
PHYSICAL REVIEW C 103, 025804 (2021)

Entrainment effects in neutron-proton mixtures within the nuclear energy-density functional
theory. II. Finite temperatures and arbitrary currents
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Mutual entrainment effects in hot neutron-proton superfluid mixtures are studied in the framework of the
self-consistent nuclear energy-density functional theory. The local mass currents in homogeneous or inhomoge-
neous nuclear systems, which we derive from the time-dependent Hartree-Fock-Bogoliubov equations at finite
temperatures, are shown to have the same formal expression as the ones we found earlier in the absence of
pairing at zero temperature. Analytical expressions for the entrainment matrix are obtained for application
to superfluid neutron-star cores. Results are compared to those obtained earlier using Landau’s theory. Our
formulas, valid for arbitrary temperatures and currents, are applicable to various types of functionals including
the Brussels-Montreal series for which unified equations of state have been already calculated, thus, laying the
ground for a fully consistent microscopic description of superfluid neutron stars.
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I. INTRODUCTION

Formed from the gravitational core collapse of massive
stars during supernova explosions, neutron stars are initially
very hot but rapidly cool down by emitting neutrinos. Their
very dense matter is, thus, expected to undergo various phase
transitions [1]. In particular, the core of a mature neutron star
is thought to contain a neutron-proton superfluid mixture (see,
e.g., Ref. [2] for a recent review). Because a superfluid can
flow without resistance and carries no heat, the dynamics of a
neutron star must be described by three distinct components,
at least: the neutron superfluid, the proton superconductor,
and the normal fluid. Due to strong nuclear interactions,
neutrons and protons cannot flow completely independently
and are mutually entrained, similar to superfluid 4He - 3He
mixtures [3].

Although a fully relativistic treatment is required for an
accurate description of the global dynamics of neutron stars,
the flows of neutrons and protons remain essentially nonrel-
ativistic at the nuclear length scales of interest here (at such
scales, space-time curvature can also be safely ignored, as
shown, e.g., in Ref. [4]). Therefore, we will consider here
nonrelativistic superfluid dynamics. The mass current ρq of
one nucleon species (q = n, p for the neutron and proton)
is expressible as a combination of the “superfluid velocities”
(momenta per unit mass) V q of both species and of the normal
velocity vN of thermal excitations, as [5]

ρn = (ρn − ρnn − ρnp)vN + ρnnV n + ρnpV p , (1)

ρp = (ρp − ρpp − ρpn)vN + ρpnV n + ρppV p . (2)

It follows from Eqs. (1) and (2) that the normal fluid carries a
momentum density given by

ρn + ρp − ρnV n − ρpV p

= (ρn − ρnn − ρnp)(vN − V n)

+ (ρp − ρpp − ρpn)(vN − V p). (3)

As shown in Ref. [6], the relativistic entrainment matrix de-
noted by Yqq′ and relating the nucleon four-currents to the
superfluid four-velocities can be inferred from its nonrelativis-
tic counterpart ρqq′ .

The (symmetric) entrainment matrix ρqq′ is a key micro-
scopic ingredient for modeling the dynamics of neutron stars,
see, e.g. Refs. [2,7–9] and references therein. It should be
stressed that the entrainment matrix itself may depend on the
superfluid flows, and this could play an important role on the
dynamics of neutron stars [10]. Although observed neutron
stars are usually cold, meaning that their internal temperature
T is much lower than the Fermi temperatures TFq, thermal
effects may still be significant for the superfluid dynamics
since the associated critical temperatures Tcq are typically
much lower than TFq. In particular, it has been recently shown
that the temperature dependence of the entrainment matrix
may have implications for neutron-star oscillations [11,12].

The entrainment matrix of a neutron-proton superfluid
mixture at finite temperatures was first calculated in Ref. [5]
within Landau’s theory of Fermi liquids suitably extended to
deal with superfluid systems [13,14]. Calculations were per-
formed assuming Vq are small compared to the corresponding
Fermi velocities VFq, and, thus, considering first-order current
perturbations of the static state. The same approach was later
extended to relativistic mixtures allowing for the presence
of hyperons [15]. Landau parameters were calculated using
a relativistic σ − ω − ρ mean-field model including scalar
self-interactions but ignoring pairing. Numerical results for
the relativistic entrainment matrix were obtained using the
Lagrangian parametrization of Ref. [16], and employing the
same empirical fits for the dependence on the critical temper-
atures as in Ref. [5]. More recently, some nonlinear effects
of the superfluid flows have been taken into account in the
calculations of the neutron-proton entrainment matrix [17].
However, Landau’s theory, on which all these studies rely, is
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not self-consistent, as emphasized in Ref. [5]. Moreover this
approach cannot be easily transposed to inhomogeneous sys-
tems, such as the inner crust of neutron stars where superfluid
neutrons coexist with nuclear clusters.

We have recently calculated the entrainment matrix of
neutron-proton mixtures at low temperatures [18] within the
self-consistent nuclear energy-density functional theory [19].
This theory has been already applied by different groups to
determine the equation of state of cold dense matter using
the same functional in all regions of neutron stars (crust,
mantle, and core), thus, ensuring a unified and thermodynami-
cally consistent treatment, see, e.g., Refs. [20–26]. Moreover,
this theory has been also employed to compute the proper-
ties of superfluid neutrons in neutron-star crusts (see, e.g.,
Refs. [27–29] for pairing gaps, critical temperatures, and
specific heat; Refs. [30–32] for superfluid fractions) and the
dynamics of quantized vortices [33–35]. In this second pa-
per, we extend our previous analysis to finite temperatures
and arbitrary currents. The dependence of the entrainment
matrix on temperature and superflows are taken into account
fully self-consistently within the time-dependent Hartree-
Fock-Bogoliubov (TDHFB) method.

After introducing the TDHFB method in Sec. II and de-
riving the general expressions for the local currents and
superfluid velocities valid for any (homogeneous or inho-
mogeneous) nuclear system, calculations of the entrainment
matrix in the outer core of neutron stars are presented
in Sec. III. Landau’s approximations are also discussed.
Throughout the paper, we will ignore the small difference
between the neutron and the proton masses, and the nucleon
mass will be denoted by m.

II. TIME-DEPENDENT HARTREE-FOCK-BOGOLIUBOV
EQUATIONS

A. Matrix formulation

The TDHFB method is discussed, e.g., in the classical text-
book of Ref. [36]. The energy E of a nucleon-matter element
of volume V is expressed as a function of the one-body density
matrix ni j

q and pairing tensor κ
i j
q defined by the following

thermal averages of the creation and destruction operators,
ci†

q and ci
q (using the symbol † for Hermitian conjugation)

for nucleons of charge-type q in a quantum state i (using the
symbol ∗ for complex conjugation),

ni j
q = 〈

c j†
q ci

q

〉 = n ji∗
q , (4)

κ i j
q = 〈

c j
qci

q

〉 = −κ ji
q . (5)

Introducing the generalized Bogoliubov transformation,1(
bi

q

bi†
q

)
=

∑
j

(
U (q)∗

i j V (q)∗
i j

V (q)
i j U (q)

i j

)(
c j

q

c j†
q

)
, (6)

such that 〈bj†
q bi

q〉 = δi j f (q)
i (δi j is Kronecker’s symbol) and

〈bj
qbi

q〉 = 〈bj†
q bi†

q 〉 = 0, where bi†
q and bi

q are creation and de-
struction operators of a quasiparticle in a quantum state i, the

1In Ref. [36], the matrices were denoted by X i
j = Ui j and Y i

j = Vi j .

TDHFB equations, which formally take the same form at any
temperature, can be written as [36]

ih̄
∂U (q)

ki

∂t
=

∑
j

[(
hi j

q − λqδ
i j
)U (q)

k j + 	i j
q V (q)

k j

]
, (7)

ih̄
∂V (q)

ki

∂t
=

∑
j

[−	i j∗
q U (q)

k j − (
hi j∗

q − λqδ
i j
)V (q)

k j

]
, (8)

where λq denotes the chemical potentials. The matrices hi j
q

and 	
i j
q of the single-particle Hamiltonian and the pair poten-

tial, respectively, are defined as

hi j
q = ∂E

∂n ji
q

= h ji∗
q , (9)

	i j
q = ∂E

∂κ
i j∗
q

= −	 ji
q . (10)

The fermionic algebra of the particle operators (ci
q and ci†

q ) and
the quasiparticle operators (bi

q and bi†
q ) yields the following

identities: ∑
k

(U (q)
ik U (q)∗

jk + V (q)
ik V (q)∗

jk

) = δi j,

∑
k

(U (q)∗
ki U (q)

k j + V (q)
ki V (q)∗

k j

) = δi j, (11)

∑
k

(U (q)
ik V (q)

jk + V (q)
ik U (q)

jk

) = 0,

∑
k

(U (q)∗
ki V (q)

k j + V (q)
ki U (q)∗

k j

) = 0. (12)

The one-body density matrix and the pairing tensor can be
expressed in terms of the quasiparticle components as

ni j
q =

∑
k

[
f (q)
k U (q)

ki U (q)∗
k j + (

1 − f (q)
k

)V (q)∗
ki V (q)

k j

]
, (13)

κ i j
q =

∑
k

[
f (q)
k U (q)

ki V (q)∗
k j + (

1 − f (q)
k

)V (q)∗
ki U (q)

k j

]
. (14)

B. Coordinate-space formulation

The energy E is generally further assumed to depend on
ni j

q and κ
i j
q only through the following local densities and

currents:2

(i) the nucleon number density at position r and time t ,

nq(r, t ) =
∑

σ=±1

nq(r, σ ; r, σ ; t ), (15)

(ii) the pair density (in general a complex number) at position
r and time t ,

ñq(r, t ) =
∑

σ=±1

ñq(r, σ ; r, σ ; t ), (16)

2The energy may be a functional of other densities and currents.
We consider here only those relevant for calculating the entrainment
couplings in homogeneous nuclear matter using the most popular
functionals.
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(ii) the kinetic-energy density (in units of h̄2/2m) at position r
and time t ,

τq(r, t ) =
∑

σ=±1

∫
d3r′ δ(r − r′)∇ · ∇′nq(r, σ ; r′, σ ; t ), (17)

(iii) and the momentum density (in units of h̄) at position r
and time t ,

jq(r, t )

= − i

2

∑
σ=±1

∫
d3r′ δ(r − r′)(∇ − ∇′)nq(r, σ ; r′, σ ; t ),

(18)

where the particle and pair density matrices in coordinate
space are, respectively, defined by [37]

nq(r, σ ; r′, σ ′; t ) = 〈cq(r′, σ ′; t )†cq(r, σ ; t )〉, (19)

ñq(r, σ ; r′, σ ′; t ) = −σ ′〈cq(r′,−σ ′; t )cq(r, σ ; t )〉, (20)

where cq(r, σ ; t )† and cq(r, σ ; t ) are the creation and de-
struction operators for nucleons of charge-type q at position
r with spin σ at time t . Introducing single-particle basis
wave-functions ϕ

(q)
i (r, σ ), these matrices can be alternatively

written in terms of ni j
q and κ

i j
q as

nq(r, σ ; r′, σ ′; t ) =
∑
i, j

ni j
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗, (21)

ñq(r, σ ; r′, σ ′; t ) = −σ ′ ∑
i, j

κ i j
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′,−σ ′). (22)

Examples of nuclear energy-density functionals depending on
the above local densities and currents are those constructed
from zero-range effective nucleon-nucleon interactions of the
Skyrme type [38,39]. The present formalism is also applicable
to more general classes of functionals, such as those proposed
in Ref. [40]. The pair density matrix is related to the order
parameter �q(r, t ) of the superfluid phase at position r and
time t as follows (see, e.g., Eq. (2.4.24) of Ref. [41]),

�q(r, t ) ≡ ñq(r,−1; r,−1; t ) = ñq(r,+1; r,+1; t )

= 1
2 ñq(r, t ). (23)

The matrices (9) and (10) of the single-particle Hamiltonian
and pair potential are given by

hi j
q (t ) =

∫
d3r

[
δE

δnq(r, t )

∂nq(r, t )

∂n ji
q

+ δE

δτq(r, t )

∂τq(r, t )

∂n ji
q

+ δE

δ jq(r, t )
· ∂ jq(r, t )

∂n ji
q

]
=

∑
σ

∫
d3r ϕ

(q)
i (r, σ )∗hq(r, t )ϕ(q)

j (r, σ ), (24)

	i j
q (t ) =

∫
d3r

δE

δñq(r, t )∗
∂ ñq(r, t )∗

∂κ
i j∗
q

= −
∑

σ

σ

∫
d3r ϕ

(q)
i (r, σ )∗	q(r, t )ϕ(q)

j (r,−σ )∗, (25)

where

hq(r, t ) = −∇ · h̄2

2m⊕
q (r, t )

∇ + Uq(r, t )

− i

2
[Iq(r, t ) · ∇ + ∇ · Iq(r, t )], (26)

h̄2

2m⊕
q (r, t )

= δE

δτq(r, t )
, Uq(r, t ) = δE

δnq(r, t )
,

Iq(r, t ) = δE

δ jq(r, t )
, (27)

	q(r, t ) = 2
δE

δñq(r, t )∗
. (28)

The factor of 2 in Eq. (28) arises from the antisymmetry of the
pairing tensor κ

i j
q (taking the derivative with respect to κ

i j∗
q

is equivalent to taking the derivative with respect to −κ
ji∗

q ).
Because Iq is a vector, it must obviously depend itself on
jq. This may also be the case for all the other fields. For
instance, the potential Uq derived from the Brussels-Montreal
functionals BSk19-26 [42,43] depends on j2

n , j2
p and jn · j p.

Since the energy E is real, it can only depend on the pair
density through its square modulus |̃nq(r, t )|2. The pairing
potential (28) can, thus, be written as

	q(r, t ) = 2
δE

δ|̃nq(r, t )|2 ñq(r, t ) = 4
δE

δ|̃nq(r, t )|2 �q(r, t ).

(29)
The last equality shows that 	q(r, t ) has the same phase as the
order parameter �q(r, t ). Using Eq. (22), the matrix elements
(25) of the pairing field (29) will, thus, generally take the
following form:

	i j
q = 1

2

∑
k,l

v
(q)
i jklκ

kl
q , (30)

with

v
(q)
i jkl ≡ 4

∑
σ,σ ′

σσ ′
∫

d3r
δE

δ|̃nq(r, t )|2 ϕ
(q)
i (r, σ )∗ϕ(q)

j (r,−σ )∗

×ϕ
(q)
k (r, σ ′)ϕ(q)

l (r,−σ ′). (31)

Let us note that v
(q)
i jkl = v

(q)∗
kli j = −v

(q)
jikl = −v

(q)
i jlk . In the tra-

ditional formulation of the TDHFB equations (see, e.g.,
Ref. [36]), v(q)

i jkl represents the matrix elements of the effective
(in-medium) two-body pairing interaction.

C. Mass currents and superfluid velocities

The TDHFB Eqs. (7) and (8) can be conveniently rewritten
as [36]

ih̄
∂ni j

q

∂t
=

∑
k

(
hik

q nk j
q − nik

q hk j
q + κ ik

q 	k j∗
q − 	ik

q κk j∗
q

)
, (32)

ih̄
∂κ

i j
q

∂t
=

∑
k

[(
hik

q − λqδ
ik
)
κk j

q + κ ik
q

(
hk j∗

q − λqδ
k j

)
−	ik

q nk j∗
q − nik

q 	k j
q

] + 	i j
q . (33)
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As shown in the Appendix, Eq. (32) can be translated in
coordinate space by the same continuity equations as in the
absence of pairing (a similar conclusion was previously drawn
in Ref. [44] within Landau’s theory),

∂ρq(r, t )

∂t
+ ∇ · ρq(r, t ) = 0, (34)

where the nucleon mass current is given by [18]

ρq(r, t ) = m

m⊕
q (r, t )

h̄ jq(r, t ) + ρq(r, t )
Iq(r, t )

h̄
. (35)

The effective mass m⊕
q (r, t ) and the vector field Iq(r, t ) are

defined by Eq. (27). As shown in our previous work [18], the
nucleon mass current can be expressed solely in terms of the
momentum densities as

ρq(r, t ) = h̄ jq(r, t )

{
1 + 2

h̄2

[
δE j

nuc

δX0(r, t )
− δE j

nuc

δX1(r, t )

]
ρ(r, t )

}
−h̄ j(r, t )

2

h̄2

[
δE j

nuc

δX0(r, t )
− δE j

nuc

δX1(r, t )

]
ρq(r, t ), (36)

where E j
nuc represents the nuclear-energy terms contributing to

the mass currents and we have introduced the following fields:

X0(r, t ) = n0(r, t )τ0(r, t ) − j0(r, t )2, (37)

X1(r, t ) = n1(r, t )τ1(r, t ) − j1(r, t )2. (38)

Let us recall that the subscripts 0 and 1 denote isoscalar and
isovector quantities, respectively, namely, sums over neutrons
and protons for the former (e.g., n0 ≡ n = nn + np) and dif-
ferences between neutrons and protons for the latter (e.g.,
n1 = nn − np).

The so-called superfluid velocity of the nucleon species q
at position r and time t is defined by (see, e.g., Eq. (2.4.21) of
Ref. [41])

V q(r, t ) = h̄

2m
∇φq(r, t ), (39)

where φq(r, t ) is the phase of the associated condensate de-
fined through the order parameter (23),

�q(r, t ) = |�q(r, t )| exp[iφq(r, t )]. (40)

III. ENTRAINMENT EFFECTS IN NEUTRON-STAR CORES

A. Exact solution of the TDHFB equations
in homogeneous matter

In this section, we consider a homogeneous neutron-proton
mixture with stationary nucleon currents in the normal rest
frame (vN = 0). The latter assumption ensures that the en-
tropy densities sq are independent of time. Recalling that [36]

sq = −kB

V

∑
i

[
f (q)
i ln f (q)

i + (
1 − f (q)

i

)
ln

(
1 − f (q)

i

)]
, (41)

where kB denotes Boltzmann’s constant, the quasiparticle dis-
tribution functions f (q)

i are, therefore, also independent of
time.

The single-particle wave functions are given by plane
waves,

ϕ j (r, σ ) = 1√
V

exp(ik j · r)χ j (σ ), (42)

where χ j (σ ) = δσ jσ denotes the Pauli spinor. As can be seen
from Eqs. (21) and (24), the density matrix (4) and the single-
particle Hamiltonian matrix (9) are both diagonal in this basis.

The superfluid velocities, which are necessarily spatially
uniform and independent of time, are conveniently written as

V q ≡ h̄Qq

m
. (43)

This corresponds to a superfluid phase φq(r) = 2Qq · r (mod-
ulo some arbitrary constant term without any physical
consequence). Inserting Eq. (42) in Eq. (23) using Eqs. (16)
and (22), the order parameter (23), thus, reduces to

�q(r, t ) = |�q(t )| exp(2iQq · r)

= 1

4V

∑
i, j

κ i j
q exp[i(ki + k j ) · r](σ j − σi ). (44)

One simple choice is to consider that κ
q
i j is nonzero only if

the states i and j have opposite spins and wave-vectors ki and
k j are such that ki + k j = 2Qq. We can always arrange states
such that ki = k + Qq and k j = −k + Qq. For convenience,
we introduce the following shorthand notation:

k ≡ (k + Qq, σ ), k̄ ≡ (−k + Qq,−σ ). (45)

These quantum numbers define the conjugate states that are
paired. Indeed, it follows from the definition (10) that the
only nonzero matrix elements of the pair potential are of the
form 	kk̄

q = −	k̄k
q . In the absence of current (Qq = 0), the

conjugate state k̄ is the time-reversed state of k. The presence
of a nonvanishing current (Qq 	= 0) breaks the time-reversal
symmetry. The nonzero elements of the U (q) and V (q) matrices
satisfying Eqs. (11) and (12) are of the form U (q)

kk = U (q)
k̄k̄

and V (q)
kk̄

= −V (q)
k̄k

. Substituting ih̄∂/∂t by the quasiparticle

energies E(q)
k , the TDHFB Eqs. (7) and (8) finally reduce to(
ξ

(q)
k 	

(q)
k

	
(q)∗
k −ξ

(q)∗
k̄

)(
U (q)

kk

V (q)
kk̄

)
= E(q)

k

(
U (q)

kk

V (q)
kk̄

)
, (46)

where ξ
(q)
k ≡ ε

(q)
k − λq (ε (q)

k denoting the eigenvalues of the
single-particle Hamiltonian matrix) are explicitly given by

ξ
(q)
k = h̄2

2m⊕
q

(k + Qq)2 + Uq + Iq · (k + Qq) − λq. (47)

The matrix elements 	
(q)
k ≡ 	kk̄

q = −	
(q)
k̄

are given by the
following equation:

	
(q)
k = 1

2

∑
l

v
(q)
kk̄l l̄

κ l l̄
q . (48)

Using Eqs. (13), (15), (18), and (21), the nucleon number and
momentum densities read

nq = 1

V

∑
k

nkk
q = 1

V

∑
k

[∣∣U (q)
kk

∣∣2
f (q)
k + ∣∣V (q)

k̄k

∣∣2(
1 − f (q)

k̄

)]
,

(49)
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jq = 1

V

∑
k

kknkk
q

= 1

V

∑
k

(k + Qq)
[∣∣U (q)

kk

∣∣2
f (q)
k + ∣∣V (q)

k̄k

∣∣2(
1 − f (q)

k̄

)]
, (50)

respectively, where the quasiparticle distribution is given by
[36]

f (q)
k = [

1 + exp
(
βE(q)

k

)]−1 = 1

2

[
1 − tanh

(
β

2
E(q)

k

)]
. (51)

where β ≡ (kBT )−1.
The solutions of Eq. (46), readily obtained by diagonaliz-

ing the HFB matrix, are given by3

E(q)
k = ξ

(q)
k − ξ

(q)
k̄

2
+

√
ε

(q)2
k + ∣∣	(q)

k

∣∣2
, (52)

∣∣U (q)
kk

∣∣2 = 1

2

⎛⎝1 + ε
(q)
k√

ε
(q)2
k + ∣∣	(q)

k

∣∣2

⎞⎠, (53)

∣∣V (q)
kk̄

∣∣2 = 1

2

⎛⎝1 − ε
(q)
k√

ε
(q)2
k + ∣∣	(q)

k

∣∣2

⎞⎠, (54)

where

ε
(q)
k ≡ ξ

(q)
k + ξ

(q)
k̄

2
= ε

(q)
k̄

. (55)

Using Eq. (47), we have

ε
(q)
k = h̄2

2m⊕
q

(
k2 + Q2

q

) + Uq + Iq · Qq − λq, (56)

ξ
(q)
k − ξ

(q)
k̄

2
= h̄k · VVV q, (57)

where we have introduced the effective superfluid velocity,

VVV q = h̄

m⊕
q

Qq + Iq

h̄
= m

m⊕
q

V q + Iq

h̄
. (58)

For standard Skyrme functionals, the effective mass m⊕
q de-

pends only on the nucleon densities, whereas the potential
Uq depends on the pairing gaps 	

(q)
k (which, in turn, depend

also on Qn and Qp). For the extended Skyrme functionals
proposed in Ref. [40], the potential Uq depends also explicitly
on j2

n , j2
p and jn · j p. In general, the dependence of the ener-

gies (56) on the superfluid velocities may be, therefore, quite
complicated.

3Equation (46) actually admits two kinds of solutions correspond-
ing to the eigenvalues E(q)

k± = (ξ (q)
k − ξ

(q)
k̄

)/2 ± √
ε

(q)2
k + |	(q)

k |2 .

Those associated with E(q)
k− are such that the expressions (53) and

(54) of |U (q)
kk |2 and |V (q)

kk̄
|2 are swapped. However, these solutions

lead to the same values for the nucleon number density (49) and the
momentum density (50) using the fact that E(q)

k− = −E(q)
k̄+. Therefore,

they give the same mass current (36) and, consequently, the same
entrainment matrix.

Using Eqs. (31) and (42), it can be shown that the ef-
fective pairing interaction v

(q)
kk̄l l̄

is independent of the wave
vectors, and depends only on the spins. The only nonzero
elements are given by (denoting the spins with arrows for
clarity)

v
(q)
↓↑↓↑ = 4

V

δE

δ|̃nq|2 < 0, (59)

and any other element obtained by permutation of the spin
indices. It, thus, follows from Eq. (48), that 	

(q)
k is also

independent of the wave-vector k (but 	
(q)
k still depends on

the given wave-vector Qq). Dropping the wave-vector k as a
subscript, introducing the pairing gap,

	q ≡ 	
(q)
↓↑ = 1

V

∫
d3r|	q(r)| � 0, (60)

and using Eqs. (53) and (54), Eq. (48) reduces to the gap
equation,

	q = 2

V

δE

δ|̃nq|2
∑

k

	q√
ε

(q)2
k + 	2

q

( fk + fk̄ − 1). (61)

The summation is only over the wave-vectors k, the summa-
tion over the spins has been already carried out. Note that
the right-hand side of this equation explicitly depends on the
wave-vectors Qq through Eqs. (51), (52), (56), and (57).

B. Entrainment matrix from the TDHFB solution

Using the solution of the TDHFB equations, the momen-
tum density (50) can be alternatively written as

jq = nqQq + 1

V

∑
k

k
(

f (q)
k − f (q)

k̄

)
. (62)

The first term on the right-hand side coincides with the
expression (29) adopted in our previous work [18], thus,
demonstrating the validity of this identification. The sec-
ond term accounts for quasiparticle excitations (note that the
summation over spin states has been already carried out).
Remarking that the component of k orthogonal to VVV q does
not contribute to the sum (since f (q)

k = f (q)
k̄

in this case), the
momentum density can be expressed as

jq = mnq

h̄
V q − m⊕

q nq

h̄
YqVVV q, (63)

with the Yq function defined as

Yq(T,VVV q) ≡ − h̄

m⊕
q nqVVV 2

q

1

V

∑
k

k · VVV q
(

f (q)
k − f (q)

k̄

)
. (64)

Substituting Eq. (51) yields

Yq(T,VVV q)

= h̄

m⊕
q nqV 2

q

[
1

V

∑
k

k · VVV q sinh(β h̄k · VVV q)

cosh
(
βE(q)

k

) + cosh(β h̄k · VVV q)

]
.

(65)
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In terms of the effective superfluid velocity (58), the mass
current (35) reduces to

ρq = ρq(1 − Yq)VVV q, (66)

whereas the momentum density jq becomes

jq = ρq

h̄
(1 − Yq)V q − m⊕

q nq

h̄2 YqIq. (67)

Using this expression of jq combined with the general expres-
sion of the vector field Iq [18],

Iq = δE j
nuc

δ jq
= −2( j p + jn)

(
δE j

nuc

δX0
− δE j

nuc

δX1

)
− 4 jq

δE j
nuc

δX1

(68)
leads to a self-consistent system of equations for jq and V q,
whose solutions are

Iq =
∑

q′
Iqq′V q′ , (69)

Inn = 2

h̄
ρn(1 − Yn)�

[
δE j

nuc

δX1

(
8

h̄2

δE j
nuc

δX0
m⊕

p npYp − 1

)
− δE j

nuc

δX0

]
, (70)

Ipp = 2

h̄
ρp(1 − Yp)�

[
δE j

nuc

δX1

(
8

h̄2

δE j
nuc

δX0
m⊕

n nnYn − 1

)
− δE j

nuc

δX0

]
, (71)

Inp = 2

h̄
ρp(1 − Yp)�

(
δE j

nuc

δX1
− δE j

nuc

δX0

)
, (72)

Ipn = 2

h̄
ρn(1 − Yn)�

(
δE j

nuc

δX1
− δE j

nuc

δX0

)
, (73)

� ≡
[

1 − 2

h̄2

(
δE j

nuc

δX0
+ δE j

nuc

δX1

)
(m⊕

n nnYn + m⊕
p npYp)

+
(

4

h̄2

)2
δE j

nuc

δX0

δE j
nuc

δX1
m⊕

n nnm⊕
p npYnYp

]−1

. (74)

Substituting Eq. (69) into (58), the entrainment matrix can be
readily obtained from Eq. (66),

ρnn(T,VVV q) = ρn(1 − Yn)

(
m

m⊕
n

+ Inn

h̄

)
, (75)

ρpp(T,VVV q) = ρp(1 − Yp)

(
m

m⊕
p

+ Ipp

h̄

)
, (76)

ρnp(T,VVV q) = ρn(1 − Yn)
Inp

h̄
,

ρpn(T,VVV q) = ρp(1 − Yp)
Ipn

h̄
. (77)

Using Eqs. (72) and (73), one can note that the entrainment
matrix is manifestly symmetric (i.e., ρnp = ρpn). Let us em-
phasize that Eqs. (75)–(77) give the exact expression for the

entrainment matrix within the TDHFB theory in homoge-
neous nuclear matter. No approximation has been performed
at this point. In particular, the full dependence of the entrain-
ment matrix elements on the currents is taken into account.

If the currents are small enough such that E(q)
k > 0, the

quasiparticle distributions (51) vanish at T = 0, hence, also
the functions Yq, as can be seen from Eq. (64). In this regime,
Eqs. (75)–(77) reduce to the expressions we derived earlier
ignoring nuclear pairing within the TDHF equations [18],
namely,

ρTDHF
nn = ρn

[
1 + 2

h̄2

(
δE j

nuc

δX0
− δE j

nuc

δX1

)
ρp

]
, (78)

ρTDHF
pp = ρp

[
1 + 2

h̄2

(
δE j

nuc

δX0
− δE j

nuc

δX1

)
ρn

]
, (79)

ρTDHF
np = ρTDHF

pn = ρnρp
2

h̄2

(
δE j

nuc

δX1
− δE j

nuc

δX0

)
. (80)

This allows us to rewrite Eq. (66) into the following alternative
form:

ρq =
∑

q′
ρTDHF

qq′

(
V q′ − m⊕

q′

m
Yq′VVV q′

)
. (81)

Finally, let us remark that the relativistic entrainment ma-
trix introduced in Ref. [6] can be directly calculated from
Eqs. (75)–(77) using their Eq. (17),

Ynn = ρnn − ρnp[λp/(mc2)]

(mc)2[1 + λn/(mc2)]
, (82)

Ypp = ρpp − ρnp[λn/(mc2)]

(mc)2[1 + λp/(mc2)]
, (83)

Ynp = Ypn = ρnp

(mc)2
. (84)

C. Landau’s approximations

In previous studies of entrainment effects [5,17], the mass
current was defined as

ρq = m

V

∑
k

nkk
q

1

h̄
∇kξ

(q)
k (85)

(ρq, nkk
q , and ξ

(q)
k were, respectively, denoted by Jq, N (q)

k+Qq
,

and H (q)
k+Qq

, in Ref. [5] and by ja, ñ(a)
k , and ε̃

(a)
k in Ref. [17]).

Note that (1/h̄)∇kξ
(q)
k represents the group velocity of the

single-particle state k. Using Eqs. (47) and (49), Eq. (85) can
be expressed as

ρq = m

m⊕
q

h̄

{
1

V

∑
k

(k+ Qq)
[∣∣U (q)

kk

∣∣2
f (q)
k +∣∣V (q)

kk̄

∣∣2(
1 − f (q)

k̄

)]}

+ m

{
1

V

∑
k

[∣∣U (q)
kk

∣∣2
f (q)
k + ∣∣V (q)

kk̄

∣∣2(
1 − f (q)

k̄

)]} Iq

h̄
. (86)

It can be seen from Eqs. (49) and (50) that Eq (86) coin-
cides with our general expression (35) of the mass current.
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To compare our results to those obtained earlier within Lan-
dau’s theory of Fermi liquids, we assume that the superfluid
velocities Vq are small compared to the corresponding Fermi
velocities VFq ≡ h̄kFq/m⊕

q , where kFq = (3π2nq)1/3 denotes
the Fermi wave number. We, thus, expand the quasiparticle
energy (52) as follows:

E(q)
k ≈ Ĕ(q)

k + h̄k · VVV q, (87)

Ĕ(q)
k ≡

√
ε̆

(q)2
k + 	̆2

q = Ĕ(q)
−k, (88)

where the single-particle energy ε
(q)
k is now evaluated in the

static ground state ignoring any dependence on the pairing
gaps, and expanding linearly around the Fermi surface,

ε̆
(q)
k ≡ h̄VFq(k − kFq), (89)

which coincides with Eq. (6) of Ref. [17]. In this expression,
the reduced chemical potential defined by μq ≡ λq − Uq has
been replaced by the Fermi energy at T = 0, namely, μq ≈
h̄2k2

Fq/(2m⊕
q ) (in general, μq depends on the temperature, the

gaps and the currents). The quasiparticle distribution function,
thus, becomes

fk ≈ 1

2

{
1 − tanh

[
β

2

(
Ĕ(q)

k + h̄k · VVV q
)]}

≡ f (q)
k+Qq

. (90)

Similarly, fk̄ ≈ f (q)
−k+Qq

. In the continuum limit, replacing
the discrete summation over k by an integral, the function
Yq(T,VVV q) introduced in Eq. (64), thus, reads

Yq(T,VVV q) ≈ − h̄

m̆⊕
q nqVq

∫
d�k

4π

∫ +∞

−∞
d ε̆

(q)
k D(

ε̆
(q)
k

)
× (

f (q)
k+Qq

− f (q)
−k+Qq

)( ε̆
(q)
k

h̄VFq
+ kFq

)
cos θk,

(91)

where the first integration is over the solid angle in k space, θk

is the angle between k and VVV q, and D(ε̆(q)
k ) is the level den-

sity.4 In Landau’s theory, the level density is further assumed
to be constant and approximated by its value on the Fermi sur-
face, namely, D(ε̆(q)

k ) ≈ D(0) = kFqm̆⊕
q /(2π2h̄2). Moreover,

the term ε̆
(q)
k /(h̄VFq) is also evaluated on the Fermi surface

and, therefore, is dropped. With all these approximations, the
function Yq finally reduces to Eq. (70) of Ref. [17] (where Y
was denoted by �̃),

Yq(T,VVV q) ≈ − 3

h̄kFq Vq

∫
d�k

4π

∫ +∞

0
d ε̆

(q)
k

× (
f (q)
k+Qq

− f (q)
−k+Qq

)
cos θk. (92)

Note that a factor of 2 was absorbed by integrating over half
the energy domain since the function to integrate is invariant

4Note that D(ε̆(q)
k ) denotes the level density per one spin state since

the summation over spins is already taken into account in Eq. (64).

under the change ε̆
(q)
k → −ε̆

(q)
k . Similar approximations for

the gap equations (61) yield

	̆q ≈ 4
δE

δ|̃nq|2 D(0)
∫

d�k

4π

∫ +∞

0
d ε̆

(q)
k

	̆q

Ĕ(q)
k

× (
f (q)
k+Qq

+ f (q)
−k+Qq

− 1
)
. (93)

Let us remark that the gap equations are, thus, decoupled
from the particle number conservation (49) since the reduced
chemical potentials are approximated by the corresponding
Fermi energies at T = 0. Further assuming 	̆q � μq, Eq. (93)
can be expressed as [17]

ln

(
	̆(0)

q

	̆q

)
=

∫
d�k

4π

∫ +∞

0
d ε̆

(q)
k

f (q)
k+Qq

+ f (q)
−k+Qq

Ĕ(q)
k

, (94)

where 	̆(0)
q denotes the solution of Eq. (93) at T = 0 in the

absence of currents.
Substituting Eq. (92) in Eqs. (70)–(74), and evaluating all

other quantities for the superfluids at rest, the entrainment
matrix (75)–(77) can be recast in a form similar to Eq. (30)
of Ref. [17],

ρqq′ (T,VVV q) = ρq(1 − Yq)γqq′ = ρq′ (1 − Yq′ )γq′q, (95)

γnn = m

m̆⊕
n S

[(
1 + Fnn

1

3

)(
1 + F pp

1

3
Yp

)

−
(Fnp

1

3

)2

Yp

]
, (96)

γpp = m

m̆⊕
p S

[(
1 + F pp

1

3

)(
1 + Fnn

1

3
Yn

)

−
(F pn

1

3

)2

Yn

]
, (97)

γnp = m

3S
√

m̆⊕
n m̆⊕

p

(np

nn

)1/2
Fnp

1 (1 − Yp), (98)

γpn = m

3S
√

m̆⊕
p m̆⊕

n

(
nn

np

)1/2

F pn
1 (1 − Yn), (99)

where Fqq′
1 denotes the dimensionless � = 1 Landau parame-

ter (derivatives are calculated in the absence of currents),

Fqq′
1 = 6

h̄2

[
(1 − 2δqq′ )

δE j
nuc

δX1

∣∣∣∣∣
0

− δE j
nuc

δX0

∣∣∣∣∣
0

]√
m̆⊕

q nqm̆⊕
q′ nq′ ,

(100)
and the function S is given by

S = �−1 =
(

1 + Fnn
1

3
Yn

)(
1 + F pp

1

3
Yp

)
−

(Fnp
1

3

)2

YnYp .

(101)
Simplifying the exact solutions (75)–(77) using Landau’s

approximations, we have, thus, recovered the entrainment ma-
trix derived earlier in Refs. [5,17]. It should be stressed that
the above formulas do not account for the full dependence of
the entrainment matrix on the currents unlike Eqs. (75)–(77).
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In particular, the nonlinear effects contained in the single-
particle energies have been ignored, compare Eqs. (56) and
(89) recalling that the mean fields themselves have a highly
nonlinear dependence on the currents.

IV. CONCLUSIONS

We have studied the dynamics of nuclear superfluid
systems at finite temperatures and finite currents in the frame-
work of the self-consistent time-dependent nuclear-energy
density functional theory. Considering the TDHFB equations
in coordinate space, we have derived general expressions for
the local nucleon mass currents (35) and local superfluid ve-
locities (39), which are valid for both homogeneous systems
(such as the outer core of neutron stars) and inhomogeneous
systems (such as the crust of neutron stars, atomic nuclei, and
vortices). Remarkably, the mass currents are found to have the
same formal expressions at any temperature and coincide with
the ones we derived earlier in the absence of pairing from the
TDHF equations at zero temperature [18].

Focusing on homogeneous neutron-proton superfluid mix-
tures, we have shown that the TDHFB equations can be solved
exactly for arbitrary temperatures and currents. Using this
solution, we have been able to express the Andreev-Bashkin
mutual entrainment matrix in analytic form. The formal sim-
plicity of our expressions (75)–(77) is, however, deceptive:
The entrainment coupling coefficients depend themselves on
the currents in a very complicated way through the self-
consistency of the TDHFB equations. We have explicitly
demonstrated that our expression reduces to that obtained
earlier in Ref. [17] within Landau’s theory.

Our formulas are applicable to a large class of nuclear
energy-density functionals. These include the Brussels-
Montreal functionals based on generalized Skyrme effective
interactions for which unified equations of state for all re-
gions of neutron stars have been calculated [21,23–25], thus,
paving the way for a fully consistent microscopic treatment
of the dynamics of superfluid neutron stars. The formalism
we have developed here in the nuclear context may also be
easily transposed to the less exotic kinds of superfluids studied
in terrestrial laboratories and described by similar TDHFB
equations.

The relativistic entrainment matrix introduced in Ref. [6] is
given by Eqs. (82)–(84). However, it would be worth carrying
out the same analysis within a fully relativistic self-consistent
microscopic framework, using the relativistic finite tempera-
ture HFB method [45].
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APPENDIX: CONTINUITY EQUATIONS

Making use of the completeness relations,∑
i

ϕ
(q)
i (r, σ )∗ϕ(q)

i (r′, σ ′) = δ(r − r′)δσσ ′, (A1)

and using Eqs. (24) and (25), we can demonstrate the follow-
ing identities:∑

i, j

hi j
q (t )ϕ(q)

i (r, σ )ϕ(q)
j (r′, σ ′)∗

= hq(r, t )δ(r − r′)δσσ ′, (A2)∑
i, j

	i j
q (t )ϕ(q)

i (r, σ )(−σ ′)ϕ(q)
j (r′,−σ ′)

= 	q(r, t )δ(r − r′)δσσ ′ . (A3)

Multiplying Eq. (32) by ϕ
(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗ and sum-
ming over indices i and j yields

ih̄
∂

∂t

∑
i, j

ni j
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗

=
∑
i, j,k

[
hik

q ϕ
(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗nk j
q − nik

q ϕ
(q)
i (r, σ )

×ϕ
(q)
j (r′, σ ′)∗hk j

q

]
+

∑
i, j,k

[
κ ik

q ϕ
(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗	k j∗
q

−	ik
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗κk j∗
q

]
. (A4)

The first summation yields the density-matrix
nq(r, σ ; r′, σ ′; t ), as can be seen from Eq. (21). The next
two summations can be simplified using Eq. (A2) and the
orthonormality property of the single-particle wave functions,∑

σ

∫
d3rrr ϕ

(q)
i (r, σ )ϕ(q)

j (r, σ )∗ = δi j . (A5)

We can, thus, write∑
i, j,k

hik
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗nk j
q

=
∑

i, j,k,l

hik
q ϕ

(q)
i (r, σ )δklϕ

(q)
j (r′, σ ′)∗nl j

q

=
∑
σ ′′

∫
d3r′′ ∑

i, j,k,l

hik
q ϕ

(q)
i (r, σ )ϕ(q)

k (r′′, σ ′′)∗

×ϕ
(q)
l (r′′, σ ′′)ϕ(q)

j (r′, σ ′)∗nl j
q

= hq(r, t )
∑
σ ′′

∫
d3r′′δ(r − r′′)δσσ ′′nq(r′′, σ ′′; r′, σ ′; t )

= hq(r, t )nq(r, σ ; r′, σ ′; t ). (A6)

Similarly, we have∑
i, j,k

nik
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗hk j
q
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=
∑

i, j,k,l

nik
q ϕ

(q)
i (r, σ )δklϕ

(q)
j (r′, σ ′)∗hl j

q

=
∑
σ ′′

∫
d3r′′ ∑

i, j,k,l

nik
q ϕ

(q)
i (r, σ )ϕ(q)

k (r′′, σ ′′)∗

×ϕ
(q)
l (r′′, σ ′′)ϕ(q)

j (r′, σ ′)∗hl j
q

=
∑
σ ′′

∫
d3r′′ nq(r, σ ; r′′, σ ′′; t )hq(r′′, t )δ(r′′ − r′)δσ ′σ ′′

=
∫

d3r′′ nq(r, σ ; r′′, σ ′; t )hq(r′′, t )δ(r′′ − r′). (A7)

Let us recall that hq(r′′, t ) involves the operator ∇′′ so that it
cannot be factored out of the integral. However, the Hermitic-
ity of the Hamiltonian matrix hi j

q = h ji∗
q implies the following

identity [18],

hq(r′′, t )δ(r′′ − r′) = hq(r′, t )∗δ(r′′ − r′). (A8)

Finally, Eq. (A7) becomes∑
i, j,k

nik
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗hk j
q = hq(r′, t )∗nq(r, σ ; r′, σ ′; t ).

(A9)
Likewise, the two summations in Eq. (A4) can be expressed
as follows using Eqs. (22) and (A3),∑
i, j,k

κ ik
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗	k j∗
q

=
∑

i, j,k,l

κ ik
q ϕ

(q)
i (r, σ )δklϕ

(q)
j (r′, σ ′)∗	l j∗

q

=
∑
σ ′′

∫
d3r′′ ∑

i, j,k,l

κ ik
q ϕ

(q)
i (r, σ )ϕ(q)

k (r′′,−σ ′′)(−σ ′′)

× (−σ ′′)ϕ(q)
l (r′′,−σ ′′)∗ϕ(q)

j (r′, σ ′)∗	l j∗
q

= −	q(r′, t )∗
∑
σ ′′

∫
d3r′′̃nq(r, σ ; r′′, σ ′′; t )δ(r′ − r′′)δσ ′σ ′′

= −ñq(r, σ ; r′, σ ′; t )	q(r′, t )∗, (A10)∑
i, j,k

	ik
q ϕ

(q)
i (r, σ )ϕ(q)

j (r′, σ ′)∗κk j∗
q

=
∑

i, j,k,l

	ik
q ϕ

(q)
i (r, σ )δklϕ

(q)
j (r′, σ ′)∗κ l j∗

q

=
∑
σ ′′

∫
d3r′′ ∑

i, j,k,l

	ik
q ϕ

(q)
i (r, σ )ϕ(q)

k (r′′,−σ ′′)(−σ ′′)

× (−σ ′′)ϕ(q)
l (r′′,−σ ′′)∗ϕ(q)

j (r′, σ ′)∗κ l j∗
q

= −	q(r, t )
∑
σ ′′

∫
d3r′′δ(r − r′′)δσσ ′′ ñq(r′, σ ′; r′′, σ ′′; t )∗

= −	q(r, t )̃nq(r′, σ ′; r, σ ; t )∗. (A11)
Collecting terms, multiplying by δ(r − r′), integrating over r′,
and summing over spins σ ′ = σ lead to

ih̄
∂nq(r; t )

∂t
=

∑
σ

∫
d3r′δ(r − r′)[hq(r, t )nq(r, σ ; r′, σ ; t )

− hq(r′, t )∗nq(r, σ ; r′, σ ; t )]

+	q(r, t )̃nq(r; t )∗ − ñq(r; t )	q(r, t )∗. (A12)

As shown in Ref. [18], the integral can be equivalently ex-
pressed as the divergence of a particle flux. The last two
terms cancel each other if the pairing potential is calculated
self-consistently from Eq. (29). Finally, multiplying by m/(ih̄)
leads to the same Eq. (34) as previously derived in Ref. [18]
ignoring pairing.
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