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The nature of the �nn and 3
�H∗(Jπ = 3/2+, I = 0) states is investigated within a pionless effective field

theory at leading order, constrained by the low-energy �N scattering data and hypernuclear three- and four-
body data. Bound-state solutions are obtained using the stochastic variational method, and the continuum region
is studied by employing two independent methods: the inverse analytic continuation in the coupling constant
method and the complex scaling method. Our calculations yield both the �nn and 3

�H∗ states unbound. We
conclude that the excited state 3

�H∗ is a virtual state and the �nn pole located close to the three-body threshold in
a complex energy plane could convert to a true resonance with Re(E ) > 0 for some considered �N interactions.
Finally, the stability of resonance solutions is discussed and limits of the accuracy of performed calculations are
assessed.
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I. INTRODUCTION

The s-shell � hypernuclei play an important role in the
study of baryon-baryon interactions in the strangeness sec-
tor. In view of scarce hyperon-nucleon scattering data they
provide a unique test ground for the underlying interaction
models thanks to reliable few-body techniques. In particu-
lar, experimental values of the � separation energies in A =
3, 4 � hypernuclei including their known spin and parity
assignments, as well as the 4

�H∗ and 4
�He∗ excitation energies

represent quite stringent constraints (see Ref. [1] and refer-
ences therein).

The hypertriton 3
�H (Jπ = 1/2+, I = 0) is the lightest

known hypernucleus, with the � separation energy B� =
0.13 ± 0.05 MeV [2] used as a few-body constraint in the
present study. This value, considered well established for
decades, has been challenged recently by the STAR collabo-
ration which has reported a value B� = 0.41 ± 0.12 MeV [3].
Possible implications of this larger value for hypernuclear
calculations have been studied in Refs. [4,5]. In view of the
small value of B� in the hypertriton ground state, it is likely
that the excited state 3

�H∗ (Jπ = 3/2+, I = 0) is located just
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above the � + d threshold; however, its physical nature is
not known yet. Moreover, since the isospin-triplet NN state
is unbound, it is highly unlikely that there exists a bound state
in the I = 1 �nn system. A thorough study of the A = 3 hy-
pernuclear systems with different spin and isospin, addressing
the question of whether they are bound or continuum states,
provides invaluable information about the spin and isospin de-
pendence of the �N interaction, as well as dynamical effects
in these few-body systems caused by a � hyperon. Moreover,
the issue of the �nn and also ��nn states as possible candi-
dates for widely discussed bound neutral nuclear systems has
attracted increased attention recently in connection with the
experimental evidence for the bound �nn state reported by
the HypHI collaboration [6].

The first variational calculation demonstrating that the �nn
system is unbound was performed by Dalitz and Downs more
than 50 years ago [7]. Later, this conclusion was further
supported by Garcilazo using a Faddeev approach with sep-
arable potentials [8]. Following, more-detailed studies of both
�nn and 3

�H∗ systems within the Faddeev approach using
either Nijmegen Y N potential [9] or a chiral constituent quark
model of Y N interactions [10,11] confirmed that both systems
are indeed unbound. In addition, these calculations revealed
that with increasing Y N attraction the binding of 3

�H∗ comes
first. The investigation of the �d scattering length in Jπ =
3/2+ channel indicated existence of a pole in the vicinity
of the � + d threshold. Continuum calculations of the un-
bound �nn system were performed by Belyaev et al. using a
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phenomenological �N potential [12]. This neutral hypernu-
clear system was found to form a very wide, near-threshold
resonance.

In view of the above theoretical calculations, the claimed
evidence of the �nn reported by the HypHI Collaboration
was quite surprising, and it stimulated renewed interest in
the nature of the three-body hypernuclear states. The HypHI
conclusions were seriously challenged by succeeding calcu-
lations [13,14], demonstrating inconsistency of the existence
of the �nn bound state with �N scattering as well as three-
and four-body hypernuclear data. Furthermore, the renewed
analysis of the BNL-AGS-E906 experiment [15] led to the
conclusion that the formation of a bound �nn nucleus is
highly unlikely. In addition, recently Gal and Garzilazo [16]
made a rough but solid estimate of �nn lifetime which, if
bound, is considerably longer than the one of free � hy-
peron τ�. This result is in disagreement with the shorter �nn
lifetime with respect to τ� extracted from the HypHI events
assigned to this system. The �nn was also explored within
pionless effective field theory (/πEFT ) [17,18].

In spite of the apparent interest the �nn and 3
�H∗ con-

tinuum states have been investigated in only few theoretical
works [12,19,20]. Afnan and Gibson [19] performed Faddeev
calculations of �nn using two-body separable potentials fitted
to reproduce NN and �N scattering lengths and effective
ranges. They pointed out that while �nn pole appears in
the subthreshold region [Re(E ) < 0], only a small increase
of the �N interaction strength produces a �nn resonance
[Re(E ) > 0]. This work encouraged the search for the �nn
system in the JLab E12-17-003 experiment [21].

In this work, we performed few-body calculations of the
�nn and 3

�H∗ hypernuclear systems within pionless effective
field theory at leading order (LO /πEFT), in both the bound
and continuous regions, exploring thoroughly their nature.
The first selected results have been reported in Ref. [20].
As demonstrated in that work the virtual state 3

�H∗ pole
position close to the � + d threshold strongly affects the
�d s-wave phase shifts in the Jπ = 3/2+ channel. The cal-
culated �d scattering lengths and effective ranges from this
work were further employed by Haidenbauer in the study
of �d correlation functions within the Lednicky-Lyuboshits
formalism [22]. It is to be noted that the nature of the 3

�H∗
state is a subject of the JLab proposal P12-19-002 [23].

The /πEFT approach was applied to s-shell � hypernuclei
and, among others, the experimental value of the � separation
energy B� in 5

�He was successfully reproduced [24]. The
/πEFT was further extended to the S = −2 sector with the aim
to study the onset of binding in �� hypernuclei [25]. Finally,
in the present work the /πEFT is applied to the study of contin-
uum states in three-body hypernuclear systems. Bound-state
calculations are performed using the stochastic variational
method (SVM), and the continuum states are described within
the inverse analytic continuation in the coupling constant
(IACCC) method and the complex scaling sethod (CSM). The
IACCC calculations are benchmarked against the CSM and
the stability of resonance solutions is discussed. The CSM is
in addition used to set limits of the accuracy of performed
calculations.

The paper is organized as follows: In Sec. II, we first
give a brief description of the /πEFT approach and the SVM

method applied in the calculations of few-body hypernuclear
systems. Then we introduce the CSM and IACCC method
used to describe the continuum states and pole movement in
a complex energy plane. In Sec. III, we present results of
our study of the �nn and 3

�H∗ systems. We discuss in more
detail the relation between the applied LO /πEFT approach
and phenomenological models and, in particular, the stability
and numerical accuracy of our /πEFT calculations. Finally, we
summarize our findings in Sec. IV.

II. MODEL AND METHODOLOGY

Hypernuclear systems studied in this work are described
within the /πEFT at LO which was introduced in detail in
Ref. [24]. In this section we present only basic ingredients
of the theory. The LO /πEFT contains two- and three-body
s-wave contact interaction terms, each of them associated
with corresponding isospin-spin channel. The contact terms
are then regularized by applying a Gaussian regulator with
momentum cutoff λ. This procedure yields two-body V2 and
three-body V3 potentials which together with the kinetic en-
ergy Tk enter the total Hamiltonian H :

H = Tk + V2 + V3, (1)

where

V2 =
∑
I,S

CI,S
λ

∑
i< j

P I,S
i j e− λ2

4 r2
i j (2)

and

V3 =
∑
I,S

DI,S
λ

∑
i< j<k

QI,S
i jk

∑
cyc

e− λ2

4 (r2
i j+r2

jk ). (3)

Here P I,S
i j and QI,S

i jk are the projection operators to two- and
three-body s-wave isospin-spin (I, S) channels and the two-
and three-body low-energy constants (LECs) CI,S

λ and DI,S
λ are

fixed for each λ by experimental data. The momentum cutoff
λ might be understood as a scale parameter with respect to a
typical momentum Q. Calculated observables exhibit residual
cutoff dependence O(Q/λ) suppressed with λ approaching
the renormalization group invariant limit λ → ∞ [24].

There are in total 4 two-body (NN , �N) and 4 three-body
(NNN , �NN) LECs. Nuclear LECs CI=0,S=1

λ , CI=1,S=0
λ , and

DI=1/2,S=1/2
λ are fitted to the deuteron binding energy, NN

spin-singlet scattering length aNN
0 , and to the triton binding

energy, respectively. Hypernuclear two-body LECs CI=1/2,S=0
λ

and CI=1/2,S=1
λ are fixed by the �N scattering length in a

spin-singlet a�N
0 and spin-triplet a�N

1 channel. Three-body
hypernuclear LECs DI=0,S=1/2

λ , DI=1,S=1/2
λ , and DI=0,S=3/2

λ are
fitted to the experimental values of � separation energies
B�(3

�H) and B�(4
�H) and the excitation energy Eexc(4

�H∗).
Here we consider only N and � degrees of freedom; how-
ever, the effect of the �-� conversion process is implicitly
accounted for by the chosen hypernuclear contact interaction.
On the two-body level, we fit LEC to different values of
�N scattering lengths which represent strength of the free-
space �N interaction containing beside �N − �N part also
�N − �N − �N contribution. On the few-body level the
�-� conversion is partially included in the three-body �NN
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TABLE I. Values of spin-singlet a�N
0 and spin-triplet a�N

1 scattering lengthsa used to fit hypernuclear two-body LECs together with effective
ranges r�N

0 and r�N
1 (in fm). Corresponding � separation energies B�(5

�He; ∞) (in MeV), predicted within /πEFT for λ → ∞ [24] are to be
compared with the experimental value B�(5

�He) = 3.12(2) MeV [2].

a�N
0 r�N

0 a�N
1 r�N

1 B�(5
�He; ∞)

Alexander B [26] −1.80 2.80 −1.60 3.30 3.01(10)
NSC97f [27] −2.60 3.05 −1.71 3.33 2.74(11)
χEFT(LO) [28] −1.91 1.40 −1.23 2.20 3.96(08)
χEFT(NLO) [29] −2.91 2.78 −1.54 2.27 3.01(06)
NN [30,31] −18.63 2.75 EB(2H) = −2.22457 MeV

aWe use the effective range expansion sign convention defined as kcotg(δ) = − 1
as

+ 1
2 rsk2 + · · · .

contact terms which are fixed using experimental values of the
� separation energies in three- and four-body hypernuclear
systems.

Since a�N
0 and a�N

1 are not constrained sufficiently well
by experiment, we use their values given by direct analysis
of scattering data [26] or predicted by several models of �N
interaction [27–29]. Considered a�N

0 and a�N
1 together with

the data used to fix NN spin-singlet 1S0 and spin-triplet 3S1

LECs are given in Table I. The /πEFT approach was applied
to s-shell � hypernuclei and, among others, the experimental
value of the � separation energy B� in 5

�He was successfully
reproduced [24] as demonstrated in the last column of Table I.

The calculation of A = 3-, 4-, 5-body s-shell � hypernu-
clear systems is performed within finite basis set of correlated
Gaussians [32],

ψi = Â exp
( − 1

2 xT Aix
)
χ i

SMS
ξ i

IMI
, (4)

where the operator Â ensures antisymmetrization between
nucleons, xT = (x1, . . . , xA−1) is a set of Jacobi coordi-
nates, and χ i

SMS
and ξ i

IMI
stand for corresponding spin and

isospin parts, respectively. Each ψi includes A(A − 1)/2 non-
linear parameters which are placed in the (A − 1)-dimensional
positive-definite symmetric matrix Ai plus two discrete param-
eters which represent different spin and isospin configuration
in χ i

SMS
and ξ i

IMI
, respectively.

In order to choose ψi with the most appropriate nonlinear
parameters we use the SVM [33], which was proved to pro-
vide systematic procedure to optimize the finite basis set, thus
reaching highly accurate bound-state description.

Resonances and virtual states, predominantly interpreted
as poles of an S matrix [34,35], cannot be addressed directly
using the SVM with the finite basis set. Consequently, in order
to study the hypernuclear continuum we apply the IACCC
method [36] which was proposed as numerically a more-
stable alternative to the analytic continuation in the coupling
constant [37].

Following the spirit of analytical continuation techniques
we supplement the Hamiltonian H (1) by an auxiliary three-
body attractive potential,

V IACCC
3 = dI,S

λ

∑
i< j<k

QI,S
i jk

∑
cyc

e− λ2

4 (r2
i j+r2

jk ), (5)

where the amplitude dI,S
λ defines its strength and is negative

for attraction. The projection operator QI,S
i jk ensures that the

potential affects only a particular (I, S) three-body channel:

(1, 1
2 ) for �nn or (0, 3

2 ) for 3
�H∗. If not explicitly mentioned,

λ in V IACCC
3 is equal to the /πEFT cutoff λ. In principle one

can use a rather large class of two- or three-body attractive
auxiliary potentials which fulfill certain criteria imposed by
analytic continuation [35]. Using V IACCC

3 (5) ensures that the
properties of two-body part of the /πEFT Hamiltonian (1)
such as scattering lengths or deuteron binding energy remain
unaffected. Its form is selected to be the same as of the /πEFT
three-body potential (1).

With increasing attractive strength of dI,S
λ the resonance

or virtual state S-matrix pole described by H starts to move
toward the bound-state region and at certain dI,S

0, λ becomes
a bound state. The other way around, studying bound-state
energy EB as a function of dI,S

λ < dI,S
0, λ, we can perform an

analytic continuation of the pole position from the bound
region back into the continuum (dI,S

λ > dI,S
0, λ) up to the point

of its physical position with no auxiliary force (dI,S
λ = 0).

In practice, we apply the SVM to calculate a set of
M + N + 1 bound-state energies for different values of the
coupling constant {Ei

B(di ); di < d0; i = 1, . . . , M + N + 1},
where di = dI,S

i, λ. Next, using this set we construct the Padé
approximant of degree (M, N) P (M,N ) of function d (κ ),

P (M,N )(κ ) =
∑M

j=0 b jκ
j

1 + ∑N
j=1 c jκ j

≈ d (κ ), (6)

where b j and c j are real parameters of the P (M,N ). The κ is
defined as κ = −ik = −i

√
E with E standing for a bound-

state energy with respect to the nearest dissociation threshold.
The position of the S-matrix pole corresponding to H is cal-
culated setting d = 0 in Eq. (6) which leads to the the simple
polynomial equation

M∑
j=0

b jκ
j = 0. (7)

The resonance or virtual-state energy with respect to the near-
est threshold is then obtained as E = (iκ )2, where κ now
corresponds to the physical root of Eq. (7). Here, for com-
plex resonance energy, we use the notation E = Er − i�/2,
where Er = Re(E ) is the position of the resonance and � =
−2 Im(E ) stands for the resonance width.

Using the IACCC method we study the whole pole trajec-
tory E (d ) in the continuum region d ∈ 〈d0; 0〉 (see Fig. 4).
For a given set of bound-state energies {Ei

B(di ); di < d0; i =
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1, . . . , M + N + 1}, we shift di → d − di in the Ei
B(di ) set,

construct a new Padé approximant (6), and obtain E (d ) as a
corresponding root of Eq. (7).

The specific choice of V IACCC
3 (5) provides clear physical

interpretation for any dI,S
λ solution. By varying dI,S

λ the �nn
or 3

�H∗ pole moves along its trajectory E (dI,S
λ , λ), which

is defined purely by the underlying two-body interactions
and cutoff λ. Supplementing the physical Hamiltonian (1) by
V IACCC

3 might be understood as a shift of the three-body LEC
constant DI,S

λ → DI,S
λ + dI,S

λ . Since DI=1,S=1/2
λ and DI=0,S=3/2

λ

have been fitted for each λ to the experimental value of
B�(4

�H) and Eexc(4
�H∗), respectively [24], one could assign

the parts of trajectories for dI,S
λ < 0 to an overbound four-

body system. In other words, for a given set of a�N
0 and

cutoff λ the trajectory E (dI=1,S=1/2
λ , λ) of �nn pole positions

corresponds to different values of B�(4
�H) and similarly the

trajectory E (dI=0,S=3/2
λ , λ) of 3

�H∗ pole positions corresponds
to different values of Eexc(4

�H∗).
For each IACCC resonance calculation we benchmark part

of the corresponding pole trajectory against the CSM [38].
The main ingredient of the CSM is a transformation U (θ ) of
relative coordinates r and their conjugate momenta k,

U (θ )r = reiθ , U (θ )k = ke−iθ , (8)

where θ is a real positive scaling angle. Applying this trans-
formation to the Schrödinger equation one obtains its complex
scaled version,

H (θ )�(θ ) = E (θ )�(θ ), (9)

where H (θ ) = U (θ )HU −1(θ ) is the complex scaled Hamilto-
nian and �(θ ) = U (θ )� is the corresponding wave function.
For large-enough θ , the divergent asymptotic part of the reso-
nance wave function is suppressed and �(θ ) is normalizable;
possible resonant states can then be obtained as discrete solu-
tions of Eq. (9) [39]. In order to prevent divergence of the
complex scaled Gaussian potential (1) the scaling angle is
limited to θ < π

4 .
A mathematically rigorous formulation of the CSM for

a two-body system results in the ABC theorem [38] which
provides description of the behavior of a complex scaled en-
ergy E (θ ) with respect to θ : (i) Bound-state energies remain
unaffected, (ii) the continuum spectrum rotates clockwise in a
complex energy plane by angle 2θ from the real axis with its
center of rotation at the corresponding threshold, and (iii) for
θ > θr = 1

2 arctan( �
2Er

) corresponding to the resonance energy
Er and width �, the resonance is described by a square-
integrable function and its energy and width are given by a
complex energy E (θ ) = Er − i�/2 which does not change
further with increasing θ .

In this work, we expand �(θ ) in a finite basis of correlated
Gaussians (4),

�(θ ) =
N∑

i=1

ci(θ ) ψi. (10)

Both resonance energies E (θ ) and corresponding coefficients
ci(θ ) are then obtained using the c-variational principle [40]

as a solution of generalized eigenvalue problem,
N∑

j=1

(ψi|H (θ )|ψ j )c
α
j (θ ) = Eα (θ )

N∑
j=1

(ψi|ψ j )c
α
j (θ ), (11)

where (|) stands for the c-product (bi-orthogonal prod-
uct) [39,41]. In the case of real ψi, the c-product in Eq. (11)
is equivalent to the inner product 〈|〉. It was proved that the
solutions of Eq. (11) are stationary in the complex variational
space, and for N → ∞ they are equal to exact solutions of the
complex scaled Schrödinger equation (9) [40]. Nevertheless,
with increasing number of basis states the solution stabilizes
and there is no upper or lower bound to an exact resonance
solution [42].

In fact, due to a finite dimension of the basis set the
resonance energy E (θ ) (11) moves with increasing scaling
angle along the θ trajectory even for θ > θr , featuring residual
θ dependence [39,43]. It was demonstrated that following
the generalized virial theorem [40,44] the best estimate of
a resonance energy is given by the most stationary point of
the θ trajectory, i.e., such E (θopt ) for which the residual θ

dependence is minimal but not necessarily equal to zero,∣∣∣∣dE (θ )

dθ

∣∣∣∣
θopt

≈ 0. (12)

A real scaling angle θ is frequently used in finite basis
CSM calculations with satisfactory results [43,45,46]. How-
ever, identifying the resonance energy with E (θopt ) using the
θ trajectory [Im(θ ) = 0, Re(θ ) changing] is still approximate.
As pointed out by Moiseyev [42], the resonance stationary
condition requires exact equality in Eq. (12), which can be
achieved in a finite basis set by considering complex θopt. Con-
sequently, taking θ real introduces certain theoretical error and
it is problematic to quantify how much the result obtained
using the θ -trajectory technique deviates from the true CSM
resonance solution [zero derivative in Eq. (12)].

Following Aoyama et al. [39] we use both θ trajectory
and β trajectories [Re(θ ) fixed, Im(θ ) changing] to locate
the position of the true CSM solution. In the above work it
was numerically demonstrated that for certain Re(θopt ) the θ

trajectory approaches the stationary point and then starts to
move away. On the other hand, the β trajectories are roughly
circles with decreasing radius as the corresponding Re(θ )
approaches Re(θopt ). In view of orthogonality of the θ and
β trajectories at given scaling angle θ , the true CSM solution
is then located inside an area given by circular β trajectories.
More specifically, it is identified as the center of the circular
β trajectory with the smallest radius where the CSM error is
given by the size of this radius [39].

Another nontrivial task is to determine an appropriate yet
not excessively large correlated Gaussian basis which yields
stable CSM resonance solution. In this work, we apply the har-
monic oscillator (HO) trap technique [20] which introduces
systematic algorithm how to select such basis. First, we place
a resonant system described by the Hamiltonian H into a HO
trap

H trap(b) = H + V HO(b), V HO(b) = h̄2

2mb4

∑
j<k

r2
jk, (13)

025204-4
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where b is the HO trap length and m is an arbitrary mass
scale. Next, for given b we apply the SVM to determine basis
set which yields accurate description of the ground as well
as excited states of H trap(b). The potential V HO(b) plays a
role analogous to a box boundary condition (though not so
stringent)—the SVM procedure promotes basis states with
their typical radius given by the trap length b. By increasing
b we enlarge the typical radius of the correlated Gaussians
ψi. For large-enough b, the CSM resonance solution for the
Hamiltonian H starts to stabilize and both the short-range and
suppressed long-range asymptotic parts of a resonance wave
function are described sufficiently well.

For θ � θr the CSM resonant wave function �(θ ) is local-
ized in a certain interaction region, whereas its asymptotic part
is suppressed by the CSM transformation (8). Consequently,
we use the HO trap technique in order to build the CSM basis
which describes physically relevant interaction region of �(θ )
up to certain large-enough Rmax beyond which the asymptotic
part does not contribute significantly to the CSM solution.

In practice, for each CSM calculation, we apply the HO
trap technique to independently select basis sets for a grid of
increasing trap lengths {bi; bi � bmax}. Next, merging these
sets into a larger CSM basis we calculate the resonance θ

trajectory solving Eq. (11). In the last step we study stabi-
lization of the θ trajectory with increasing bmax considered in
the merged basis set. For more details and an example see
Sec. III A.

III. RESULTS

We applied the LO /πEFT approach with two- and three-
body regulated contact terms defined in Eq. (1) to the study of
the s-shell � hypernuclei, the �nn and 3

�H∗(Jπ = 3/2+, I =
0) systems in particular. In this section, we present results
of the calculations and provide comparison of the results ob-
tained within our LO /πEFT approach and phenomenological
models. In a separate subsection, we discuss in detail stability
and numerical accuracy of the presented SVM and IACCC
resonance solutions.

The additional auxiliary three-body potential V IACCC
3 (5)

introduced to study continuum states allows us to vary the
amount of attraction and thus explore different scenarios, as
demonstrated in Fig. 1. Here the �nn and 3

�H∗ bound-state
energies EB are plotted as a function of the strength dI,S

λ

of the auxiliary force normalized to the strength DI,S
λ of the

three-body �NN potential of the /πEFT . In the limiting
case dI,S

λ /DI,S
λ = −1, the three-body repulsion is completely

canceled and the systems undergo Thomas collapse [47] in
the limit of λ → ∞. For suitably chosen values of dI,S

λ /DI,S
λ

between 1 and 0, both �nn and 3
�H∗ are bound and one can

study implications for the four- and five-body s-shell hyper-
nuclei as will be shown below where we tune dI,S

λ to get
either �nn or 3

�H∗ just bound by 0.001 MeV. Finally, for the
zero auxiliary force dI,S

λ /DI,S
λ = 0 one gets physical solutions,

namely continuum states of �nn and 3
�H∗ (either resonant or

virtual states). The figure suggests that the value of dI,S
λ /DI,S

λ

considerably closer to 0, i.e., much less additional attraction,
is needed to get 3

�H∗ bound then in the case of �nn.

FIG. 1. The �nn and 3
�H∗ bound-state energies EB as a function

of dI,S
λ normalized to DI,S

λ for I = 1, S = 1/2 and I = 0, S = 3/2,
respectively. The calculation is performed for the Alexander B set of
�N scattering lengths and λ = 6 fm−1.

We will now demonstrate that such � interactions tuned
to bind �nn and/or 3

�H∗ are inconsistent with � separation
energies in A = 4 and 5 hypernuclei. We keep two- and three-
body LECs fixed and fit the attractive strength of the auxiliary
three-body force, either dI=0,S=3/2

λ to � separation energy
B�(3

�H∗) = 0.001 MeV or dI=1,S=1/2
λ to bound-state energy

EB(�nn) = −0.001 MeV.
Consequences of such tuning are illustrated in Fig. 2. Here

we present � separation energies B� in s-shell hypernuclei,
calculated for selected �N scattering lengths and cutoff λ =
6 fm−1 which already exhibits partial renormalization group
invariance. Variations of dI=0,S=3/2

λ or dI=1,S=1/2
λ do not af-

fect the I, S = (0, 1
2 ) three-body channel, consequently, the

� separation energy of the hypertriton ground state remains
unaffected and is not shown in the figure. In order to get the
3
�H∗ system just bound [Fig. 2(a)], the amount of repulsion
in the (0, 3

2 ) three-body channel must decrease, which leads
in return to overbinding of both the 4

�H∗ excited state and the
5
�He hypernucleus. The wave function of the 4

�H ground state
does not include the (0, 3

2 ) component and thus its B� remains
intact. As was already noted and demonstrated in Fig. 1, the
binding of the �nn system requires a larger change in the
corresponding auxiliary three-body force. Indeed, decreasing
amount of repulsion in the (1, 1

2 ) three-body channel induces
even more severe overbinding than in the 3

�H∗ case: B�s are
more than twice larger than experimental values [Fig. 2(b)].
We might deduce that by varying the strength of � interac-
tions, it is harder to get �nn bound: the bound 3

�H∗ state
appears more likely first. This result is in agreement with
previous works [9–11].
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FIG. 2. � separation energies B� from SVM calculations using cutoff λ = 6 fm−1 and several sets of �N scattering lengths for two cases:
just bound 3

�H∗ (a) and just bound �nn (b). Horizontal dotted lines mark experimental values of B�.

In Fig. 3 we show the physical solutions (with no auxil-
iary force) corresponding to the /πEFT Hamiltonian H (1).
Here the real Re(E ) and imaginary Im(E ) parts of the �nn
resonance energy [Fig. 3(a)] and the energy Ev of the virtual
state 3

�H∗ with respect to the � + d threshold [Fig. 3(b)] are
plotted as a function of the cutoff λ for the �N scattering
length versions listed in Table I. The calculated energies in
the both hypernuclear systems depend strongly on the input

�N interaction strength. In the case of 3
�H∗, we obtain for

all considered �N scattering lengths a virtual-state solution.
Namely, in accord with the definition of a virtual state [34], the
imaginary part of the 3

�H∗ pole momentum Im(k) decreases
from a positive value (bound state) to a negative value (un-
bound state) with a decreasing auxiliary attraction, whereas
the real part Re(k) remains equal to zero [34] (as was demon-
strated in Ref. [20]). On the other hand, in the case of the �nn

FIG. 3. Real Re(E ) (full symbols) and imaginary Im(E ) (empty symbols) parts of the �nn resonance energy (a) and energy Ev of the 3
�H∗

virtual state with respect to the � + d threshold (b) as a function of cutoff λ calculated using the IACCC method for several �N interaction
strengths. For 3

�H∗ virtual state and Alexander B we perform extrapolation for λ → ∞. The red dashed line is the extrapolation function, and
the solid red line and shaded area mark the contact limit and the extrapolation error. For theoretical error see the text, numerical errors are
discussed in Sec. III A.
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system the /πEFT predicts a resonant state. Moreover, only the
NSC97f and χEFT(NLO) yield �N interaction strong enough
to ensure for λ � 2 fm−1 the �nn pole position in the fourth
quadrant of a complex energy plane [Re(E ) > 0, Im(E ) < 0],
i.e., predict a physical �nn resonance.

In Fig. 3 we also demonstrate stability of the solutions with
respect to the cutoff λ. The calculated energies vary smoothly
beyond the value λ = 2 fm−1 and already at λ = 4 fm−1 they
stabilize within extrapolation uncertainties at an asymptotic
value corresponding to the renormalization scale invariance
limit λ → ∞. This is illustrated in the right panel, where we
present for the Alexander B case the extrapolation function
and the asymptotic value including the extrapolation error for
the energy Ev of the 3

�H∗ virtual state. It is to be noted that
one might naively expect clear dependence on the strength
of the �N spin-triplet interaction which solely enters the
3
�H∗ hypernuclear part on a two-body level. However, the
dominance of the spin-triplet interaction is undermined by
three-body force in the (0, 3

2 ) channel compensating the size
of the spin-singlet scattering length a�N

0 , being fixed by the
B�(4

�H∗) experimental value.
One could argue that considering different values of a�N

s
or strengths of �NN three-body forces would open a pos-
sibility to locate the �nn resonance in the fourth quadrant
closer to the real axis and thus decrease its width �. This
would certainly facilitate its experimental observation. How-
ever, �NN forces are fixed by experimental B�s of three- and
four-body hypernuclear systems. Considering unusually large
values of a�N

s would allow �nn pole position closer to the
threshold but �N interactions would have to be reconciled
again with remaining s-shell systems. At LO /πEFT we would
be constrained by a possibility of bound 3

�H∗ and by the
experimental value of B�(5

�He).
In order to make an estimate of the effective range correc-

tions in the three-body hypernuclear systems, we consider that
the relevant typical energy scale; i.e., the � binding energy
or the resonance energy, is small, and therefore it should be
sensitive only to the long-distance properties of the �N inter-
action [48]. In our case, the relevant energies of both the �nn
resonance as well as the hypertriton virtual state are less than
1 MeV. For the hypertriton, one could estimate the typical �

momentum as p� ∼ √
2μE ≈ 37 MeV, where μ ≈ 700 MeV

is the � deuteron reduced mass. The leading correction of the
effective range should be of order O(QR), where Q ∼ p� and
R is the range of the �N interaction. This gives a truncation
error of about ≈47%, where we consider R ∼ r�N

s ≈ 2.5 fm.
The typical � momentum in the �nn resonance should be
roughly the same.

Following Ref. [49], a rough estimate of the LO error can
be made through residual cutoff dependence which has to be
corrected by the NLO term. Inspecting the evolution of the
�nn and 3

�H∗ energies plotted in Fig. 3 as a function of the
cutoff from λ = 1.25 fm−1 ≈ 250 MeV to λ → ∞ one can
estimate the LO uncertainty. The residual cutoff dependence
in Fig. 3 indeed gives estimation similar to the one based
on the typical � momentum. Moreover, the lowest cutoff in
this plot represents calculations where the effective range is
roughly reproduced, which can hint the NLO results. In any

case, the truncation error is comparable with the uncertainty
due to a different a�N

s input, and one can see that the calcu-
lated resonant and virtual-state energies remain in the vicinity
of the threshold.

Clearly, the issue of truncation error in /πEFT is not fully
settled; see, for example, Ref. [50]. A precise estimate of this
error can be done only after calculating a few orders in the
EFT expansion. To conclude, we dare to state that we do not
expect the NLO effects to change qualitatively the LO results,
i.e., the excited state of the hypertriton will remain a virtual
state and the �nn system will remain a resonance [either
physical with Re(E ) > 0 MeV or unphysical with Re(E ) < 0
MeV]. One can further speculate that since the �nn resonance
energy in Fig. 3 moves with decreasing cutoff (increasing
induced effective ranges) into the third quadrant of a complex
energy plane [Re(E ) < 0, Im(E ) < 0], inclusion of nonzero
effective range through the NLO correction would more likely
yield unphysical �nn resonance.

Our work represents the first EFT study of the �nn and
3
�H∗ hypernuclear systems in a continuum. Therefore, we
find it appropriate to discuss difference of our approach with
respect to the previous calculations of the �nn resonance
performed by Afnan and Gibson using a phenomenological
approach [19]. Following their work, we neglect three-body
force, but instead of separable nonlocal two-body potentials
we employ one range Gaussians,

V (r) =
∑
I,S

P̂I,S CI,S exp

(
−λ2

I,S

4
r2

)
, (14)

to describe s-wave interaction in nuclear I, S = (0, 1), (1, 0)
and hypernuclear I, S = (1/2, 1), (1/2, 0) two-body chan-
nels. Here P̂I,S is the projection operator. The parameters
CI,S and λI,S are fitted to the values of as and rs listed in
Ref. [19]. Moreover, we took into account a�N

s and r�N
s re-

lated to Alexander B and χEFT(LO) given in Table I.
The calculated �nn pole trajectories for the Phen-2B

potential (14) are presented in Fig. 4(a). The auxiliary in-
teraction is in a form of three-body force (5) with cutoff
λ = 1 fm−1. We observe that calculated physical pole posi-
tions (filled larger symbols) are in good agreement with those
presented in Ref. [19] (empty symbols). Indeed, as might be
expected the position of the near-threshold �nn resonance is
predominantly given by low-momentum characteristics of an
interaction as and rs which are the same in both cases.

In order to reveal the relation between the LO /πEFT
and phenomenological approaches discussed above, one can
consider the finite cutoff λs which gives roughly the same
values of rs as used in the above phenomenological cal-
culations. Such a value, λs ≈ 1.25 fm−1 for NSC97f and
χEFT(NLO), yields in addition B�(5

�He) remarkably close
to experiment [51]. As explained by the authors, one might
understand that λs absorbs into LECs NLO contributions of
the theory which are likely to increase its precision; however,
success of this procedure is not in general guaranteed for all
systems. Indeed, higher orders above NLO which behave as
powers of (Q/λ) are induced as well and are not suppressed
by λ → ∞. In Fig. 4(b), we present �nn pole trajectories
calculated using the /πEFT for this specific λs value and
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FIG. 4. Trajectories of the �nn resonance pole in a complex energy plane determined by a decreasing attractive strength dI=1,S=1/2
λ for

several �N interaction strengths. (a) Calculations using �N and NN phenomenological potential Phen-2B (14). Larger full symbols stand for
the physical position of the �nn pole (dI=1,S=1/2

λ = 0), empty symbols mark corresponding solutions obtained by Afnan and Gibson (AG) [19]
for the same scattering lengths and effective ranges used to fix potential Phen-2B (14). (b) /πEFT calculations for cutoff λ = 1.25 fm−1. In a
region accessible by the CSM we also show for each IACCC solution (dots) the one obtained by the CSM (crosses) for the same amplitude of
the auxiliary three-body force.

several �N interaction strengths. One notices very close po-
sitions of the �nn resonance calculated for χEFT(NLO) and
NSC97f using the Phen-2B potential [Fig. 4(a)] and the /πEFT
[Fig. 4(b)]. The LO /πEFT for λ = 1.25 fm−1 could thus
be considered as a suitable phenomenological model which
yields good predictions for four- and five-body hypernuclei
and hypertriton [24,51].

In addition, in both panels of Fig. 4 we compare the �nn
pole positions calculated within the CSM and IACCC method
for the same values of dI=1,S=1/2

λ located in the area reachable
by the CSM. We might see remarkable agreement between
IACCC (dots) and CSM (crosses) solutions, which provides
benchmark of the calculations and demonstrates high preci-
sion of our results.

In Fig. 5, we show B� of remaining s-shell hypernuclear
systems, calculated using the Phen-2B potential (14). The
hypertriton ground state 3

�H is in most cases overbound, cal-
culated B�(3

�H) are consistent with those obtained by Afnan
and Gibson using separable nonlocal potentials fitted to the
same �N interaction strengths [19]. The excited state of hy-
pertriton 3

�H∗ turns to be bound, which is in disagreement
with previous theoretical calculations [9,14]. Heavier s-shell
systems are considerably overbound as well, regardless of
which specific set of a�N

s and r�N
s is fitted. Overbinding of

s-shell hypernuclear systems brought about by the Phen-2B
interaction (14) clearly indicates a missing piece which would
introduce necessary repulsion. This could be provided by in-
troducing a �NN three-body force. In fact, Afnan and Gibson
stated that more detailed study of the �nn resonance including
three-body forces should be considered [19]. In /πEFT addi-
tional repulsion is included right through the �NN force fitted
for each cutoff λ to experimental values of B� in three- and
four-body hypernuclei. As a result, though both the Phen-2B
(as well as AG) interaction and the /πEFT for λ = 1.25 fm−1

yield close positions of the �nn resonance (see Fig. 4), the in-
terplay between three-body forces in the /πEFT exhibits large
effect which completely removes overbinding presented for
the Phen-2B interaction in Fig. 5, yielding correct B�(5

�He),
exact B�(3

�H), B�(4
�H), and Eexc(4

�H∗) plus unbound 3
�H∗

as presented in Fig. 3. This suggests that the sensitivity of
the �nn system to the three-body �NN force seems to be
relatively small.

A. Stability and error of continuum solutions

In this subsection, we demonstrate stability and accuracy
of our CSM and IACCC resonance solutions for a particu-
lar point of the �nn pole trajectory. More precisely, we use
the χEFT(LO) /πEFT interaction with λ = 1.25 fm−1 and
the strength of auxiliary three-body interaction dI=1,S=1/2

λ =
−24 MeV. This specific choice was motivated by large θr =
arctan(E/2�)/2 angle of the corresponding �nn resonance
energy since it can be already challenging to describe such
a pole position accurately within the CSM [see the last
χEFT(LO) CSM solution in Fig. 4(b)].

Using the CSM in a finite basis we make sure that our reso-
nant solution is stable and does not change with an increasing
number of basis states. Here we apply the HO trap tech-
nique [20] with mass scale m = 939 MeV (13) which provides
us with an efficient algorithm to select an appropriate, yet not
excessively large, CSM basis. For a chosen HO trap length
b (13), this procedure yields stochastically optimized basis of
correlated Gaussians with a maximal typical radius which gets
larger as the trap becomes more broad. We choose a grid of
increasing trap lengths bi ranging from 20 fm to 80 fm with
2 fm step and using the HO trap technique for each bi, we
prepare 31 different basis sets. In the next step, we build the
CSM basis for our resonance calculation in the following way:
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FIG. 5. (a) � separation energies B�(4
�H), B�(4

�H∗), and B�(5
�He) from SVM calculations using various �N interaction strengths of the

Phen-2B interaction (14). The nuclear part is given by the same form of a phenomenological potential. Experimental values of B� are marked
by dashed horizontal lines. (b) The same for B�(3

�H) and B�(3
�H∗). Dotted lines show B�(3

�H) obtained by Afnan and Gibson [19].

First, we fix correlated Gaussian states obtained for the lowest
b0 = 20 fm trap length. Second, we take the basis states for
b1 = 22 fm leaving out the states which are nearly linear
dependent to any of already fixed b0 correlated Gaussians and
we merge b0 and b1 basis sets. Next, in the same way, we add
correlated Gaussians from the b2 = 24 fm basis set to already
fixed b0 and b1 states. We continue this procedure for all bi up
to certain bmax and construct our final CSM basis set.

The stability of the CSM solution with respect to HO trap
length b is illustrated in Fig. 6. Here we present calculated
real and imaginary parts of the �nn resonance energy using
different CSM bases obtained combining HO trap sets up to a
certain bmax. Black dots stand for the most stationary point
of the resonance θ trajectory ECSM

�nn (θopt ) for which | dE
dθ

|
θopt

is minimal. Shaded areas then show the spread of resonance
energy ECSM

�nn (θ ) within the θopt ± 1◦ range (darker shaded
area) and the θopt ± 4◦ range (lighter shaded area) thus in-
dicating the level of the CSM resonance energy dependence
on the scaling angle θ (8). The calculated �nn resonance
energy stabilizes already using the CSM basis constructed for
bmax = 36 fm. It is clearly visible that considering higher bmax

and thus including more basis states does not affect the CSM
solution.

In Fig. 7 we show the calculated θ trajectory and several β

trajectories for two different CSM bases which were obtained
for bmax = 24 fm [Fig. 7(a)] and for bmax = 80 fm [Fig. 7(b)].
For bmax = 24 fm we can clearly see that β trajectories are
not circular and manifest highly unstable behavior due to poor
quality of the employed basis set. In fact, we have already
pointed out in Fig. 6 that the �nn resonance solution stabilizes
at least for bmax = 36 fm. Using the CSM basis for bmax = 80
fm (right panel) our results are stable showing almost circular

β trajectories characterised by their decreasing radius as the
corresponding Re(θ ) approaches Re(θopt ) ≈ 41◦. The β tra-
jectory for Re(θ ) = 41◦ exhibits oscillatory behavior within a
small region around the true CSM solution. We assume that
this effect is related to a finite dimension of our CSM basis
set and corresponding circular trajectory would be recovered
by considering more basis states. The most probable �nn

FIG. 6. Stability of the �nn CSM resonant solution E (θ ) =
Re(E (θ )) + iIm(E (θ )) [(a) Re(E (θ )); (b) Im(E (θ ))] as a function of
increasing HO trap length bmax. Black dots show the most stationary
point of the θ trajectory E (θopt ). Darker shaded area shows uncer-
tainty of E (θ ) within θopt ± 1◦ range, lighter shaded area shows the
same within θopt ± 4◦ range. The particular pole position was calcu-
lated for /πEFT interaction with χEFT(LO) �N scattering lengths
and λ = 1.25 fm−1, strength of auxiliary three-body force was set to
dI=1,S=1/2

λ = −24 MeV.
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FIG. 7. �nn resonance θ trajectory [Im(θ ) = 0; black solid line] and β trajectories (colored dotted lines) showing movement of cor-
responding E (θ ) as a function of θ in the complex energy plane. Trajectories are calculated for two different CSM basis sets which were
obtained combining HO trap sets up to bmax = 24 fm (a) and up to bmax = 80 fm (b). β trajectories are presented for several different Re(θ )
changing Im(θ ) from 0 to 0.44 radians with 0.01 step. Black cross in the left panel indicates estimated �nn resonance position of the true CSM
solution satisfying Eq. (12). Shaded gray area then shows corresponding CSM error. �nn calculation is performed using the same interaction
as in Fig. 6.

resonance energy ECSM
�nn is in the center of the gray shaded

circle while its radius defines the error of our true CSM
solution. In this particular case, the �nn resonance energy is
ECSM

�nn = 0.2998(42) − i0.6767(42) MeV.
The stability of the IACCC solution is demonstrated in Ta-

ble II where we present �nn resonance energies E IACCC
�nn using

different degrees (M, N ) of the Padé approximant P (M,N ) (6).
As expected, calculated E IACCC

�nn start to stabilize with increas-
ing (M, N ). The IACCC solution saturates already for (7,7)
and does not improve dramatically with further increase of
(M, N ). This is predominantly explained by finite precision
of our SVM bound-state energies which are used to fix the
parameters of P (M,N ) and by numerical instabilities which

slowly start to affect our IACCC solution at higher degrees
of the approximant. Comparing saturated IACCC solution ob-
tained with different (M, N ) ranging from (7,7) up to (13,13)
we estimate for this specific example the E IACCC

�nn accuracy
∼3 × 10−3 MeV. Despite considerable difference between
IACCC and CSM, both approaches predict remarkably con-
sistent �nn resonance energies. In fact, all presented IACCC
energies starting from the Padé approximant of degree (7,7)
and higher lie within the errors of the corresponding CSM
prediction.

Dependence of our IACCC calculations of the 3
�H∗

virtual-state energy E IACCC
v, 3

�H∗ on different degrees of the Padé
approximant is demonstrated in Table II as well. In this

TABLE II. Stability of the �nn resonance energy E IACCC
�nn and 3

�H∗ virtual-state energy with respect to the � + d threshold E IACCC
v, 3

�H∗

calculated within the IACCC for increasing degree (M, N ) of the Padé approximant. �nn calculation is performed using the same interaction as
in Fig. 6. Position of the 3

�H∗ virtual state is determined for /πEFT interaction with χEFT(LO) �N scattering lengths and λ = 1.25 fm−1 with
no auxiliary three-body force, i.e., dI=0,S=3/2

λ = 0 MeV. Ediff stands for the difference between absolute values of IACCC solution calculated
for two neighboring Padé approximants E (M,N )

diff = |E (M,N )| − |E (M−1,N−1)|. All energies are given in MeV.

(M, N ) E IACCC
�nn |E IACCC

�nn | Ediff (�nn) E IACCC
v, 3

�H∗ Ediff (3
�H∗)

(3,3) −0.0588–i0.5605 0.5636 −0.04216
(4,4) 0.3367–i0.7041 0.7805 0.2169 −0.05192 0.00976
(5,5) 0.2965–i0.6559 0.7198 −0.0652 −0.05154 −0.00038
(6,6) 0.2941–i0.6770 0.7381 0.0183 −0.05161 0.00007
(7,7) 0.3003–i0.6796 0.7430 0.0050 −0.05160 −0.00001
(8,8) 0.2997–i0.6796 0.7427 −0.0003 −0.05160 <10−5

(9,9) 0.3001–i0.6796 0.7429 0.0002 −0.05156 −0.00004
(10,10) 0.3014–i0.6791 0.7430 0.0001 −0.05159 0.00003
(11,11) 0.3012–i0.6795 0.7433 0.0003 0.05160 0.00001
(12,12) 0.3020–i0.6757 0.7401 −0.0032 −0.05160 <10−5

(13,13) 0.3026–i0.6765 0.7411 0.0010 −0.05161 0.00001
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particular case we use as an example the /πEFT interac-
tion with the χEFT(LO) �N scattering lengths, cutoff λ =
1.25 fm−1, and no auxiliary interaction. We see that the 3

�H∗
solution starts to stabilize already for P (4,4) and it is approxi-
mately by two orders more accurate than the solutions for the
�nn resonance. The reason is that the 3

�H∗ virtual state lies
in the vicinity of the � + d threshold, analytical continuation
from the bound region is thus not performed far into the
continuum, which enhances the IACCC precision.

The uncertainty of our IACCC resonance solutions in
the fourth quadrant of a complex energy plane [Re(E ) > 0,
Im(E ) < 0] does not exceed ≈4 × 10−3 MeV. All IACCC
results are crosschecked by the CSM in a region of its appli-
cability determined by the maximal resonance angle θr ≈ 35◦
for which our complex scaling results are still reliable. To this
point the CSM solution possesses the same minimal accuracy
as the IACCC solution, however, for higher θr approaching
the limiting value 45◦ the CSM solution quickly starts to
deteriorate due to numerical instabilities.

Subthreshold resonance positions are calculated within the
IACCC method. For poles residing deeper in this region of a
complex energy plane [Re(E ) < 0, Im(E ) < 0] the precision
of our results, predominantly of the imaginary part Im(E ),
decreases. For Re(E ) ∈ (−0.25, 0) MeV the maximal error of
Im(E ) is ≈5 × 10−3 MeV, for Re(E ) ∈ (−0.5,−0.25) MeV
it is ≈0.03 MeV, and for Re(E ) ∈ (−1.0,−0.5) MeV it is
≈0.1 MeV. Since we are primarily interested in a possible
experimental observation, i.e., resonance solutions close to or
in the fourth quadrant, we deem such accuracy satisfactory,
not affecting our conclusions.

The IACCC method proved to be highly precise in the
study of near-threshold virtual-state positions. Here, we reach
accuracy up to ≈10−4 MeV in all considered cases.

IV. CONCLUSIONS

In the present work, we have studied few-body hypernu-
clear systems �nn and 3

�H∗(Jπ = 3/2+, I = 0) within a LO
/πEFT with two- and three-body regulated contact terms. The
�N LECs were associated with �N scattering lengths given
by various interaction models and the �NN LECs were fitted
to known � separation energies B� in A � 4 hypernuclei and
the excitation energy Eexc(4

�H∗). Few-body wave functions
were described within a correlated Gaussians basis. Bound-
state solutions were obtained using the SVM. The continuum
region was studied by employing two independent meth-
ods: the IACCC and CSM. Our LO /πEFT approach, which
accounts for known s-shell hypernuclear data, represents a
unique tool to describe within a unified interaction model
three-, four-, five-, and six-body hypernuclar systems: single-
and double-� hypernuclei including continuum states. In that
it differs from other similar studies which focused solely on
few particular hypernuclei. Moreover, the /πEFT approach
allows us to develop systematically higher orders corrections,
assess reliably precision of calculations and evaluate errors of
their solutions.

The additional auxiliary three-body potential introduced to
study �nn and 3

�H∗ continuum states allows us to explore dif-
ferent scenarios. Fixing the attractive strength of the auxiliary

force in order to get these systems just bound yields consid-
erable discrepancy between calculated and experimental B�s
of four- and five-body s-shell hypernuclei. Our conclusions
thus ruled out the possibility for the existence of bound �nn
and 3

�H∗ states, which is in accord with conclusions of pre-
vious theoretical studies [7–11,13,14]. Moreover, we found
that by increasing the strength of the � attraction, the onset
of the 3

�H∗ comes before the �nn binding. The experimental
evidence for the bound �nn state reported by the HypHI
collaboration [6] would thus imply existence of the bound
state 3

�H∗.
On the basis of our /πEFT calculations with the auxiliary

force set to zero, we firmly conclude that the excited state 3
�H∗

is a virtual state. On the other hand, the �nn pole located close
to the three-body threshold in a complex energy plane could
convert to a true resonance with Re(E ) > 0 for some con-
sidered �N interactions [e.g., for NSC97f and χEFT(NLO)]
but most likely does not exceed Er ≈ 0.3 MeV. However, its
width � is rather large: 1.16 � � � 2.00 MeV. Even larger
width would be obtained for a rather weak �N interaction
strength but it does not yield experimentally observable �nn
pole. On the contrary, the observation of a sharp resonance
would definitely attract considerable attention since it would
signal that the �N interaction at low-momenta is stronger than
most �N interaction models suggest.

Besides the model dependence of our calculations we ex-
plored the stability of solutions with respect to the cutoff
parameter λ. We demonstrated that already for λ = 4 fm−1

the calculated energies stabilize close to the asymptotic value
corresponding to the renormalization scale invariance limit
λ → ∞. We anticipate that the truncation error, describing
effects of higher order corrections, is about 47% and does
not change our results qualitatively. In a region accessible
by the CSM we performed comparison of the CSM with
IACCC method, which yielded highly consistent solutions,
hence proving reliability of our results. Moreover, we verified
that our CSM solutions for �nn are stable with respect to the
considered number of basis states. Exploring both the θ and
β trajectories of the �nn pole for one particular case we set
the true CSM solution including its error. The stability of the
IACCC method with respect to the degree of the employed
Padé approximant was investigated and the uncertainty of the
calculations was assessed.

A rather different situation occurs when we consider just
two-body phenomenological interactions fitted to NN and
�N scattering lengths and effective ranges. We then obtain
subthreshold �nn pole positions close to those of Afnan and
Gibson [19]. However, these interactions fail to describe other
few-body � hypernuclei. The predicted overbinding of the
s-shell hypernuclei induced by these phenomenological two-
body interactions indicates a missing repulsive part of the �

interaction. In the /πEFT, it is provided by an additional �NN
three-body force. A comparison with our LO /πEFT calcu-
lations revealed that the results of Afnan and Gibson could
be reproduced for the finite cutoff value λs ≈ 1.25 fm−1.
However, thanks to the repulsive �NN force the s-shell hyper-
nuclear data are now described successfully. The LO /πEFT
with λs ≈ 1.25 fm−1 could thus be considered as a suitable
phenomenological model.

025204-11
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Our method presented here can be directly applied to
the double-� hypernuclear continuum using the recently in-
troduced �� extension of a LO /πEFT [25]. It is highly
desirable to explore possible resonances in the neutral ��n
and ��nn systems or in the 4

��H hypernucleus, where a
consistent theoretical continuum study has not been per-
formed yet. Indeed, an example of its importance is the
continuing ambiguity in interpretation of the AGS-E906 ex-
periment [52] referred to as the E906 puzzle. It was firstly
interpreted as the bound 4

��H system [52], however, more
recent analyses suggested that the decay of the 7

��He [53]
or ��nn [15] hypernucleus might provide more plausible
interpretation.

This clearly demonstrates the growing importance of
precise few-body continuum studies which, although being
difficult to conduct, significantly contribute to the complete

picture of a stability of hypernuclear systems. In fact, the
applicability of our few-body approach is rather broad in
principle – it might be used not only to calculations of hy-
pernuclear systems but also η or K− mesic nuclei, or even
atoms.
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