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Hadron-quark mixed phase in the quark-meson coupling model
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We explore the possibility of a structured hadron-quark mixed phase forming in the interior of neutron
stars. The quark-meson coupling (QMC) model, which explicitly incorporates the internal quark structure of
the nucleon, is employed to describe the hadronic phase, while the quark phase is described by the same bag
model as the one used in the QMC framework, so as to keep consistency between the two coexisting phases.
We analyze the effect of the appearance of hadron-quark pasta phases on the neutron-star properties. We also
discuss the influence of nuclear symmetry energy and the bag constant B in quark matter on the deconfinement
phase transition. For the treatment of the hadron-quark mixed phase, we use the energy minimization method
and compare it with the Gibbs construction. The finite-size effects like surface and Coulomb energies are taken
into account in the energy minimization method; they play crucial roles in determining the pasta configuration
during the hadron-quark phase transition. It is found that the finite-size effects can significantly reduce the region
of the mixed phase relative to that of the Gibbs construction. Using a consistent value of B in the QMC model
and quark matter, we find that hadron-quark pasta phases are formed in the interior of massive stars, but no pure
quark matter can exist.

DOI: 10.1103/PhysRevC.103.025809

I. INTRODUCTION

It is generally believed that hadronic matter undergoes a
phase transition to deconfined quark matter at high baryon
densities, which may occur in the interior of massive neutron
stars [1–3]. Recent advances in astrophysical observations
have led to increasing interest in exploring various properties
of neutron stars, such as their internal structure, mass-radius
relation, and tidal deformability. Several precise mass mea-
surements of massive pulsars, PSR J1614–2230 [4–6], PSR
J0348+0432 [7], and PSR J0740+6620 [8], constrain the
maximum neutron-star mass to be larger than about 2M�,
which challenges our understanding of the equation of state
(EOS) of superdense matter. The first detection of gravita-
tional waves from a binary neutron-star merger, known as
GW170817, provides valuable constraints on the tidal de-
formability [9–11], which also restricts the radii of neutron
stars [12–16]. More recently, the gravitational-wave event
GW190425 was reported by LIGO and Virgo Collaborations
[17] with the total mass of the binary system as large as
3.4+0.3

−0.1M�, which may offer important information for the
EOS at high densities. The latest gravitational-wave event
GW190814 was detected from the merger of binary coales-
cence involving a 23.2+1.1

−1.0M� black hole with a 2.59+0.08
−0.09M�

compact object [18], where the secondary component could
be interpreted as either the lightest black hole or the heaviest
neutron star ever observed. Furthermore, the new observations
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by the Neutron Star Interior Composition Explorer (NICER)
provided a simultaneous measurement of the mass and radius
for PSR J0030+0451 [19,20]. It is interesting to notice that
the constraints on the neutron-star radius from various obser-
vations are consistent with each other, and suggest relatively
small radii of neutron stars. All of these exciting developments
in astrophysical observations provide a wealth of information
about neutron star interiors, where the deconfinement phase
transition is expected to take place.

Theoretically, a hadron-quark mixed phase is predicted to
exist in the region between hadronic matter and quark matter
based on various approaches [1,21–31]. However, large un-
certainties in the structure and density range of the mixed
phase are present due to the different models and methods
used. The Gibbs construction [21] is generally adopted for
the description of hadron-quark mixed phase, where the co-
existing hadronic and quark phases are allowed to be charged
separately, but the finite-size effects like surface and Coulomb
contributions are neglected. When the surface tension of the
hadron-quark interface is sufficiently large, the mixed phase
should be described by the Maxwell construction, where
local charge neutrality is imposed and coexisting hadronic
and quark phases have equal pressures and baryon chemical
potentials but different electron chemical potentials. It is evi-
dent that Gibbs and Maxwell constructions correspond to two
limits of vanishing and large values of the surface tension, re-
spectively, while both of them involve only bulk contributions
without finite-size effects [32,33]. For a moderate surface
tension, the hadron-quark mixed phase with some geomet-
ric structures, known as pasta phases, is expected to appear
as a consequence of the competition between the surface
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and Coulomb energies [33–38]. A realistic description of the
structured mixed phase was proposed in Refs. [35,39], where
a consistent treatment of the electric field in the Wigner-Seitz
cell would lead to inhomogeneous distributions of charged
particles in both hadronic and quark phases. In general, for
simplicity, the particle densities in the two coexisting phases
are assumed to be spatially constant, and the charge screening
effect is neglected. A simple coexisting phases (CP) method
[33] is used for the description of the hadron-quark pasta
phases, where the coexisting phases satisfy the Gibbs con-
ditions for phase equilibrium, and the finite-size effects like
the surface and Coulomb energies are perturbatively taken
into account. An improved energy minimization (EM) method
incorporates the finite-size effects in a more consistent manner
[33], where the equilibrium conditions for coexisting phases
are derived by minimization of the total energy including sur-
face and Coulomb contributions. As a result, the equilibrium
conditions obtained in the EM method are significantly dif-
ferent from the Gibbs conditions. The EM method, known as
the compressible liquid-drop (CLD) model, has been widely
used in the study of nuclear liquid-gas phase transition at
subnuclear densities [40–43]. In the present work, we intend
to use the EM method for studying the hadron-quark pasta
phases in the interior of massive neutron stars.

To describe the hadron-quark pasta phases, we employ the
Wigner-Seitz approximation, in which the system is divided
into equivalent and charge-neutral cells with a given geomet-
ric symmetry. The hadronic and quark phases inside the cell
are assumed to have constant densities and are separated by
a sharp interface. For the description of hadronic matter, we
employ the quark-meson coupling (QMC) model, which ex-
plicitly incorporates the quark degrees of freedom. The QMC
model, initially proposed by Guichon [44], has been exten-
sively developed and applied to various nuclear and hadronic
phenomena in the past decades [45–51]. In the QMC model,
the nucleons in the nuclear medium are described by static
MIT bags that interact through the self-consistent exchange
of scalar and vector mesons in the mean-field approximation.
The mesons couple directly to the confined quarks inside the
bags, not to pointlike nucleons as in the relativistic mean-
field (RMF) model. In contrast to the RMF approach, the
internal structure of the nucleon is explicitly included in the
QMC model, so it could be used for investigating the medium
modification of nucleon structure [49]. At sufficiently high
densities, the nucleons and other hadrons are expected to
dissolve into quarks. The quark matter is then treated as a
degenerate Fermi gas of u, d , and s quarks within the MIT
bag model. In this sense, both hadronic and quark phases
are consistently described within the same bag model. There-
fore, the QMC model that incorporates the internal quark
structure of the nucleon is a promising approach for explor-
ing the hadron-quark phase transition in neutron stars. In
Refs. [52–55], Panda et al. extended the QMC model to study
the properties of compact stars, including the possibility of
hyperon formation and quark deconfinement. They employed
the Gibbs construction to describe the hadron-quark mixed
phase without considering finite-size effects and possible ge-
ometric structures. In the present work, we aim to study the
hadron-quark pasta phases using the QMC model, where the

finite-size effects are considered within the EM method, and
the properties of a structured mixed phase are investigated.

This article is organized as follows. In Sec. II, we describe
the QMC model for the hadronic matter. In Sec. III, the MIT
bag model for the quark matter is briefly reviewed. The EM
method for the description of hadron-quark pasta phases is
presented in Sec. IV, where the surface tension at the hadron-
quark interface is discussed. Section V contains numerical
results of the hadron-quark pasta phases and corresponding
neutron-star properties. Section VI is devoted to the conclu-
sions.

II. HADRONIC PHASE

The hadronic matter is described by the QMC model,
where the nucleon is treated as a static MIT bag contain-
ing three confined quarks. The nucleon-nucleon interaction
is realized by the exchange of isoscalar-scalar meson σ ,
isoscalar-vector meson ω, and isovector-vector meson ρ in the
mean-field approximation. In the QMC model, the effective
meson fields couple directly to the confined quarks inside the
nucleon, not to the pointlike nucleon as in the RMF model.
Therefore, the internal structure of the nucleon can be self-
consistently determined, and is influenced by the meson fields
in nuclear matter. The quark field inside the bag satisfies the
Dirac equation[

iγ μ∂μ − (
mq + gq

σ σ
) − γ 0

(
gq

ωω + gq
ρτ3ρ

)]
ψq = 0, (1)

where mq is the current quark mass and gq
σ , gq

ω, and gq
ρ denote

the quark-meson coupling constants. The normalized ground
state for a quark in the bag is given by

ψq(r, t ) = Nqe−iεqt/R

(
j0(xqr/R)

iβqσ · r̂ j1(xqr/R)

)
χq√
4π

, (2)

where

εq = q + R
(
gq

ωω + gq
ρτ3ρ

)
, (3)

βq =
√

q − Rm∗
q

q + Rm∗
q

, (4)

N−2
q = 2R3 j2

0 (xq)[q(q − 1) + Rm∗
q/2]/x2

q, (5)

with q =
√

x2
q + (Rm∗

q )2 and m∗
q = mq + gq

σ σ . Here R is the

bag radius and χq is the quark spinor. The value of xq is
determined by the boundary condition at the bag surface,

j0(xq) = βq j1(xq). (6)

The energy of a nucleon bag consisting of three ground state
quarks is then given by

Ebag = 3
q

R
− Z

R
+ 4

3
πR3B, (7)

where the model parameter Z accounts for the zero-point
motion and center-of-mass corrections, and B denotes the bag
constant. The effective nucleon mass in the medium is taken to
be M∗

N = Ebag. The bag radius R is determined by the equilib-
rium condition ∂M∗

N/∂R = 0. In the present work, we use the
current quark mass mq = 5.5 MeV for the u and d quarks. The
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model parameters, B1/4 = 210.854 MeV and Z = 4.00506,
are determined by reproducing the nucleon mass MN = 939
MeV and the bag radius R = 0.6 fm in free space [47,52].

To describe the hadronic matter consisting of nucleons
(p and n) and leptons (e and μ), we start with the effec-
tive Lagrangian density involving the internal structure of
the nucleon together with the meson fields in the mean-field
approximation,

LQMC =
∑

b=n,p

ψ̄b[iγμ∂μ − M∗
N − γ 0(gωω + gρτ3ρ)]ψb

− 1

2
m2

σ σ 2 + 1

2
m2

ωω2 + 1

2
m2

ρρ
2 + �vg2

ωg2
ρω

2ρ2

+
∑

l=e,μ

ψ̄l [iγμ∂μ − ml ]ψl , (8)

where σ = 〈σ 〉, ω = 〈ω0〉, and ρ = 〈ρ30〉 are the nonvan-
ishing expectation values of meson fields in homogeneous
nuclear matter. The effective nucleon mass M∗

N is calculated
from Eq. (7) at the quark level, and it depends on the σ

field. Generally, the effective nucleon mass can be expanded
in terms of σ , which is written in the practical form:

M∗
N = MN + a

(
gq

σ σ
) + b

(
gq

σ σ
)2 + c

(
gq

σ σ
)3

, (9)

where the parameters a = 1.45162, b = 7.75404 ×
10−4 MeV−1, and c = 1.38043 × 10−7 MeV−2 are
determined by fitting to the results of M∗

N from Eq. (7). In
the QMC model, the fundamental couplings are those to the
quarks, which are related to the corresponding nucleon-meson
couplings as gω = 3gq

ω and gρ = gq
ρ . In practical calculations,

we use the quark-meson coupling constants gq
σ = 5.9895,

gq
ω = 3.0018, and gq

ρ = 5.6013, together with the ω-ρ
coupling �v = 0.0844. These parameters are obtained by
reproducing the nuclear matter properties of binding energy
E/A = −16.3 MeV at the saturation density n0 = 0.15 fm−3

with the symmetry energy Esym = 31 MeV and its slope
L = 40 MeV. It is well known that the ω-ρ coupling term
plays a crucial role in determining the density dependence
of the symmetry energy [40]. We include this coupling
term in Eq. (8), so that a small value of the slope L could
be obtained according to current constraints. The meson
masses are taken to be mσ = 550 MeV, mω = 783 MeV, and
mρ = 770 MeV.

In uniform hadronic matter, the coupled equations of mo-
tion for meson fields can be easily solved. The total energy
density of hadron matter is calculated by

εHP =
∑

b=p,n

1

π2

∫ kb
F

0

√
k2 + M∗

N
2 k2dk

+1

2
m2

σ σ 2 + 1

2
m2

ωω2 + 1

2
m2

ρρ
2 + 3�vg2

ωg2
ρω

2ρ2

+
∑

l=e,μ

1

π2

∫ kl
F

0

√
k2 + m2

l k2dk, (10)

and the pressure is given by

PHP =
∑

b=p,n

1

3π2

∫ kb
F

0

k4dk√
k2 + M∗

N
2

−1

2
m2

σ σ 2 + 1

2
m2

ωω2 + 1

2
m2

ρρ
2 + �vg2

ωg2
ρω

2ρ2

+
∑

l=e,μ

1

3π2

∫ kl
F

0

k4dk√
k2 + m2

l

. (11)

For hadronic matter consisting of nucleons and leptons in β

equilibrium, the chemical potentials satisfy the relations

μp = μn − μe, (12)

μμ = μe. (13)

The charge neutrality condition is expressed as

nHP
c = np − ne − nμ = 0. (14)

It is known that muons may appear when the electron chemi-
cal potential exceeds the muon mass, which occurs at a density
of 0.11 fm−3 in the QMC model.

III. QUARK PHASE

To describe the quark matter at high densities, we employ
the same bag model as the one used to describe the nucleon in
the QMC model. In its simplest form, the quarks are treated
as a noninteracting Fermi gas confined in a large bag, where
the zero-point energy characterized by the parameter Z is
neglected. We consider the quark matter consisting of three
flavor quarks (u, d , and s) and leptons (e and μ) in β equi-
librium, where the relations between chemical potentials are
expressed as

μs = μd = μu + μe, (15)

μμ = μe. (16)

The charge neutrality condition is written as

nQP
c = 2

3 nu − 1
3 nd − 1

3 ns − ne − nμ = 0. (17)

We use the current quark masses mu = md = 5.5 MeV and
ms = 150 MeV in the calculation of quark matter, which
is consistent with that used in the QMC model. As for the
bag constant, we mainly take the value B1/4 = 210.854 MeV
determined in the QMC model. In fact, the value of B in quark
matter may be different from the one used to describe the
nucleon in the QMC model due to the large density difference
between the two cases. Therefore, we will compare results
with different choices of B for quark matter, so as to examine
the influence of the bag constant.

For quark matter described in the MIT bag
model, the energy density and pressure are given
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by

εQP =
∑

i=u,d,s

3

π2

∫ ki
F

0

√
k2 + m2

i k2dk + B

+
∑

l=e,μ

1

π2

∫ kl
F

0

√
k2 + m2

l k2dk, (18)

PQP =
∑

i=u,d,s

1

π2

∫ ki
F

0

k4dk√
k2 + m2

i

− B

+
∑

l=e,μ

1

3π2

∫ kl
F

0

k4dk√
k2 + m2

l

, (19)

where the bag constant B is added to the energy density and
subtracted from the pressure. It is well known that the bag
constant could significantly affect the EOS of quark matter
and consequently influence the hadron-quark phase transition
in neutron stars [23].

IV. MIXED PHASE WITHIN THE ENERGY
MINIMIZATION METHOD

For the description of a hadron-quark mixed phase, we
take into account the finite-size effects by using the Wigner-
Seitz approximation in our calculations. In the Wigner-Seitz
approximation, the system is divided into equivalent and
charge-neutral cells, where the coexisting hadronic and quark
phases are separated by a sharp interface with finite surface
tension. The leptons are assumed to be uniformly distributed
throughout the cell. In the EM method, the equilibrium
conditions between coexisting phases are determined by min-
imization of the total energy including surface and Coulomb
contributions. Due to the competition between surface and
Coulomb energies, the geometric structure of the mixed phase
may change from droplet to rod, slab, tube, and bubble with
increasing baryon density; these are known as pasta phases.
The total energy density of the mixed phase is given by

εMP = χεQP + (1 − χ )εHP + εsurf + εCoul, (20)

where χ = VQP/(VQP + VHP) denotes the volume fraction of
the quark phase. The energy densities, εHP and εQP, are cal-
culated from Eqs. (10) and (18), respectively. The first two
terms of Eq. (20) represent the bulk contributions, while the
last two terms come from the finite-size effects. The surface
and Coulomb energy densities are given by

εsurf = Dσχin

rD
, (21)

εCoul = e2

2
(δnc)2r2

Dχin�(χin ), (22)

with

�(χin ) =
{

1
D+2

( 2−Dχ
1−2/D
in

D−2 + χin
)
, D = 1, 3,

χin−1−ln χin

D+2 , D = 2.
(23)

Here D = 1, 2, 3 is the geometric dimension of the cell with
rD being the size of the inner phase. χin represents the volume

fraction of the inner phase, i.e., χin = χ for droplet, rod,
and slab configurations and χin = 1 − χ for tube and bubble
configurations. e = √

4π/137 is the electromagnetic coupling
constant. δnc = nHP

c − nQP
c is the charge-density difference

between hadronic and quark phases. σ denotes the surface
tension at the hadron-quark interface, which plays a key role
in determining the structure of the mixed phase [33–38]. How-
ever, considerable uncertainties exist regarding the value of
σ , so it is often treated as a free parameter in the literature.
Estimates based on different models suggest relatively small
values σ < 30 MeV/fm2 [56–60], but much larger values
σ > 100 MeV/fm2 have also been obtained in Refs. [61,62].

In the present work, we prefer to calculate the surface ten-
sion σ in the MIT bag model by using the multiple reflection
expansion (MRE) method [56]. The derivation of σ within the
MRE framework is based on the modified density of states for
the quark species i in an MIT bag, which is approximately
given by

dNi

dki
= 6

[
k2

i V

2π2
− kiS

8π

(
1 − 2

π
arctan

ki

mi

)]
, (24)

where V and S are the volume and surface area of the bag,
respectively. According to the relation between the surface
tension and the thermodynamic potential at zero temperature,
one can calculate the surface tension contributed from the
quark species i by

σi =
∫ kb

F

0

3ki

4π

(
1 − 2

π
arctan

ki

mi

)[
μi −

√
k2

i + m2
i

]
dki

= 3

4π

{
ki

F
2
μi

6
− m2

i (μi − mi )

3
− 1

3π

[
μ3

i arctan
ki

F

mi

− 2ki
F miμi + m3

i ln

(
ki

F + μi

mi

)]}
, (25)

where μi =
√

ki
F

2 + m2
i is the chemical potential of quarks. In

the MRE method, the surface tension of the bag is given by a
sum over all flavors, σ = ∑

i=u,d,s σi. Note that the dominant
contribution to the surface tension comes from the s quark,
since its mass is much larger than those of u and d quarks. On
the other hand, σ is also dependent on the density of quark
matter.

At a given baryon density, the thermodynamically stable
state is the one with the lowest energy among all config-
urations considered, which could be determined in the EM
method by minimizing the total energy with respect to all
variables. The energy density of the mixed phase given in
Eq. (20) is considered as a function of the following variables:
np, nn, nu, nd , ns, ne, nμ, χ , and rD. The minimization should
be performed under the constraints of global charge neutrality
and baryon number conservation, which are expressed as

ne + nμ − χ

3
(2nu − nd − ns) − (1 − χ )np = 0, (26)

χ

3
(nu + nd + ns) + (1 − χ )(np + nn) = nb. (27)
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We introduce the Lagrange multipliers μe and μn for the con-
straints, and then perform the minimization for the function

w = εMP − μe

[
ne + nμ − χ

3
(2nu − nd − ns) − (1 − χ )np

]
−μn

[χ

3
(nu + nd + ns) + (1 − χ )(np + nn)

]
. (28)

By minimizing w with respect to the particle densities, we
obtain the following equilibrium conditions for chemical po-
tentials:

μu − 4εCoul

3χ δnc
= 1

3
μn − 2

3
μe, (29)

μd + 2εCoul

3χ δnc
= 1

3
μn + 1

3
μe, (30)

μs + 2εCoul

3χ δnc
= 1

3
μn + 1

3
μe, (31)

μp + 2εCoul

(1 − χ ) δnc
= μn − μe, (32)

μμ = μe. (33)

Minimizing w with respect to the volume fraction χ leads to
the equilibrium condition for the pressures,

PHP = PQP − 2εCoul

δnc

[
1

3χ
(2nu − nd − ns) + 1

1 − χ
np

]

∓ εCoul

χin

(
3 + χin

�′

�

)
, (34)

where the sign of the last term is “−” for droplet, rod, and slab
configurations, while it is “+” for tube and bubble configu-
rations. It is clear that equilibrium conditions for two-phase
coexistence are altered due to the inclusion of surface and
Coulomb terms in the minimization procedure, and, as a re-
sult, they are different from the Gibbs equilibrium conditions.
Some additional terms appearing in the equilibrium equations
are caused by the surface and Coulomb contributions. If we
neglect the finite-size effects by taking the limit σ → 0, these
additional terms vanish and the equilibrium equations reduce
to the Gibbs conditions. Generally, the pressure of the mixed
phase can be calculated from the thermodynamic relation,
PMP = n2

b
∂ (εMP/nb)

∂nb
, which is somewhat different from PHP and

PQP. This is similar to the case of nuclear liquid-gas phase
transition at subnuclear densities [40–43]. Furthermore, min-
imizing w with respect to the size rD yields the well-known
relation εsurf = 2εCoul, which leads to the formula for the size
of the inner phase,

rD =
[

σD

e2(δnc)2�

]1/3

. (35)

The properties of hadron-quark pasta phases are obtained
by solving the above equilibrium equations at a given baryon
density nb. We compare the energy density of the mixed phase
with different pasta configurations and then determine the
most stable configuration with the lowest energy density. The
hadron-quark mixed phase exists only in the density range
where its energy density is lower than that of both hadronic
matter and quark matter.

V. RESULTS AND DISCUSSION

In this section, we present the numerical results of the
hadron-quark pasta phases using the EM method described
in the previous section. To examine the dependence of results
on the bag constant of quark matter, we calculate and com-
pare the results with B1/4 = 210.854 MeV and B1/4 = 180
MeV in the present work. Note that B1/4 = 210.854 MeV
is determined in the QMC model by fitting the free nucleon
properties. As for the surface tension at the hadron-quark
interface, we self-consistently calculate its value by using the
MRE method within the MIT bag model. Since the quark
degrees of freedom are explicitly involved in the QMC model,
the descriptions of hadronic and quark phases are considered
to be consistent with each other at the quark level. The prop-
erties of neutron stars are then calculated using the EOS with
the inclusion of quarks at high densities.

A. Hadron-quark pasta phases

Due to the competition between the surface and Coulomb
energies, the geometric structure of a hadron-quark mixed
phase is expected to change from droplet to rod, slab, tube,
and bubble with increasing baryon density. In the present
calculations, we employ the EM method to investigate the
pasta phases, where the equilibrium conditions between co-
existing phases are derived by the minimization of the total
energy including surface and Coulomb contributions. Since
the surface and Coulomb energies are positive, the energy
densities of pasta phases are higher than that of the Gibbs
construction without finite-size effects. Generally, the energy
density difference between different pasta shapes is rather
small compared to the total energy density, but it is crucial
to determine the transition of pasta shapes. In Fig. 1, we
show the energy densities of pasta phases obtained using
the EM method relative to those of the Gibbs construction
(i.e., σ = 0). The filled circles indicate the transition between
different pasta phases. For comparison, the energy densities of
pure hadronic and pure quark phases are respectively plotted
by black dot-dashed and dashed lines, whereas the results of
the Maxwell construction are shown by green dotted lines.
To examine the influence of the bag constant in quark matter,
we present the results with B1/4 = 210.854 MeV and B1/4 =
180 MeV in the left and right panels, respectively. We note
that the onset of the mixed phase occurs when its energy
density becomes lower than that of pure hadronic matter. In
the case of B1/4 = 210.854 MeV that is consistently used in
the QMC model and quark matter, the formation of quark
droplets occurs at 0.7 fm−3, which is significantly higher the
onset of the mixed phase at 0.6 fm−3 obtained in the Gibbs
construction. This is because the finite-size effects like surface
and Coulomb contributions increase the energy density and
delay the appearance of the mixed phase. As nb increases,
other pasta shapes, such as rod, slab, tube, and bubble, may
appear when one has the lowest energy density among all con-
figurations. Furthermore, the mixed phase ends at 1.47 fm−3

where the energy density of pure quark matter becomes lower
than that of pasta phases. In the right panel of Fig. 1, we
can see that using a smaller bag constant of quark matter
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FIG. 1. Energy densities of the mixed phase obtained using the EM method relative to those of the Gibbs construction (σ = 0). The filled
circles indicate the transition between different pasta phases. The results of the Maxwell construction (MC) are shown by green dotted lines.

B1/4 = 180 MeV leads to an early onset of the structured
mixed phase at 0.43 fm−3 and pure quark phase at 0.8 fm−3,
while the behavior is qualitatively similar to that displayed
in the left panel of Fig. 1. The influence of the bag constant
B on the hadron-quark phase transition has been extensively
discussed in the literature [1,23]. It is seen that the energy
density in the Maxwell construction is clearly higher than that
of pasta phases, so the Maxwell construction is disfavored in
the present calculations.

The surface tension at the hadron-quark interface plays
a crucial role in determining the structure of pasta phases.
In Fig. 2, we display the surface tension σ as a function of
the baryon density nb obtained in pasta phases with B1/4 =
210.854 MeV. In the present work, we use the MRE method to
calculate the surface tension that is the sum over quark flavors,
σ = ∑

i=u,d,s σi, with σi given by Eq. (25). One can see that σ

slightly decreases with increasing nb and its value lies in the
range of 43–48 MeV/fm2. This behavior can be understood

FIG. 2. Surface tension σ as a function of the baryon density nb

obtained in pasta phases.

by analyzing Eq. (25), where σi is a function of the quark
mass mi and chemical potential μi. The dominant contribution
to the surface tension comes from the s quark, since its mass is
much larger than that of u and d quarks. In Fig. 3, we plot σi as
a function of μi for i = s and i = u. It is found that σs is about
one order higher than σu, and it increases significantly as the
chemical potential increases. However, in the pasta phases, μs

shown in Fig. 4 decreases with increasing nb, which leads to
the decline of the surface tension σ as shown in Fig. 2.

In Fig. 5, we show the volume fraction of the quark phase
χ as a function of the baryon density nb in the mixed phase
with B1/4 = 210.854 MeV. The results obtained in the EM
method are compared to those of the Gibbs construction. It
is shown that χ continuously increases with increasing nb in
the mixed phase. The behavior of χ in the EM method is very
similar to that of the Gibbs construction, but the density range
of pasta phases is reduced due to the inclusion of finite-size
effects. There is no large jump in χ at the transition point
of pasta configurations, so the hadron-quark phase transition

FIG. 3. Surface tension of the quark flavor i as a function of its
chemical potential calculated by Eq. (25).
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FIG. 4. Chemical potential of the quark flavor i as a function of
the baryon density nb obtained in pasta phases.

described in the EM method is relatively smooth. Because of
the monotonic increase of χ , more and more hadronic matter
is converted into quark matter during the phase transition. In
Fig. 6, we display the relative particle fractions Yi = ni/nb as
a function of the baryon density nb with B1/4 = 210.854 MeV.
The results obtained in the EM method and Gibbs construction
are shown in the upper and lower panels, respectively. The
shaded areas denote the mixed phase regions. One can see
that the matter at low densities consists of neutrons, protons,
and electrons, whereas the muons appear at nb = 0.11 fm−3

playing the same role as electrons. When the quark matter is
present in the mixed phase, the fractions of quarks, Yu, Yd ,
and Ys, increase rapidly together with a decrease of neutron
fraction Yn. Meanwhile, Ye and Yμ decrease significantly, since
the quark matter is negatively charged; that can take the role of
electrons to satisfy the constraint of global charge neutrality.

FIG. 5. Volume fraction of the quark phase χ as a function of the
baryon density nb obtained in the mixed phase. The results using the
EM method are compared to those of the Gibbs construction (GC).

FIG. 6. Particle fraction Yi as a function of the baryon density nb

obtained using the EM method (upper panel) and Gibbs construction
(lower panel). The shaded areas denote the mixed phase regions.

On the other hand, the hadronic matter in the mixed phase
is positively charged, so the proton fraction Yp increases at
the beginning of the mixed phase. As nb increases, Yp and
Yn decrease to very low values due to increasing χ as shown
in Fig. 5. At sufficiently high densities, the hadronic matter
completely disappears and the transition to a pure quark phase
occurs. It is seen that Yu ≈ Yd ≈ Ys ≈ 1/3 is achieved in the
pure quark phase, which is a result of the chemical equilibrium
and charge neutrality given in Eqs. (15) and (17).

B. Nuclear symmetry energy effects

It is well known that the nuclear symmetry energy Esym and
its slope L can significantly affect the properties of neutron
stars, especially the neutron-star radius, tidal deformability,
and crust structure, which are particularly sensitive to the
slope parameter L [14,63,64]. Many efforts have been devoted
to constraining the values of Esym and L at saturation density
based on astrophysical observations and terrestrial nuclear
experiments (see Refs. [64–66] and references therein). Ac-
cording to available constraints summarized in Ref. [64], it
was found that the most probable values for the symmetry
energy and its slope at saturation density are Esym = 31.7 ±
3.2 MeV and L = 58.7 ± 28.1 MeV, respectively, with a much
larger error for L than that for Esym. In order to explore the in-
fluence of nuclear symmetry energy on the hadron-quark pasta
phases, we adjust the isovector couplings, gρ and �v, so as to
obtain a stiff EOS in the QMC model and compare with the
soft one used. By taking �v = 0 and gρ = 4.7086, we obtain
the QMC model with Esym = 35.9 MeV and L = 100 MeV at
saturation density, whereas the isoscalar saturation properties
remain unchanged. In Fig. 7, we show the symmetry energy
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FIG. 7. Symmetry energy Esym as a function of the baryon den-
sity nb obtained in the QMC(L = 40) and QMC(L = 100) models.

Esym as a function of the baryon density nb obtained in the
QMC(L = 40) and QMC(L = 100) models. It is found that
the two models have the same Esym at nb � 0.106 fm−3,
but they display rather different density dependence due to
different slope parameter L. It is noteworthy that the binding
energies of finite nuclei are directly related to the symmetry
energy at subsaturation density of 0.10–0.11 fm−3 [40,67],
which corresponds to the average density in nuclei. Therefore,
the QMC(L = 40) and QMC(L = 100) models are expected
to provide similar descriptions for finite nuclei, since they
have the same isoscalar properties and equal values of Esym

at nb � 0.106 fm−3. On the other hand, the different slope
parameter L can significantly alter the stiffness of neutron-star
matter EOS at high densities, which may lead to considerable
differences in the hadron-quark pasta phases inside neutron
stars.

We calculate and compare the properties of the hadron-
quark pasta phases by using the QMC(L = 40) and QMC(L =
100) models for the hadronic matter. In Fig. 8, we display
the size of the Wigner-Seitz cell (rC) and that of the inner
phase (rD) as a function of the baryon density nb obtained
using the EM method with B1/4 = 210.854 MeV. The results
with QMC(L = 40) and QMC(L = 100) are shown by thick
and thin lines, respectively. It has been reported in Ref. [33]
that a larger symmetry energy slope L in hadronic matter
corresponds to an earlier onset of the hadron-quark phase
transition. In the present work, a similar trend is seen, namely
the formation of quark droplets with QMC(L = 100) occurs
at a lower density compared to the case with QMC(L = 40).
Furthermore, there are also differences between QMC(L =
40) and QMC(L = 100) in the size of the pasta structure,
especially in rC . One can see that, as the density increases,
rD in the droplet, rod, and slab phases increases, whereas rD

in the tube and bubble phases decreases. This is consistent
with the monotonic increase of χ shown in Fig. 5. There are
obvious discontinuities in rD and rC at the transition between
different pasta shapes, which exhibit the character of the first-
order transition. Generally, a large surface tension σ leads

FIG. 8. Size of the Wigner-Seitz cell (rC) and that of the inner
phase (rD) as a function of nb obtained using the EM method. The
results with QMC(L = 40) and QMC(L = 100) are shown by thick
and thin lines, respectively.

to a large radius of quark droplets. In the present work, we
use the MRE method to calculate σ that is in the range of
43–48 MeV/fm2, which yields the radius of quark droplets as
rD ≈ 3–6 fm.

To make a detailed comparison between QMC(L = 40)
and QMC(L = 100), we present in Table I the onset densi-
ties of the hadron-quark pasta phases and pure quark matter
obtained using the EM method. It is found that the onset den-
sities with QMC(L = 100) are noticeably smaller than those
with QMC(L = 40), and the differences gradually decrease
from the droplet to pure quark phases. This is because the frac-
tion of hadronic matter monotonically decreases during the
hadron-quark phase transition, so that the influence of nuclear
symmetry energy becomes weaker and weaker. Due to the
same reason, the influence of the bag constant B gets stronger
and stronger during the phase transition. One can see that the
onset densities of pure quark matter with B1/4 = 180 MeV
are much smaller than those with B1/4 = 210.854 MeV. We
find that the results are very sensitive to the bag constant
adopted. By using a small bag constant of B1/4 = 180 MeV,
the hadron-quark pasta phases are significantly shifted toward
the lower density region compared to the results with B1/4 =
210.854 MeV.

C. Properties of neutron stars

To investigate the influence of quark matter on neutron-star
properties, we provide the EOS including the hadron-quark
pasta phases and pure quark matter at high densities. In Fig. 9,
we plot the pressures as a function of the baryon density nb for
hadronic, mixed, and quark phases. The results with B1/4 =
210.854 MeV and B1/4 = 180 MeV are displayed in the left
and right panels, respectively. The results with QMC(L =
40) shown in the upper panels are compared to those with
QMC(L = 100) in the lower panels. The pressures of pasta
phases obtained using the EM method are compared to those
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TABLE I. Onset densities of the hadron-quark pasta phases and pure quark matter obtained from different models for describing the
hadronic and quark phases.

Onset density (fm−3)

QMC model Bag model droplet rod slab tube bubble quark

L = 40 MeV B1/4 = 210.854 MeV 0.700 0.830 0.997 1.238 1.339 1.466
L = 100 MeV B1/4 = 210.854 MeV 0.545 0.702 0.921 1.211 1.321 1.453
L = 40 MeV B1/4 = 180 MeV 0.431 0.522 0.586 0.710 0.755 0.803
L = 100 MeV B1/4 = 180 MeV 0.306 0.428 0.514 0.681 0.737 0.791

of the Gibbs and Maxwell constructions. It can be seen that the
pressures of pasta phases lie between those of the Gibbs and
Maxwell constructions. The pressures with the Maxwell con-
struction remain constant during the phase transition, whereas
those with the Gibbs construction increase with nb over a
relatively broad range. The influence of the bag constant B
on the EOS can be observed by comparing the left and right
panels. It is clearly shown that a smaller B leads to early onset
of the mixed phase and pure quark phase, namely the mixed
phase is shifted toward a lower density region. As a result,
the pressures of pasta phases with B1/4 = 180 MeV are much
lower than those with B1/4 = 210.854 MeV. Meanwhile, the

effect of nuclear symmetry energy on the EOS is seen by
comparing the upper and lower panels. In the case with the
QMC(L = 100) model (lower panels), the onset of the mixed
phase occurs at lower densities than with the QMC(L = 40)
model (upper panels), but there is no visible difference at the
end of the mixed phase. One can see that the behavior of P in
pasta phases is similar to that of the Gibbs construction, and
no abrupt jump is observed at the transition between different
pasta configurations.

The properties of neutron stars, such as the mass-radius
relations and tidal deformabilities, can be obtained by solving
the Tolman-Oppenheimer-Volkoff (TOV) equation using the

FIG. 9. Pressures as a function of the baryon density nb for hadronic, mixed, and quark phases. The results of pasta phases obtained using
the EM method are compared to those of the Gibbs and Maxwell constructions.

025809-9



JU, WU, JI, HU, AND SHEN PHYSICAL REVIEW C 103, 025809 (2021)

FIG. 10. Mass-radius relations of neutron stars for different EOS. The results of a pure hadronic phase (solid lines) are compared to
those including quarks in the EM method (dotted lines) and Gibbs construction (dashed lines) with B1/4 = 210.854 MeV (left panel) and
B1/4 = 180 MeV (right panel). The filled circles indicate the onset of the star containing a hadron-quark mixed phase. The results with
QMC(L = 40) and QMC(L = 100) are shown by thick and thin lines, respectively. The horizontal bars indicate the observational constraints
of PSR J1614–2230 [4–6], PSR J0348+0432 [7], and PSR J0740+6620 [8]. The simultaneous measurement of the mass and radius for PSR
J0030+0451 by NICER is also shown by the star with 68% and 95% confidence intervals [20]. The horizontal line with arrows at both ends
represents the constraints on R1.4 inferred from GW170817 [10].

EOS over a wide range of densities. In the present work, we
adopt the Baym–Pethick–Sutherland (BPS) EOS [68] for the
outer crust below the neutron drip density, while the inner
crust EOS is based on a Thomas–Fermi calculation using the
TM1(L = 40) effective interaction of the RMF model [69].
The crust EOS is matched to the QMC EOS of uniform
neutron-star matter at the crossing point of the two segments.
At high densities, the hadron-quark pasta phases are taken
into account by using the QMC model for the hadronic phase
and the MIT bag model for the quark phase. In Fig. 10, we
present the resulting mass-radius relations of neutron stars
with the inclusion of quarks at high densities. The results
with B1/4 = 210.854 MeV and B1/4 = 180 MeV are shown
in the left and right panels, respectively. The mass measure-
ments of PSR J1614–2230 (1.908 ± 0.016M�) [4–6], PSR
J0348+0432 (2.01 ± 0.04M�) [7], and PSR J0740+6620
(2.14+0.10

−0.09M�) [8] are indicated by the horizontal bars. The
simultaneous measurement of the mass and radius for PSR
J0030+0451 by NICER is also shown by the star with 68%
and 95% confidence intervals [20]. The constraints on R1.4

inferred from GW170817 [10] are indicated by the horizontal
line with arrows at both ends. We find that the maximum
mass of neutron stars using a pure hadronic EOS in the
QMC(L = 40) model is about 2.08M�, which is considerably
reduced as the hadron-quark phase transition is included. The
star masses obtained in the EM method are slightly larger than
those of the Gibbs construction due to finite-size effects. By
comparing the left and right panels, it is clear that the results
are sensitive to the bag constant B adopted. In the case of
B1/4 = 210.854 MeV, the EM method with QMC(L = 40)
leads to a maximum mass of 1.96M�, where the hadron-quark
pasta phases could be formed in the interior of massive stars
with M > 1.94M�, but no pure quark phase exists. In fact,

a canonical 1.4M� neutron star would not be affected by
the quark phase, since its central density is lower than the
onset of a hadron-quark mixed phase. However, in the case
of B1/4 = 180 MeV, the maximum mass obtained in the EM
method with QMC(L = 40) is about 1.49M�, which is much
lower than the constraint of 2M�. Therefore, the early onset of
the mixed phase with B1/4 = 180 MeV is disfavored since it
leads to a large reduction of the maximum neutron-star mass.
It is interesting to see the effect of nuclear symmetry energy on
the neutron-star properties. When the QMC(L = 100) model
is adopted, the maximum mass of neutron stars is slightly
higher than that in the QMC(L = 40) model, but the radius
is significantly increased. This is because the QMC(L = 100)
model provides a stiff EOS, which results in relatively large
radii of neutron stars. It is shown that the large radius of
R1.4 = 13.9 km obtained in the QMC(L = 100) model is
disfavored by the constraints from GW170817. In contrast,
we obtain a radius of R1.4 = 12.43 km in the QMC(L = 40)
model, which is compatible with recent observational con-
straints from NICER and GW170817.

The dimensionless tidal deformability of a neutron star can
be calculated from

� = 2
3 k2(R/M )5, (36)

where k2 is the tidal Love number which is computed together
with the TOV equation as described in Refs. [69–71]. In
Fig. 11, we display the dimensionless tidal deformability �

as a function of the gravitational mass M of the star. It is
shown that � decreases rapidly with increasing M. The re-
sults with the inclusion of quarks using B1/4 = 210.854 MeV
are compared to those using a pure hadronic EOS in the
QMC(L = 40) and QMC(L = 100) models. It is seen that the
effect of the hadron-quark phase transition is almost invisible,
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FIG. 11. Dimensionless tidal deformability � as a function of
the neutron-star mass M. The vertical line with arrows at both ends
represents the constraints on �1.4 from the analysis of GW170817
[10].

since the mixed phase is present only in massive stars. For
a canonical 1.4M� neutron star, we obtain �1.4 = 450 in the
QMC(L = 40) model, which is consistent with the constraints
from the analysis of GW170817 [10], while �1.4 = 885 ob-
tained in the QMC(L = 100) model is incompatible with the
constraints. One can see that a small discrepancy in � using
the EM method is observed, and it becomes more obvious in
the Gibbs construction. The reduction of � is a combined
result of changes in the Love number k2 and compactness
parameter M/R caused by the appearance of the hadron-quark
phase transition.

VI. CONCLUSIONS

In the present work, we have studied the properties of
the hadron-quark pasta phases, which are expected to occur
in the interior of massive neutron stars. We have employed
the QMC model to describe the hadronic phase, where the
internal quark structure of the nucleon is explicitly taken into
account based on the MIT bag model. For the description of
the quark phase, we have adopted the same bag model as
the one used in the QMC framework, so that the coexisting
hadronic and quark phases are treated in a consistent way.
We have used the Wigner-Seitz approximation to describe
the hadron-quark pasta phases, where the system is divided
into equivalent cells with a given geometric symmetry. The
hadronic and quark phases inside the cell are assumed to
have constant densities and are separated by a sharp interface.
We computed the surface tension σ consistently in the bag
model by using the MRE method. It was found that σ in the
pasta phases slightly decreases with increasing density, and
its value lies in the range of 43–48 MeV/fm2. The dominant
contribution to the surface tension comes from the s quark,
which is about one order higher than those from u and d
quarks.

We have investigated the hadron-quark mixed phase us-
ing the EM method, where the equilibrium conditions for
coexisting phases are derived by minimization of the total
energy including surface and Coulomb contributions. Due to
these finite-size effects, some additional terms appear in the
equilibrium conditions for pressures and chemical potentials,
which are different from the Gibbs conditions. It was found
that including the finite-size effects could delay the onset of
the hadron-quark mixed phase and shrink its density range
significantly. On the other hand, the results of pasta phases
are very sensitive to the bag constant B of quark matter.
By using a consistent value of B1/4 = 210.854 MeV in the
QMC(L = 40) model and quark matter, a structured mixed
phase could be formed in the density range of 0.70–1.47 fm−3.
When B1/4 = 180 MeV is adopted for quark matter, the den-
sity range of the mixed phase is reduced to 0.43–0.80 fm−3.
It was observed that the results obtained in the EM method
lie between those of the Gibbs and Maxwell constructions.
We examined the influence of nuclear symmetry energy on
the hadron-quark phase transition by using the QMC mod-
els with different slope parameter L. It was found that the
onset densities of the hadron-quark mixed phase obtained
with QMC(L = 100) are obviously smaller than those with
QMC(L = 40), but there is no visible difference at the end of
the mixed phase.

We applied the EOS including the hadron-quark phase
transition to study the properties of neutron stars. In the
present calculations, a pure hadronic EOS of the QMC(L =
40) model predicts a maximum neutron-star mass of 2.08M�,
while the resulting radius and tidal deformability of a canon-
ical 1.4M� neutron star are R1.4 = 12.43 km and �1.4 =
450, respectively. These results are compatible with cur-
rent constraints from astrophysical observations. However,
the QMC(L = 100) model results in rather large radii and
tidal deformabilities of neutron stars, which are disfavored
by the constraints from GW170817. The recent gravitational-
wave event GW190814 has triggered many efforts to explore
the possibility of existing a super-massive neutron star of
≈2.6M�. Within the QMC model used in the present work,
it is unlikely that such massive neutron star can be sta-
ble. It may be possible to raise the maximum neutron-star
mass by introducing nonlinear self-couplings of the me-
son fields in the QMC model, as discussed in the RMF
approach [72]. This possibility will be explored in future
studies.

When the deconfinement phase transition is included, it is
found that using the EM method with B1/4 = 210.854 MeV
and QMC(L = 40), the hadron-quark pasta phases could be
formed in the interior of massive stars with M > 1.94M�,
but no pure quark matter exists. Meanwhile, the maximum
neutron-star mass is reduced to 1.96M� in this case, while
the properties of a canonical 1.4M� neutron star remain
unchanged. We emphasize that, although the hadron-quark
mixed phases do not appreciably change the neutron-star bulk
properties, they could be important for studying cooling ob-
servations. If a small bag constant B1/4 = 180 MeV is adopted
for quark matter, the maximum mass is reduced to 1.49M� in
the QMC(L = 40) model, which is much lower than the con-
straint of 2M�. This implies that the early onset of the mixed

025809-11



JU, WU, JI, HU, AND SHEN PHYSICAL REVIEW C 103, 025809 (2021)

phase with B1/4 = 180 MeV for quark matter is disfavored
due to its large reduction of the maximum neutron-star mass.
In this work, we used a simple model for quark matter and
neglected possible interactions between quarks, which need
to be investigated in future studies.
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