of the monopole and
quadrupole isoscalar giant resonances were also studied. The
main properties, considered in a large excitation-energy inter-
val, include the following energy-averaged quantities: (i) the
strength function related to an appropriate probing operator,
(ii) the projected one-body transition density (related to the
corresponding operator), and (iii) partial probabilities of direct
one-nucleon decay. Unique abilities of PHDOM are condi-
tioned by a joint description of the main relaxation processes
of high-energy p-h configurations associated with a given gi-
ant resonance. Two processes, Landau damping and coupling
the mentioned configurations to the single-particle continuum,
were described microscopically in terms of Landau-Migdal
p-h interaction and a phenomenological mean field, partially
consistent with this interaction. Another mode, the coupling to
many quasiparticle states (the spreading effect), was described
phenomenologically in terms of the imaginary part of the
properly parameterized energy-averaged p-h self-energy term.
The imaginary part determines the real one via a microscopi-
cally based dispersive relationship.

The model parameters related to a mean field and p-h
interaction were taken from independent data accounting for
the isospin symmetry and translation invariance of the model
Hamiltonian. Parameters of the imaginary part of the strength
of self-energy term were adjusted to reproduce in PHDOM-
based calculations of ISGMPR total widths for the considered
closed-shell nucleus. The adopted model is implemented to
describe the characteristics of the ISGMPRs in the 208Pb
nucleus, taken as an example. Calculation results were com-
pared with available experimental data. Some of the results
were compared with those obtained in microscopic HF-based
RPA calculations using Skyrme force. These comparisons
indicate that PHDOM represents a rather powerful tool for
describing ISGMPRs in medium-heavy closed-shell nuclei.
The implementation of the PHDOM-based approach to de-
scribing ISGMPRs in other medium-heavy closed-shell nuclei
is in progress.
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APPENDIX: A cRPA DESCRIPTION OF ISOSCALAR
BOUND (p-h)-TYPE STATES

1. The description is based on the spectral expansion
of the cRPA p-h Green function, whose radial components,
ÃcRPA

L (r, r′, ω), satisfying Eq. (1) in neglecting the spreading
effect, can be presented in the form

ÃcRPA
L (r, r′, ω) =

∑
c

ρc,L(r)ρc,L(r′)

×
[

1

ω − ωc,L + i0
− 1

ω + ωc,L − i0

]
.

(A1)

Here, ωc,L and ρc,L(r) are, respectively, the energy and
radial (one-dimensional) transition density of (p-h)-type
states. These latter are normalized to unity for bound
states and to the δ function of the energy for continuum
states.

2. In the case of the spurious isoscalar 1− state, having
within the model the energy ωSS

L=1 close to zero, the expression
for the polarizability of Eqs. (6) and (9) related to the external
field V SS

L=1(r) = r and taken in the cRPA limit follows from
(A1):

PSS
L=1(ω → 0) = 2ωSS

L=1

(
MSS

L=1

)2/[
ω2 − (

ωSS
L=1

)2]
. (A2)

Here, MSS
L=1 = ∫

ρSS
L=1(r)rdr is the spurious-state excitation

amplitude. The use of the inverse polarizability of Eq. (22) is
more convenient for searching the spurious-state energy and
fraction of EWSRSS

L=1.
3. The expression for the spurious-state transition density

ρSS
L=1(r) of Eq. (23) follows from Eqs. (6) and (7) (consid-

ered in the cRPA limit) and Eqs. (A1) and (A2) taken at
ω → ωSS

L=1 → 0:

Ṽ SS
L=1(r, ω → 0) − V SS

L=1(r)

= F (r)

r2
ρSS

L=1(r)MSS
L=12ωSS

L=1

/[
ω2 − (

ωSS
L=1

)2]
. (A3)

The radial dependence of ρSS
L=1(r)/r2 is expected to be close

to the “ideal” spurious-state transition density, which is pro-
portional to the radial gradient of nuclear density. As a result,
the parameter η1 in the expression for the probing operator
VL=1(r) (Sec. II) is expected to be close to the widely used
quantity 5/3.

4. The main characteristics of isoscalar collective bound
states, ωcoll

L , Mcoll
L (or xcoll

L ), and ρcoll
L (r), can be obtained

from Eqs. (A2) and (A3), related to the respective external
field VL(r) and taken at ω → ωcoll

L . In such a case, the ra-
tio 2ωcoll

L /[ω2 − (ωcoll
L )2] is going to 1/(ω − ωcoll

L ) [see, e.g.,
Eq. (24)].
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