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We study the 1S0 proton pairing gap in β-equilibrated neutron star matter within the framework of chiral
effective field theory. We focus on the role of three-body forces, which strongly modify the effective proton-
proton spin-singlet interaction in dense matter. We find that three-body forces generically reduce both the size of
the pairing gap and the maximum density at which proton pairing may occur. The pairing gap is computed
within Bardeen-Cooper-Schrieffer theory using a single-particle dispersion relation calculated up to second
order in perturbation theory. Model uncertainties are estimated by varying the nuclear potential (its order in
the chiral expansion and high-momentum cutoff) and the choice of single-particle spectrum in the gap equation.
We find that a second-order perturbative treatment of the single-particle spectrum suppresses the proton 1S0

pairing gap relative to the use of a free spectrum. We estimate the critical temperature for the onset of proton
superconductivity to be Tc = (3.2–5.1) × 109 K, which is consistent with previous theoretical results in the
literature and marginally within the range deduced from a recent Bayesian analysis of neutron star cooling
observations.
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I. INTRODUCTION

Neutron superfluidity and proton superconductivity play
important roles in the physics of neutron stars [1]. The di-
lute gas of neutrons in the inner crust of a neutron star
is expected to pair in the spin-singlet channel, resulting in
a neutron superfluid whose vortices provide a large angu-
lar momentum reservoir critical for the production of pulsar
glitches [2–5]. At the higher densities present in the core
of neutron stars, the proton fraction is much less than that
of neutrons, and therefore the proton Fermi momentum is
not comparable with the neutron Fermi momentum and the
formation of neutron-proton Cooper pairs is unlikely. It is
then natural to consider neutron-neutron and proton-proton
pairing separately. At large densities, neutrons may be paired
in the spin-triplet channel, leading to novel cooling pro-
cesses involving pair formation/breaking that can impact the
early thermal evolution of neutron stars [6–14]. Neutron star
cooling may also be affected by the presence of supercon-
ducting protons in neutron star cores [15,16], though the
critical temperature is expected to be somewhat larger than
that for neutron superfluidity and consequently would impact
the cooling curve at earlier timescales. Well below the critical
temperature for neutron superfluidity and proton supercon-
ductivity, neutrino emission involving neutrons or protons is
highly suppressed due to the minimum gap energy required to
break a Cooper pair [17]. Superfluidity also gives reduction
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factors to the heat capacity and thermal conductivity of dense
nuclear matter [8,18]. Besides neutrino emission from Cooper
pairs, superfluidity and superconductivity in the crust and
core affect pulsar glitches [19,20], vortex pinning [21,22], and
neutron star precession [23,24].

Accurate estimates for nuclear pairing gaps in the various
spin and isospin channels are challenging due to uncertainties
in strong interaction physics, in particular poorly constrained
nuclear many-body correlations and three-body forces that
become increasingly important at high densities. In the past,
neutron spin-singlet pairing in pure neutron matter has been
widely studied, with recent work focusing on the role of three-
body forces [25,26] and long- and short-range correlations
[27,28] in the Bardeen-Cooper-Schrieffer (BCS) approxima-
tion. Quantum Monte Carlo calculations [29], on the other
hand, can explore neutron pairing in the strong superfluid
regime and connections to ultracold Fermi gases at unitarity.
In nearly all cases, however, lattice effects and the presence
of nuclear clusters in the neutron star crust are neglected
in microscopic many-body calculations of the neutron 1S0

pairing gap. Spin-triplet pairing of neutrons in the neutron
star core is anticipated from the strong attraction in the
3P2-3F2 partial-wave channel observed in nucleon-nucleon
(NN) elastic scattering [30]. However, many-body effects
such as screening, short-range correlations, and three-body
forces play a substantial role, and there is currently much
uncertainty in estimates of the spin-triplet pairing gap (for a
recent review, see Ref. [31]).

Previous works [32–37] studying proton pairing in neutron
star cores have employed a variety of NN interaction models

2469-9985/2021/103(2)/025807(10) 025807-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.025807&domain=pdf&date_stamp=2021-02-22
https://doi.org/10.1103/PhysRevC.103.025807


YEUNHWAN LIM AND JEREMY W. HOLT PHYSICAL REVIEW C 103, 025807 (2021)

and many-body methods. The peak in the proton pairing gap
was found to vary between � � 0.4–0.9 MeV and to occur
around normal nuclear densities n0 � 0.16 fm−3, though the
density of protons is one or two orders of magnitude less
and set by the condition of β equilibrium. More recently [38]
a three-body force based on π and ρ meson exchange was
included in the solution of the BCS gap equation and found
to reduce by half the maximum value of the proton pairing
gap compared to the inclusion of two-body forces alone. The
two-body force employed in Ref. [38] was the Argonne v18

potential, which includes explicit one-pion exchange at large
distances but treats the medium- and short-range parts of
the NN potential in terms of parametrized phenomenological
functions.

In the present study we focus on a microscopic description
of proton pairing in neutron star cores employing a set of two-
and three-body nuclear forces [39–43] derived in the frame-
work of chiral effective field theory [44–46]. Previous works
employing these potentials have shown that they provide a
good description of nuclear matter saturation [42,43], the
liquid-gas phase transition [47–49], nucleon-nucleus optical
potentials [50,51], and Fermi liquid parameters [52]. In addi-
tion the derived nuclear equation of state (EOS) is consistent
with other studies [53–57] employing different chiral nuclear
forces and many-body methods. The present work will be
important for developing consistent modeling of the equation
of state and nucleonic pairing needed for neutron star cooling
calculations.

The paper is organized as follows. In Sec. II we describe
the method employed to solve the BCS gap equation. We also
detail the treatment of the proton-proton effective interaction
and the proton single-particle potential in neutron-rich matter
from chiral effective field theory. In Sec. III we present re-
sults for the density-dependent 1S0 proton pairing gap at the
Fermi surface in beta-equilibrated nuclear matter. Theoretical
uncertainties are estimated by varying the resolution scale of
the nuclear potential, the order in the chiral expansion, and
the treatment of the single-particle dispersion relation. We
conclude with a summary and outlook.

II. PROTON PAIRING GAPS IN NEUTRON-RICH MATTER

A. BCS gap equation

The 1S0 pairing gap for a given baryon number density
can be obtained in the BCS approximation by solving the gap
equation

�(k) = −1

2

∑
k′

Veff (k, k′)
�(k′)√

(ek′ − μ)2 + �2(k′)
, (1)

where �(k) is the pairing gap for the momentum k, Veff (k, k′)
is the effective potential between two incoming particles with
relative momentum k and outgoing relative momentum k′.
The single-particle energy as a function of momentum k is
denoted by ek , and μ is the chemical potential for protons at
a given density. In the BCS approximation, the effective po-
tential is chosen as the free-space nucleon-nucleon interaction
VNN . Improved approximations account for medium effects,
such as three-body force contributions to the in-medium NN

interaction V med
NN , as well as long-range correlations and polar-

ization effects. In the present work, we will consider only the
additional contributions to Veff (k, k′) from three-body forces.
Extensions to include polarization effects through the Fermi
liquid theory quasiparticle interaction [28,58,59] will be stud-
ied in later work.

Many BCS calculations in nuclear matter employ an effec-
tive mass approximation

ek = k2

2M∗ + U, (2)

where U depends on the density but is independent of the
momentum k. From Eq. (2), the gap equation is then approxi-
mated by substituting

ek − μ � 1

2M∗
(
k2 − k2

F

)
. (3)

The above approximation assumes that the single-particle en-
ergy is nearly quadratic in k near the Fermi momentum kF . In
this case the numerical solution for Eq. (1) can be obtained
from a generalized matrix eigenvalue solution [60] by noting
that �i = Fi j� j as in the gap Eq. (1). In practice one applies
an adaptive mesh point scheme that depends on the effective
mass for a given Fermi momentum.

We also employ the modified Broyden method [61] to ver-
ify our numerical solutions. In this approach the gap solution
is obtained from a version of direct iteration, where an initial
guess of the momentum-dependent gap function is inserted
into the right-hand side of Eq. (1) to obtain an updated guess
for the gap function on the left-hand side of Eq. (1). The
modified Broyden method uses a numerically efficient algo-
rithm for computing and storing the Jacobian, from which the
gap equation can be solved iteratively using a pseudo-Newton
convergence method (see Refs. [61,62] for complete details).
We find that this method converges rapidly once we have an
initial guess for the gap size �(k). Moreover, the solution
is not particularly sensitive to the initial guess �(0)(k). We
find that both methods agree within 1 keV when we use the
effective mass approximation in Eq. (2).

The numerical solution to the generalized matrix eigen-
value problem, however, is not applicable when we use a
general single-particle energy spectrum instead of the ef-
fective mass approximation. The matrix eigenvalue method
enables us to obtain an analytic solution for the denominator
in Eq. (1),

√
(ek′ − μ)2 + �2(k′), when we apply the effective

mass approximation. When the single particle energy spec-
trum does not actually follow a quadratic approximation, the
different momentum-dependent effective masses give differ-
ent gap sizes even though the order of magnitude is similar for
each effective mass. Thus, we implement the Broyden method
technique as explained in Drischeler et al. [62] to obtain the
BCS solution in this work.

B. Nucleon single-particle energy

The single-particle energy spectrum plays an important
role in determining the solution to the gap equation, and in
the present work we consider three approximations to esti-
mate the associated theoretical uncertainty. First, we assume
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(a) (b) (c)

FIG. 1. Diagrammatic contributions to the nucleon self-energy
in nuclear matter. The wavy line represents a medium-dependent
effective NN interaction derived from two- and three-body chiral
forces in isospin-asymmetric nuclear matter.

a free-particle spectrum given by e(0)
k = k2/2M. Second, we

compute the proton single-particle energy in the Hartree-Fock
approximation

e(1)
k = k2/2M + �(1)(k), (4)

where the first-order contribution �(1)(k) to the nucleon
self energy is shown diagrammatically in Fig. 1(a). Third,
we compute the single-particle energy self-consistently at
second-order in perturbation theory

e(2)
k = k2/2M + �(1)(k) + Re�(2)(e(2)

k , k
)
, (5)

where �(2)(ek, k) is represented by the sum of diagrams (b)
and (c) in Fig. 1. The first- and second-order diagrammatic
contributions to the nucleon self-energy have the form

�
(1a)
t (k) =

∑
1

〈�k �h1ss1tt1|
(
V̄NN + V̄ med

NN

/
2
)|�k �h1ss1tt1〉n1,

(6)

�
(2b)
t (k, ω) = 1

2

∑
123

|〈 �p1 �p3s1s3t1t3|V̄eff |�k �h2ss2tt2〉|2
ω + ε2 − ε1 − ε3 + iη

n̄1n2n̄3,

(7)

�
(2c)
t (k, ω) = 1

2

∑
123

|〈�h1�h3s1s3t1t3|V̄eff |�k �p2ss2tt2〉|2
ω + ε2 − ε1 − ε3 − iη

n1n̄2n3,

(8)

where t labels the isospin quantum number of the external
particle, nj = θ (k f − | �p j |) is the zero-temperature momen-
tum distribution function, n̄ j = 1 − n j , V̄ = V − P12V is the
antisymmetrized NN potential with P12 the exchange opera-
tor, and all sums are taken over momentum, spin, and isospin
states.

The effective interaction in Eqs. (8) and (9) is defined by
Veff = VNN + V med

NN , where V med
NN is the density-dependent NN

potential derived from the N2LO chiral three-body force by
averaging one state over the filled Fermi sea of noninteract-
ing protons and neutrons in asymmetric nuclear matter [63]
(for additional details see Refs. [25,64]). In computing the
in-medium interaction V med

NN , we effectively normal order with
respect to a noninteracting (unpaired) ground state. The inclu-
sion of pairing correlations in the normal-ordering reference
state for V med

NN [65] amounts to summing the third particle over
a single-particle BCS spectrum but which otherwise leads
to a gap equation that has the same structure as Eq. (1).

The double-wavy line in Fig. 1(a) represents the fact that in
the first-order Hartree-Fock contribution to the nucleon self-
energy, there is an additional symmetry factor of 1

2 for the
medium-dependent potential, namely, V HF

eff = VNN + 1
2V med

NN .
The effective interaction in the BCS gap equation, Eq. (1),
however, requires no additional symmetry factor [62]. We
note that V med

NN depends on both the density and composition,
namely, the proton fraction. The proton fraction is determined
by enforcing β equilibrium, which requires computing the
proton and neutron chemical potentials from the equation of
state of asymmetric nuclear matter [57,66]. The electrons are
treated as a relativistic gas of noninteracting Fermions.

We employ chiral nucleon-nucleon interactions at next-
to-next-to-leading order (N2LO) and next-to-next-to-next-
to-leading order (N3LO) in the chiral power counting.
For values of the momentum-space cutoff � � 500 MeV,
nucleon-nucleon potentials generally exhibit good conver-
gence properties in many-body perturbation theory. In the
present work we therefore consider two values of the cutoff
(� = 450 MeV and 500 MeV) at N2LO and three values of
the cutoff (� = 414 MeV, � = 450 MeV, and 500 MeV) at
N3LO [40]. We note that the value � = 414 MeV is not the
result of fine tuning but instead corresponds to the relative mo-
mentum for nucleon-nucleon scattering at a laboratory energy
of Elab = 350 MeV, the maximum energy at which modern
nucleon-nucleon potentials are fitted to phase shifts. In all
cases we include also the N2LO chiral three-body force whose
low-energy constants cD and cE are fitted to reproduce the
binding energies of A = 3 nuclei and the β-decay lifetime of
3He [42,43]. We note that in all cases we employ the charge-
dependent versions of these potentials that differ primarily in
the leading-order low-energy constant associated with the 1S0

partial wave.
The same approximations for the single-particle energy

employed in the present work have been shown to give a
good description of the nucleon-nucleus optical potential,
especially the dependence of the real part on the isospin
asymmetry and energy [67,68]. As we demonstrate below,
the many-body perturbation series expansion of the single-
particle energies appears to be under control, but uncertainties
persist. Despite the above consistencies in the treatment of the
effective interaction and single-particle spectrum, additional
many-body effects beyond the BCS mean field approximation
are important. In particular, both short- and long-range cor-
relations lead to a fragmentation of single-particle strength,
encoded in nuclear spectral functions, that modify the quasi-
particle energy spectrum. While such effects are partly
accounted for through our use of the single-particle energy
at second order in perturbation theory, Eq. (5), a complete
treatment involving the superfluid Green’s function involves
a more complicated double energy convolution of the spectral
function [69]. Short-range correlations have been shown [28]
to reduce by about 25% the size of the neutron pairing gap
in the spin-singlet channel. Long-range correlations in the
effective pairing interaction, which represent the exchange of
virtual collective modes, tend to decrease the strength of the
singlet pairing gap by about 20% or less on average for a range
of nuclear interactions and densities [28].
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FIG. 2. Equation of state of nuclear matter in beta equilibrium
from the chiral two- and three-nuclear forces used in this work.

III. RESULTS

In Fig. 2 we show the equation of state of beta equilibrated
nuclear matter calculated from the five chiral nuclear forces
employed in the present work. We first compute the equation
of state for isospin-asymmetric nuclear matter at second order
in perturbation theory:

E (1) = 1

2

∑
12

n1n2〈12|(V̄NN + V̄ med
NN

/
3
)|12〉, (9)

E (2) = −1

4

∑
1234

|〈12|V̄eff|34〉|2 n1n2n̄3n̄4

e3 + e4 − e1 − e2
, (10)

where E = E/V is the energy density and the single-particle
energies ei in E (2) are computed according to Eq. (4). Anal-
ogous to the calculation of the nucleon self energy in the
previous section, the in-medium nucleon-nucleon interaction
V med

NN requires an additional symmetry factor of 1/3 in the
calculation of the Hartree-Fock contribution to the energy
density.

From Eqs. (9) and (10), the proton and neutron chemical
potentials can be evaluated as

μp = ∂E
∂np

∣∣∣∣
nn

, μn = ∂E
∂nn

∣∣∣∣
np

, (11)

where np is the proton number density and nn is the neutron
number density. The electron density is set by charge neu-
trality, and β equilibrium is then found by enforcing μn =
μp + μe. As a practical approach, we fit an energy density
functional that is consistent with the chiral effective field
theory neutron matter and symmetric nuclear matter equations
of state from many-body perturbation theory. We have veri-
fied that this introduces no significant error in computing the
chemical potentials. Strictly speaking, our perturbation theory
treatment of the equation of state and single-particle potential
does not constitute a conserving approximation, which means
that there is some ambiguity in the definition of the chemical
potential. Nevertheless, we find good numerical agreement
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FIG. 3. Proton fraction as a function of density for β-equilibrated
nuclear matter for n � 0.5n0. Results are shown for the five density-
dependent nuclear interactions at N2LO and N3LO.

between the chemical potentials computed from Eq. (11) and
from the single-particle energy at the Fermi surface up to a
proton Fermi momentum of kp

F = 0.6 fm−1, corresponding
to a density of about 1.5n0. At higher densities we find that
the consistency begins to break down, reaching deviations of
about 10% at 2n0 at which point the pairing gap vanishes.

As observed in Ref. [43] the energy per particle from the
two N2LO chiral potentials is systematically larger than that
from the three N3LO potentials, and this difference grows as
the density increases. We anticipate a corresponding increase
in the 1S0 proton pairing gap uncertainty band for densities
n � n0. Beyond n = 2n0 a description of the nuclear equation
of state based on chiral effective field theory is likely unreli-
able for the low-momentum perturbative potentials considered
in the present work. All results shown below are therefore
restricted to the regime n � 2n0.

At low densities the results for the nuclear equation of state
shown in Fig. 2 are in better agreement for the different po-
tentials. However, below n � 0.5n0 protons in the neutron star
inner crust are confined in nuclei and therefore do not form a
macroscopic superconductor. Recently it was shown [70] that
the crust-core transition density nt at which unbound protons
appear lies in a limited range of nt � 0.082–0.089 fm−3 for
the three N3LO chiral potentials considered in the present
work. The transition density was identified employing two
different methods: (i) comparing the ground state energies
of the homogeneous and inhomogeneous phase as a function
of density in the Thomas-Fermi approximation and (ii) the
thermodynamic instability method [71] where the density of
homogeneous matter is lowered until an instability to clus-
ter formation appears. Given the tight range of crust-core
transition densities found in Ref. [70], we consistently take
nt � 0.5n0 as the region above which proton pairing may
occur.

In Fig. 3 we plot the proton fraction of nuclear matter
in beta equilibrium as a function of density for the five nu-
clear force models considered. We show only densities greater
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than n � 0.5n0 as explained above. Nearly all of the nuclear
potentials give consistent predictions for the proton fraction
below n < n0, except for the n3lo500 chiral potential which
has been shown [72] to exhibit relatively slow convergence
in many-body perturbation theory. The proton fraction in nu-
clear matter depends on the nuclear symmetry energy and
its density dependence. For the n3lo500 potential the nuclear
symmetry energy is Sv � 25 MeV [72] when only the first-
and second-order perturbative contributions to the equation
of state are included, which is significantly smaller than the
values Sv = 30–33 MeV for the other potentials considered.
Third-order perturbative contributions have been shown [72]
to increase the nuclear symmetry energy by 2–3 MeV for
this potential, but systematically including such higher-order
terms in the present calculation of the pairing gap would not
meaningfully alter the final results. In all cases the values
of the symmetry energy Sv and its slope parameter L are
within the range suggested by Lattimer and Lim [73]. Thus
the proton fraction in the β-equilibrated nuclear matter found
in this work is consistent with constraints from the most cur-
rent experimental and theoretical predictions. Beyond nuclear
saturation density, the theoretical uncertainty in the proton
fraction increases significantly, and higher-order contributions
to the symmetry energy become important [74–76]. The two
N2LO chiral potentials produce the largest ground-state en-
ergy for β-equilibrated nuclear matter and give rise to proton
fractions Yp = 7.5–8.5 % at twice saturation density. The three
N3LO chiral potentials, on the other hand, predict smaller
values of Yp = 4–6 % at n = 2n0.

In Fig. 4 we show the proton and neutron single-particle en-
ergies in the Hartree-Fock approximation e(1)

k (top panel) and
in the self-consistent second-order approximation e(2)

k (bottom
panel) as a function of the momentum k for a specific value of
the proton Fermi momentum kp

F = 0.4 fm−1, corresponding to
a total baryon number density of n � 0.5n0. This is the density
at which the neutron star inner crust transitions to homoge-
neous nuclear matter in the core, and as we show below it also
corresponds to the density at which the proton 1S0 pairing gap
is maximal. We see that the inclusion of second-order pertur-
bative corrections to the nucleon self energy leads to a larger
isoscalar depth but also a larger isovector splitting between
the proton and neutron single-particle energies. Quantitative
inspection indicates that whereas the e(1)

k spectrum is nearly
quadratic, and hence admits an approximation of the form in
Eq. (2), the e(2)

k spectrum deviates strongly from this form in
the vicinity of the Fermi momentum. From Fig. 4 we see that
the different nuclear potentials give very similar results for the
momentum dependence of the proton single-particle energy.
As expected for the case of highly neutron-rich matter, the
proton single-particle potential is much more strongly attrac-
tive than the neutron single-particle potential. In fact, at the
proton Fermi momentum kp

F = 0.4 fm−1 the proton chemical
potential is μp = ep(kp

F ) � −65 MeV.
We next turn our attention to the calculation of the proton

pairing gap from Eq. (1). The pairing gap at the Fermi mo-
mentum �(kF ) is denoted by �F here and throughout. We
first neglect the presence of three-body forces, in which case
the nuclear potential is independent of the density and proton
fraction, and focus on the role of the single-particle potential,
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FIG. 4. Single-particle energies as a function of momentum for
protons and neutrons in beta-equilibrated nuclear matter at kp

F =
0.4 fm−1. The self-consistent second-order approximation to the
single-particle energy, shown in Eq. (5), is employed.

which we parametrize with different choices of the effective
mass. In general, the effective mass depends on the density
and proton fraction (and also on the momentum when the self
energy is computed beyond the Hartree-Fock approximation),
but for orientation we consider the case of a constant effective
mass. In Fig. 5 we show the proton 1S0 pairing gap from the
n3lo450 nucleon-nucleon potential as a function of the proton
Fermi momentum for effective masses ranging from M∗/M =
0.6–1.0. A free proton spectrum (M∗/M = 1.0) gives rise to a
maximum in the pairing gap of � � 3.2 MeV. Even a moder-
ate reduction in the effective mass to M∗/M = 0.75 leads to a
decrease in the maximum of the pairing gap by a factor of 2.
However, the density at which the pairing gap is maximal de-
creases by only 10%. The strong dependence of the maximum
in the pairing gap on the effective mass can be understood
from Eq. (1). A small effective mass corresponds to a strong
momentum dependence of the single-particle energy around
the Fermi surface. As the intermediate-state momentum in
Eq. (1) varies away from the Fermi momentum, the energy
denominator increases more rapidly for a small effective mass,
reducing the size of the pairing gap.

The effective mass approximation, Eq. (2), provides an
accurate parametrization of the nucleon single-particle energy
at the Hartree-Fock level. However, second-order perturbative
contributions to the nucleon self-energy lead to a strong mo-
mentum dependence of the effective mass that is peaked close
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FIG. 5. Density-dependent pairing gap (as a function of the
proton Fermi momentum) from chiral two-body forces. The single-
particle energies in the gap equation, Eq. (1), are parametrized in
terms of a density-independent effective mass M∗.

to M∗/M = 1 at the Fermi surface [77], the regime where
the spectrum most strongly affects the value of the pairing
gap. In Table I we show the effective masses at the Fermi
surface kp

F = 0.4 fm−1 for five different chiral NN + 3N
interactions and two choices of the single-particle energy e(1)

k

and e(2)
k . We see that the second-order perturbative corrections

strongly enhance the proton effective mass in comparison to
the Hartree-Fock values.

In Fig. 6 we study the effect of different parametrizations
of the nucleon single-particle energy on the density-dependent
pairing gap. In all cases we include both two- and three-
body forces. In the first case, shown as the dotted curve in
Fig. 6, we consider a free-particle spectrum e(0)

k = k2/2M.
The dotted vertical line stands for the Fermi momentum at the
core-crust boundary of a neutron star (n ∼ 1/2n0, Yp ∼ 0.03).
Comparing to Fig. 5 we see that three-body forces lead to
a reduction in the maximum value of the pairing gap by
a factor of four. Although the proton Fermi momentum is
small, the large neutron density leads to a more strongly re-
pulsive effective two-body proton-proton interaction as shown
in Ref. [64]. Consequently the maximum proton pairing gap
shown in Fig. 6 is roughly 1/3 the 1S0 neutron pairing gap in
neutron star inner crusts [26], where three-body forces play a

TABLE I. Proton effective masses at the Fermi surface kp
F =

0.4 fm−1 for different chiral NN + 3N interactions and two choices
of the single-particle energy e(1)

k and e(2)
k .

V M∗
p/Mp from e(1)

k M∗
p/Mp from e(2)

k

N2LO450 0.76 0.98
N2LO500 0.76 0.97
N3LO414 0.80 0.97
N3LO450 0.82 0.93
N3LO500 0.80 0.87
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FIG. 6. Proton-proton pairing gap in β-equilibrated nuclear mat-
ter from the n3lo450 chiral nuclear potential, including three-body
forces. The dotted vertical line represents the proton Fermi momen-
tum at the neutron star core-crust boundary. Three approximations
were employed for the single-particle energy spectrum: (i) free spec-
trum (dotted line), (ii) Hartree-Fock spectrum (dashed line), and (3)
self-consistent second-order spectrum (solid line).

much smaller role. Treating the single-particle energy in the
Hartree-Fock approximation e(1)

k = k2/2M + �(1)(k) leads to
an additional reduction in the pairing gap by about 40% as
shown by the dashed line of Fig. 6. Finally, employing the
self-consistent second-order single-particle energy e(2)

k [see
Eq. (5)] in the denominator of the gap equation leads to an
increase of 20% in the maximum gap size relative to the
Hartree-Fock approximation. This may be understood from
the fact that the second-order contribution �(2)(ek, k) to the
self-energy on average increases the effective mass in the
vicinity of the Fermi surface.

Figure 7 shows the 1S0 proton pairing gap in the pres-
ence of three-body forces using the n3lo450 chiral nuclear
potential. The dashed curves correspond to different values
of the (fixed) proton fraction Yp, which ranges from 0.002 �
Yp � 0.06 with �Yp = 0.002, and the solid red curve is that
for nuclear matter in beta equilibrium. For a given Yp we
calculate the solution to the BCS gap equation using the first-
order approximation for the single-particle energies e(1)(k).
We see that the proton fraction is an important parameter
for determining the size of the pairing gap. For instance at
kp

F = 0.4 fm−1, changing the proton fraction from Yp = 0.03
to Yp = 0.04 would increase the gap size from �F = 0.5 MeV
to �F = 0.75 MeV.

We note that the nuclear potential Veff (k, k′) depends on
the proton fraction when three-body forces are included. As
shown in Fig. 7, the proton pairing gap and the available
pairing domain in kp

F increase as the proton fraction increases
because Veff (k, k′) depends sensitively on the proton fraction.
As mentioned in Sec. I, three-body forces have been consid-
ered previously in a phenomenological way to compute the
proton pairing gap in β-stable nuclear matter. In this work,
three-nucleon forces consistent with the low-energy constants
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FIG. 7. Density-dependent proton-proton pairing gap from the
n3lo450 chiral nuclear potential for different values of the proton
fraction Yp and for nuclear matter in beta equilibrium. A Hartree-
Fock single-particle spectrum is employed.

in the two-body force and fitted to the properties of A = 3
nuclei have been employed. In addition we have calculated
the nuclear EOS with the same nuclear forces to determine
the proton fraction.

Figure 8 shows the proton pairing gap in beta-equilibrium
matter using five different chiral potentials and two different
approximations for the single-particle spectrum: e(1)

k (green)
and e(2)

k (red). The dotted sections of the curves indicate
the pairing gap for densities lower than that of the neutron
star core-crust boundary. The large symbols on the curves
indicate the values of the pairing gap at nuclear densities
n = n0/2 (open circle), n0 (filled circle), 3n0/2 (open square),
and 2n0 (filled square). Only the proton pairing gap from the
N3LO500 potential using the e(2)

k spectrum does not show clo-
sure in kp

F . This is due to the associated small proton fraction
(see Fig. 3), which leads to a larger value of the total baryon
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FIG. 8. Proton 1S0 pairing gap as a function of the Fermi momen-
tum kF for the five chiral potentials considered in the present work.

number density for a given value of kp
F . We have restricted

our calculations to the density regime n � 2n0 and therefore
do not report results for kp

F > 0.72 fm−1 from the N3LO500
potential. In particular, just below twice saturation density, the
self-consistent calculation of the single-particle potential from
the N3LO500 potential begins to break down.

We note several nearly universal features in the results of
Fig. 8, independent of the choice of chiral interaction and
the associated derived quantities, such as the single-particle
spectrum and proton fraction. First, for all cases the peak in
the pairing gap occurs very close to the crust-core boundary
and within a very small window of the proton Fermi mo-
mentum 0.35 fm−1 < kp

F < 0.43 fm−1. Second, apart from the
results of the N3LO414 and N3LO500 potentials using the
e(2)

k energy spectrum, nearly all potentials lead to a proton
pairing gap that vanishes when the proton Fermi momentum is
in the range 0.65 fm−1 < kp

F < 0.75 fm−1. Even the inclusion
of both the N3LO414 and N3LO500 potentials would only in-
crease the upper bound to kp

F � 0.8 fm−1, which corresponds
to a total baryon number density less than 2n0. We therefore
note that proton pairing is expected to exist within a neutron
star at densities where chiral effective field theory is valid.

Chiral potentials generally become more repulsive as the
momentum-space cutoff � increases, which partly accounts
for the smaller proton pairing gaps associated with the
N2LO500 and N3LO500 chiral potentials and the largest
proton pairing gaps associated with the N3LO414 potential.
For neutron matter and beta stable nuclear matter, it was also
shown that the N2LO equations of state are stiffer than at
N3LO. The effect of repulsive contributions in the nuclear
potential are mostly clearly seen in the pairing gaps associated
with the e(1)

k spectrum, where there is a clear trend from
the N2LO potentials (with the smallest gaps) to the N3LO
potentials ordered according to the value of the cutoff �. In
addition to the EOS stiffness (where an attractive force would
increase the gap size and the EOS would be soft), the gap size
is also related to the proton fraction in β-equilibrium matter
(which controls the proton Fermi momentum), and the proton
single-particle spectrum. From Fig. 8 we see that the inclusion
of second-order contributions to the single-particle energy
has a strong impact on the proton pairing gap. The nucleon
effective mass at the Hartree-Fock e(1)

k approximation is small
M∗/M ∼ 0.75, while second-order perturbative contributions
lead to a strong energy dependence in the single-particle po-
tential that increases the effective mass to M∗/M ∼ 1 near the
Fermi surface. As can be inferred from Fig. 5, this generically
leads to larger proton pairing gaps in Fig. 8 for the e(2)

k spec-
trum. Specifically, in the e(2)

k approximation we find that the
N2LO450, N2LO500, and N3LO414 potentials experience
the largest changes in the proton effective mass, which en-
hances the magnitude of the pairing gap relative to their values
with the e(1)

k spectrum. From the above considerations we find
that multiple effects strengthen the pairing gap associated with
the N3LO414 potential, which explains why it deviates most
strongly from the other potentials when the e(2)

k spectrum is
employed.

In Fig. 9 we compare the proton pairing gap uncertainty
band calculated in the present work to previous results in
the literature. We find that employing the e(2)

k approximation
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FIG. 9. 1S0 proton pairing curves from nuclear model. Our EFT
calculation (red band) gives similar pairing gaps and smaller range
of Fermi momentum where the pairing is available. For comparison,
it is shown the previous BCS calculations, Chao et al. [32] (‘CCY’),
Takatsuka [33] (‘T’), Amundsen and Østgaard [34] (‘AO’), Baldo
et al. [35] (‘BCLL’), Chen et al. [36] (‘CCDK’), Elgarøy et al. [37]
(‘EEHO’), Zuo et al. [38] (‘Zuo et al.’), and Baldo and Schulze [90]
(‘BS’).

for the single-particle spectrum, the maximum in the pair-
ing gap lies in the range 0.51 MeV < �F < 0.82 MeV,
which is consistent with previous calculations, but the
maximum density at which proton pairing is expected to occur
is systematically smaller than other models. This is largely
caused by three-body forces and the behavior of the chiral
potential Veff (k, k′) as the proton fraction is increased in neu-
tron star matter. Employing the e(1)

k spectrum we find instead
that 0.25 MeV < �F < 0.38 MeV. The medium-dependent
nuclear potential in isospin-asymmetric nuclear matter might
also affect to a lesser extent the 3P2 - 3F2 neutron pairing gap,
which is typically calculated in pure neutron matter. We note
that our error bands in Fig. 9 partially account for uncertainties
due to (i) the convergence of the chiral expansion (where we
have varied the chiral order of the nucleon-nucleon interac-
tion from N2LO to N3LO), (ii) the choice of the resolution
scale at which nuclear dynamics is resolved (encoded in the
high-momentum cutoff in the chiral potential), and (iii) the
convergence in the many-body expansion (through different
choices of the single-particle spectrum). A more comprehen-
sive account of uncertainties would include varying the chiral
EFT low-energy constants within ranges consistent with 2N
and 3N scattering data and three-body bound state properties
[78,79], improved order-by-order effective field theory trun-
cation errors [80–82] including consistent N3LO three-body
forces [83–88], and the improved description of short- and
long-range correlations that go beyond the BCS approxima-
tion [28,89].

In the weak coupling approximation, the critical tempera-
ture for the onset of pairing is given by [91]

Tc � 0.57 �F (T = 0). (12)
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FIG. 10. Calculated proton pairing gaps using the e(1)
k single-

particle energy (open symbols) and the e(2)
k single-particle energy

(filled symbols) together with the parametrization (solid lines) in
Eq. (14).

We find that in the present analysis with the e(2)
k spectrum, the

critical temperature for proton pairing in the core of neutron
stars is

Tc ∼ (3.2–5.1) × 109 K . (13)

Compared to the range of critical temperatures predicted in a
recent study from neutron star cooling using Bayesian anal-
ysis [92], where Tc = 7.59+2.48

−5.81 × 109 K, our prediction has a
smaller central value but is consistent at the highest range.

Finally, we consider parametrized fitting functions for the
pairing gaps shown in Fig. 8. We find that the pairing gap can
be well fitted with the simple function [14]

�(kF ) =
{
�mN (kF − k1)α (k2 − kF )β, if k1 < kF < k2 ,

0, otherwise ,

(14)
where N is the normalization factor given by

N = 1

ααββ

(
α + β

k2 − k1

)α+β

. (15)

In Fig. 10 we plot the numerical pairing gaps as well as the
fitting functions under the two approximations e(1)

k (open cir-
cles) and e(2)

k (filled squares) for the single-particle energies.
We see that in all cases the parametrized form in Eq. (14)
captures very well the kp

F dependence of the gaps. In Table II
will list the values of the parameters for the different chiral
interactions and choices of single-particle spectrum.

IV. SUMMARY

In this work we have studied the proton 1S0 pairing gap in
nuclear matter at beta equilibrium using five different nuclear
two- and three-body potentials derived within the framework
of chiral effective field theory. Nucleon-nucleon potentials at
both N2LO and N3LO were considered, together with the
chiral three-body force at N2LO. In addition to the choice of
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TABLE II. Fitting parameters for the 1S0 proton pairing gap in
Eq. (14) for different chiral potentials and choices for the single-
particle energy spectrum.

�m k1 k2

Model (MeV) (fm−1) (fm−1) α β

e(1)
k n3lo414 0.380 0.000 0.748 2.998 2.432

e(1)
k n3lo450 0.336 0.000 0.663 3.116 2.319

e(1)
k n3lo500 0.317 0.004 0.672 3.041 2.325

e(1)
k n2lo450 0.287 0.000 0.682 3.058 2.713

e(1)
k n2lo500 0.251 0.000 0.658 3.054 2.723

e(2)
k n3lo414 0.827 0.002 0.828 2.769 2.434

e(2)
k n3lo450 0.571 0.000 0.689 2.965 2.275

e(2)
k n3lo500 0.501 0.000 0.860 3.507 4.003

e(2)
k n2lo450 0.649 0.000 0.726 3.019 2.672

e(2)
k n2lo500 0.562 0.000 0.722 3.159 2.914

nuclear potential, also the single-particle spectrum employed
in the BCS gap equation is a source of theoretical uncertainty.

We find that both three-body forces and a realistic pro-
ton single-particle potential in neutron star matter reduce the
maximum size of the proton 1S0 pairing gap. In particular,
three-body forces reduce the maximum gap size by a factor of
3, while a self-consistent second-order treatment of the proton
single-particle potential leads to an additional reduction of
about 30%. Our results for the 1S0 proton pairing gap have a
similar range of sizes compared to previous studies. However,
the maximum density at which proton pairing may exist in

neutron stars is systematically smaller than previous results.
This ultimately comes from the inclusion of three-body forces
in our effective field theory calculation, which requires a
consistent calculation of the proton fraction in β-equilibrium
matter. The three-body force leads to additional repulsion in
the effective interaction and a suppression in the pairing gap
as the density increases.

These results will be important for a consistent description
of neutron star cooling. Proton 1S0 pairing will likely not
give any reduction factor for nucleon direct Urca cooling,
since the pairing gap is seen to vanish well before the proton
fraction reaches a value high enough for the onset of the direct
Urca process. However, proton pairing will certainly give a
reduction factor to the thermal conductivity, heat capacity,
and neutrino emission processes involving protons. Thus the
enhanced cooling processes in neutrons stars arising from
Cooper-pair breaking/formation is likely to be dominated by
3P2 neutron pairing in the core rather than 1S0 pairing of
protons.
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