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Euclidean formulation of relativistic quantum mechanics of N particles
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A Euclidean formulation of relativistic quantum mechanics for systems of a finite number of degrees of
freedom is discussed. Relativistic treatments of quantum theory are needed to study hadronic systems at
subhadronic distance scales. While direct interaction approaches to relativistic quantum mechanics have proved
to be useful, they have two disadvantages. One is that cluster properties are difficult to realize for systems of more
than two particles. The second is that the relation to quantum field theories is indirect. Euclidean formulations of
relativistic quantum mechanics provide an alternative representation that does not have these difficulties. More
surprising, the theory can be formulated entirely in the Euclidean representation without the need for analytic
continuation. In this work a Euclidean representation of a relativistic N-particle system is discussed. Kernels
for systems of N free particles of any spin are given and shown to be reflection positive. Explicit formulas for
generators of the Poincaré group for any spin are constructed and shown to be self-adjoint on the Euclidean
representation of the Hilbert space. The structure of correlations that preserve both the Euclidean covariance and
reflection positivity is discussed.

DOI: 10.1103/PhysRevC.103.025203

I. INTRODUCTION

Relativistic quantum mechanical models of systems with
a finite number of degrees of freedom are useful for model-
ing strongly interacting systems because they can be solved
numerically with controlled errors and can be applied consis-
tently in both the laboratory frame and center of momentum
frame. This paper discusses a Euclidean covariant represen-
tation of relativistic quantum mechanics for systems with a
finite number of degrees of freedom. The Euclidean repre-
sentation overcomes some of the difficulties with the direct
construction of Poincaré generators on a multiparticle Hilbert
space. The two key challenges of the direct construction
are constructing generators satisfying cluster properties in
all inertial coordinate systems for systems of more than
three particles and the absence of a direct relation between
the model interactions and an underlying quantum field
theory.

The motivation for exploring the Euclidean formulation
is that it provides a representation of a relativistic quantum
theory that has a direct connection to quantum field theory and
easily satisfies cluster properties. While the same is formally
true of Minkowski representations of quantum field theory,
most nonperturbative computations are based on relations
among time-ordered vacuum expectation values of fields,
while the Hilbert space structure, which is associated with the
Wightman functions, is simply assumed. When truncations
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are involved it is not automatic that solutions of Schwinger-
Dyson equations with phenomenological input are consistent
with the probabilistic interpretation of quantum theory. Both
Wightman functions and time-ordered Green’s functions are
related to Euclidean Green’s functions by different analytic
continuations. The Euclidean Green’s functions satisfy Eu-
clidean versions of the Schwinger-Dyson equations and at the
same time are directly related to the Hilbert space structure
of the field theory. An appealing feature of the Euclidean
axioms is that the locality axiom is logically independent of
the other axioms, so it can be relaxed (which is necessary
for models of a finite number of degrees of freedom) without
violating relativistic invariance, the spectral condition, cluster
properties, and the Hilbert space representation of the theory.
A second appealing feature is that an analytic continuation
is not necessary to compute the Hilbert space inner product
of the physical quantum theory. While the formulation of the
dynamics discussed in this work is still phenomenological, the
phenomenological kernels are in principle models of the exact
Euclidean Green’s functions of the field theory, so they can be
constrained by field theory based phenomenology.

In a quantum theory relativistic invariance means that
quantum observables, which are probabilities, expectation
values and ensemble averages, have the same value for equiv-
alent experiments that are performed in different inertial
coordinate systems. This means that experiments performed
in an isolated system cannot be used to distinguish inertial
coordinate systems. In special relativity different inertial coor-
dinate systems are related by the subgroup of Poincaré group
connected to the identity. In 1939, Wigner [1] showed that a
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necessary and sufficient condition for a quantum system to be
relativistically invariant is that vectors representing equivalent
quantum states in different inertial coordinate systems are
related by a unitary ray representation of this subgroup on the
Hilbert space of the quantum theory. Bargmann [2] showed
that this can be replaced by a single-valued representation
of SL(2, C), which is the covering group of the Lorentz
group.

Relativistically invariant quantum theories are needed to
study physics on distance scales that are small enough to be
sensitive to the internal structure of a nucleon. This is be-
cause to get wavelengths short enough to resolve the internal
structure of a nucleon it is necessary to transfer momentum
to the nucleon that is comparable to or larger than its mass
scale.

The direct approach for modeling relativistic systems is
to construct explicit expressions for the Poincaré generators
of the interacting system on a many-particle Hilbert space.
Formally the Hilbert space is a direct sum of tensor products
of irreducible representation spaces of the Poincaré group,
representing the particle content of the system. Phenomeno-
logical interactions are added to the noninteracting Poincaré
generators in a manner that preserves the commutation re-
lations, cluster properties and the spectral condition. This
is referred to as the direct interaction representation. This
representation shares many of the computational advantages
of nonrelativistic quantum mechanics. One problem is that
the interactions are generally phenomenological and repre-
sentation dependent, which makes them difficult to constrain
by a more fundamental theory. In addition, satisfying cluster
properties in all inertial coordinate systems puts strong con-
straints on the structure of the interactions. Satisfying these
constraints presents computational challenges that have not
been realized in applications [3–5].

Strong interactions are studied using lattice methods,
which break relativistic invariance, Schwinger-Dyson equa-
tions, which are infinite systems of nonlinear equations for
Euclidean Green’s functions, and relativistic quantum me-
chanical models, which are more phenomenological and not
directly related to an underlying quantum field theory. Both
lattice calculations and Schwinger-Dyson calculations are
normally formulated in a Euclidean representation. The pur-
pose of this work is to formulate a class of relativistic quantum
mechanical models that have many of the properties of direct
interaction relativistic quantum models but have a more di-
rect connection to lattice and Schwinger-Dyson methods. The
Euclidean formulation facilitates the relation to these other
methods. The formulation of relativistic quantum mechanics
that will be discussed in this paper is motivated by the Eu-
clidean reconstruction theorem of axiomatic quantum field
theory.

Euclidean formulations of quantum field theory were first
advocated by Schwinger [6,7] who used the spectral con-
dition in time-ordered Green’s functions to establish the
existence of an analytic continuation to imaginary times. In-
dependently, axiomatic treatments of quantum field theory
[8,9] led to an understanding of the analytic properties of
vacuum expectation values of products of fields, based on
the spectral condition, Lorentz covariance and locality. The

Euclidean approach to quantum field theory was advocated
by K. Symanzik [10,11], and developed by Nelson [12].
Osterwalder and Schrader [13,14] identified properties of Eu-
clidean covariant distributions that are sufficient to reconstruct
a relativistic quantum field theory. Two observations that are
implicit in the work of Osterwalder and Schrader are (1) that
an explicit analytic continuation is not necessary to construct
a relativistic quantum theory, and (2) the reconstruction of
a relativistic quantum theory is not limited to local field
theories. The Euclidean formulation of relativistic quantum
mechanics presented in this work is motivated by these two
observations.

An attractive feature of the Euclidean approach is that both
the time-ordered Green’s functions and Wightman functions
can be constructed from the Euclidean Green’s functions us-
ing different analytic continuations. This means the Euclidean
Green’s functions satisfy Euclidean Schwinger-Dyson equa-
tions while at the same time they can be used to construct
the Hilbert space inner product of the underlying quantum
theory. This provides a means to constrain the Hilbert space
formulations of the theory from a Lagrangian based dynamics.
While this formulation is intended to be phenomenological,
it is designed so there is a formal relation to an underlying
quantum field theory.

Aspects of this program have been discussed elsewhere
[15–18]. The purpose of this paper is derive explicit expres-
sions for the Poincaré generators with spin and discuss the
structure of Euclidean covariant reflection positive distribu-
tions with spin.

This paper is organized as follows. Notation is introduced
in Sec. II. The relation between the complex Lorentz group
and the complex four-dimensional orthogonal group is dis-
cussed. This is central to the relation between the Euclidean
and Lorentz covariant representations of the theory. Sec-
tion III discusses positive mass irreducible representations of
the Poincaré group. These are used to construct equivalent
Lorentz and Euclidean covariant representations for massive
particles in Sec. IV. The relation of Euclidean covariance to
Lorentz covariance is discussed in Sec. V. Section VI contains
the explicit formulas for the Poincaré generators with spin.
They are shown to satisfy the Poincaré commutation rela-
tions and be Hermitian on the Euclidean representation of the
Hilbert space. The generalization to systems of free particles
is discussed in Sec. VII. The inclusion of dynamics and the
structure of dynamical reflection positive Euclidean covari-
ant kernels is examined in Sec. VIII. Section IX shows the
self-adjointness of the Hamiltonian and boost generators in
the Euclidean representation. Section X contains a summary
and concluding remarks. The Appendix discusses the space-
time representations of reflection positive Euclidean covariant
kernels with different spins.

II. BACKGROUND

The Poincaré group is the group of space-time transfor-
mations that relate different inertial reference frames in the
theory of special relativity. It is the symmetry group that
preserves the proper time, τab, or proper distance, dab, between
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any two events with space-time coordinates xμ
a and xμ

b :

−τ 2
ab = d2

ab = ημν (xa − xb)μ(xa − xb)ν, (1)

where η11 = η22 = η33 = −η00 = 1, ημν = 0 for μ �= ν is the
Minkowski metric tensor. Repeated indices are assumed to be
summed. The most general point transformation, x′μ = f μ(x),
satisfying Eq. (1) has the form

xμ → x′μ = �μ
νxν + aμ, (2)

where �μ
ν is a Lorentz transformation satisfying

ημν = �α
μηαβ�β

ν

or in matrix form

η = �tη�. (3)

The full Poincaré group contains discrete transformations
that are not associated with special relativity. Equation (3)
implies that

det(�)2 = 1 and
(
�0

0

)2 = 1 +
∑

i

(
�0

i

)2
. (4)

This means that the Lorentz group can be decomposed into
four topologically disconnected components

(1) det(�) = 1, (�0
0) � 1, includes the identity

(2) det(�) = −1, (�0
0) � 1, includes space reflection

(3) det(�) = −1, (�0
0) � −1, includes time reversal

(4) det(�) = 1, (�0
0) � −1, includes space-time

reversal.

Since the discrete symmetries of space reflection and time
reversal are not symmetries of the weak interaction, the sym-
metry group associated with special relativity is normally
considered to be the subgroup of the Poincaré group that is
continuously connected to the identity.

The relation between the Lorentz group and the four-
dimensional orthogonal group is central to the development
of the Euclidean formulation. The relation is illustrated by
representing Minkowski, xμ, and Euclidean, xμ

e , four vectors
as 2 × 2 matrices:

Xm = xμσμ =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
xμ = 1

2
Tr(Xσμ),

(5)

Xe = xμ
e σeμ =

(
ix0

e + x3 x1 − ix2

x1 + ix2 ix0
e − x3

)
xμ

e = 1

2
Tr(Xeσ

†
eμ),

(6)

where σi = σei are the Pauli matrices, σ0 is the identity and
σe0 = iσ0. The determinants of these matrices are related to
the Minkowski and Euclidean line elements, respectively:

det(Xm) = (x0)2 − x · x det(Xe) = −[(
x0

e

)2 + x · x
]
.

(7)
Xm is Hermitian for real four vectors. The linear transforma-
tions that preserve the determinant and hermiticity of Xm have
the form

Xm → X ′
m = ±AXmA†, det(A) = 1. (8)

The (−) sign represents a space-time reflection, which is not
considered part of the symmetry group of special relativity.
The group of complex 2 × 2 matrices with det(A) = 1 is
SL(2, C). Similarly linear transformations corresponding to
real four-dimensional orthogonal transformations in the 2 × 2
matrix representation have the general form

Xe → X ′
e = ±AXeC

t , A,C ∈ SU(2). (9)

Transformations of the form

Xe → X ′
e = AXeC

t , Xm → X ′
m = AXmCt , (10)

with both A and C in SL(2, C) preserve the Minkowski and
Euclidean line elements, respectively, however they do not
preserve the reality of the four vectors,

x′μ = 1
2 Tr(X ′σμ), x′μ

e = 1
2 Tr(X ′

eσ
†
eμ). (11)

They represent complex Lorentz or orthogonal transforma-
tions. The corresponding complex Lorentz and orthogonal
transformations are

�(A,C)μν = 1
2 Tr(σμAσνCt ),

O(A,C)μν = 1
2 Tr(σ †

eμAσeνCt ). (12)

This shows that the covering group of both the com-
plex Lorentz and complex orthogonal group is SL(2, C) ×
SL(2, C). These are double covers because A,C → −A,−C
result in the same transformation. For C = A∗, Eq. (12) relates
the real Lorentz group to a subgroup of the complex orthog-
onal group; similarly for A and C unitary Eq. (12) relates the
real orthogonal group to a subgroup of the complex Poincaré
group. The relation that will be exploited in this work is that
Euclidean rotations that involve a space and the Euclidean
time coordinate can be identified with Lorentz boosts with
complex rapidity.

For the full Poincaré group it is necessary to include trans-
lations. Euclidean time translations by τ are identified with
Minkowski time translations with t = −iτ .

III. UNITARY REPRESENTATIONS
OF THE POINCARÉ GROUP

Any unitary representation of the Poincaré group satisfy-
ing the spectral condition (m > 0) can be decomposed into
a direct integral of positive mass irreducible representations.
The starting point of this work is to construct positive-mass
irreducible unitary representations of the Poincaré group and
use them to construct the corresponding Euclidean repre-
sentations. Reflection positive kernels for each irreducible
representation result from this construction. Since many-
particle Hilbert spaces are tensor products of single-particle
spaces and dynamical unitary representations of the Poincaré
group can be decomposed into direct integrals of irreducible
representation spaces, this construction provides a framework
for constructing reflection positive kernels for different phys-
ical systems.

The 2 × 2 matrix representation of four vectors is used in
this section. Poincaré group elements are replaced by (A,Y ),
where A is a SL(2, C) matrix and Y is a 2 × 2 Hermitian
matrix representing a translation. In the 2 × 2 representation
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Poincaré transformations continuously connected to the iden-
tity have the form

X ′ = AXA† + Y, (13)

where the group multiplication law is

(A2,Y2)(A1,Y1) = (A2A1, A2Y1A†
2 + Y2). (14)

Four vector representations of these equations are

xμ′ = �μ
νxν + yμ, (15)(

�
μ
12ν, yμ

12

) = (
�

μ
2 α�α

1 ν,�
μ
2 αyα

1 + yμ
2

)
, (16)

where the four-vector representations are related to the 2 × 2
representations by

yμ := 1
2 Tr(σμY ) �μ

ν := 1
2 Tr(σμAσνA†). (17)

SL(2, C) is a six-parameter group. It has six independent one-
parameter subgroups,

Arθ̂ (θ ) = e
iθ
2 σ·θ̂ = Ar (θ ), Abρ̂ (ρ) = e

ρ

2 σ·ρ̂ = Ab(ρ), (18)

corresponding to rotations about three different axes and rota-
tionless Lorentz boosts in three different directions. In these
expressions θ̂ represents the axis and θ represents angle of
a rotation while ρ̂ represents the direction of a rotationless
boost and ρ represents the rapidity of a rotationless boost. The
polar decomposition theorem expresses a general SL(2, C)
matrix A as a product of a (generalized Melosh) rotation
(Rm = (R†

m)−1 unitary) followed by rotationless (canonical)
boost (Bc = B†

c positive Hermitian):

A = BcRm, (19)

where

Bc := (AA†)1/2 = Bc(ρ), Rm := (AA†)−1/2A = Rm(θ).
(20)

A unitary representation of inhomogeneous SL(2, C) is a set
of unitary operators U (A,Y ), labeled by elements of SL(2, C)
satisfying

U (A2,Y2)U (A1,Y1) = U (A2A1, A2Y1A†
2 + Y2), (21)

U (I, 0) = I, (22)

U †(A,Y ) = U −1(A,Y )

= U (A−1,−A−1Y (A†)−1). (23)

The Poincaré group is a 10 parameter group. Infinitesi-
mal generators of U (A,Y ) are the 10 self-adjoint operators
defined by

H = i
d

dy0
U (I, y0σ0)|y0=0 , (24)

P j = −i
d

dy j
U (I, y jσ j )|y j =0 , (25)

J j = −i
d

dθ
U

(
ei θ

2 σ j , 0
)
|θ=0

, (26)

K j = −i
d

dρ
U

(
e

ρ

2 σ j , 0
)
|ρ=0

, (27)

where there is no sum in Eq. (25) over the repeated j, and
j ∈ {1, 2, 3} in Eqs. (25)–(27). The group representation prop-
erty Eq. (21) implies that these generators satisfy the Poincaré
commutation relations

[Ji, J j] = iεi jkJk, [Ji, P j] = iεi jkPk,

[Ji, K j] = iεi jkKk, (28)

[Ki, K j] = −iεi jkJk, [Ji, H] = 0, [Pi, H] = 0, (29)

[K j, H] = iP j, [Ki, P j] = iδi jH. (30)

These operators are components of a four-vector, Pμ, and
an antisymmetric tensor operator, Jμν ,

Pμ = (H, P), Jμν =

⎛
⎜⎜⎝

0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

⎞
⎟⎟⎠. (31)

There are two independent polynomial invariants,

M2 = (P0)2 − P2 = −PμPμ (32)

and

W 2 = W μWμ W μ = 1
2εμναβPνJαβ, (33)

where W μ is the Pauli-Lubanski vector. When M �= 0 the
square of the spin is defined by

S2 = W 2/M2. (34)

A spin vector s can be defined by an operator rotationless
(canonical) boost that transforms the angular momentum ten-
sor to the rest frame:

si = 1

2

∑
j,k

εi jk�
−1
c (P) j

μ�−1
c (P)k

νJμν, (35)

where

�c(P)μν =
(

V 0 V
V I + V⊗V

1+V 0

)
,

V μ = Pμ/M = 1

2
Tr[Bc(ρ)σμBc(ρ)], (36)

and Pμ, M, and ρ are considered operators related by

V = P/M = ρ̂ sinh(ρ). (37)

The spin vector defined with the rotationless boost is called
the canonical spin; other types of spin vectors (helic-
ity, light-front spin) are related to the canonical spin by
momentum-dependent rotations. For the purpose of this work
it is sufficient to consider the canonical spin. The canonical
spin can also be expressed in terms of the Pauli-Lubanski
vector: (

0
sc

)
= 1

M
�−1

c (P)μνW μ, (38)

where again �−1
c (P)μν is a matrix of operators. The compo-

nents of the spin satisfy SU(2) commutation relations:

[si, s j] = iεi jksk. (39)
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With these definitions, for M > 0, M2, s2, P, sz are a maxi-
mal set of commuting self-adjoint functions of the Poincaré
generators. The spectrum of each component of P is the real
line since each component of P can be boosted to any value.
Similarly the spectrum of spins are restricted to be integral
or half integral as a consequence of the SU(2) commuta-
tion relations Eq. (39). In a general system these commuting
observables are not complete; they can be supplemented by
additional Poincaré-invariant degeneracy quantum numbers,
which will be denoted by d . A basis for the Hilbert space are
the simultaneous eigenstates of M, S2, d, P, sz:

{|(m, s, d )p, μ〉}. (40)

Because these vectors are constructed out of eigenvalues of
functions of Pμ and Jμν , which have well-defined Poincaré
transformation properties, the Poincaré transformation prop-
erties of these basis states follow from the definitions

U (A, y)|(m, s, d )p, μ〉

= ei�p·y|(m, s, d )�p, ν〉Ds
νμ[Rcw(�, p)]

√
ωm(�p)

ωm(p)
, (41)

where Rcw(�, p) := B−1
c (�p)�Bc(p) is the canonical-spin

Wigner rotation, Bc(p) = e
1
2 ρ·σ , where ρ is the rapidity of

a particle of mass m and momentum p, and ωm(p) :=√
m2 + p2 is the energy of the particle. The square-root factors

ensure that U (�, a) is unitary for states Eq. (40) with the
normalization

〈(m′, s′, d ′)p′, μ′|(m, s, d )p, μ〉 = δm′mδs′sδ(p′ − p)δμ′μδd ′,d .

(42)
The Wigner D-function is the finite-dimensional unitary rep-
resentation of the rotation group in the |s, μ〉 basis [19]:

Ds
μ,μ′[R] = 〈s, μ|U (R)|s, μ′〉

=
s+μ∑
k=0

√
(s + μ)!(s + μ′)!(s − μ)!(s − μ′)!

k!(s + μ′ − k)!(s + μ − k)!(k − μ − μ′)!

× Rk
++Rs+μ′−k

+− Rs+μ−k
−+ Rk−μ−μ′

−− ,

where

R =
(

R++ R+−
R−+ R−−

)
= e

i
2 θ·σ = σ0 cos

(
θ

2

)
+ iθ̂ · σ sin

(
θ

2

)
(43)

is a SU(2) matrix. Because Ds
μν[R] is a degree 2s polynomial

in the matrix elements of R, and R = ei θ·σ
2 is an entire function

of the angles, θ, it follows that Ds
μ,μ′[ei θ·σ

2 ] is an entire func-
tion of all three components of θ. This means that the group

representation property∑
μ′′

Ds
μ,μ′′ [R2]Ds

μ′′,μ′[R1] − Ds
μ,μ′[R2R1] = 0, (44)

and the formulas for adding angular momenta

Ds
μ,μ′[R] −

∑
s1s2μ1μ2μ

′
1μ

′
2

〈s, μ|s1, μ1, s2, μ2〉

× Ds1
μ1,μ

′
1
[R]Ds2

μ2,μ
′
2
[R]〈s1, μ

′
1, s′

2, μ
′
2|s, μ′〉 = 0 (45)

and

Ds1
μ1,μ

′
1
[R]Ds2

μ2,μ
′
2
[R] −

∑
sμμ′

〈s1, μ1, s2, μ2|s, μ〉

× Ds
μ,μ′ [R]〈s, μ′|s1, μ

′
1, s2, μ

′
2〉 = 0, (46)

which hold for real angles, can be analytically continued to
complex angles. This means that Eqs. (44)–(46) also hold
when the SU(2) matrices R are replaced by SL(2, C) ma-
trices A. In these expressions, 〈s, μ|s1, μ1, s2, μ2〉, are SU(2)
Clebsch-Gordan coefficients. While the analytic continuation
preserves the group representation Eq. (44) and angular mo-
mentum addition Eqs. (45) and (46) properties, it does not
preserve unitarity.

IV. EUCLIDEAN REPRESENTATIONS

In this section the Poincaré irreducible basis states Eq. (40)
are used to construct equivalent Euclidean representations of
the irreducible representations of the Poincaré group.

The starting point is the irreducible representations of the
Poincaré group constructed in Sec. III. The basis vectors and
action of U (�, a) on the basis vectors are given by Eqs. (40)
and (41).

Because R−1 = R† for R ∈ SU(2) the SU (2) representation
of the Wigner rotation, Rwc(�, p), can be expressed in two
equivalent ways:

Rwc(�, p) = B−1
c (�p)ABc(p) = B†

c (�p)(A†)−1B†−1
c (p).

(47)
The SL(2, C) group representation property Eq. (44) implies
that the unitary representation Ds

νμ[Rwc(�, p)] of the Wigner
rotation Rwc(�, p) can be factored in two different ways:

Ds
νμ[Rwc(�, p)] =

∑
αβ

Ds
να

[
B−1

c (�p)
]
Ds

αβ[A]Ds
βμ[Bc(p)]

(48)
or

Ds
νμ[Rwc(�, p)]

=
∑
αβ

Ds
να[B†

c (�p)]Ds
αβ [(A†)−1]Ds

βμ[(B†
c )−1(p)]. (49)

These relations and the group representation properties,
Eqs. (44)–(46), can be used to express Eq. (41) in terms of
new Lorentz covariant basis states:

U (A, y)
∑

α

|(m, s)p, α〉Ds
αμ

[
B−1

c (p)
]√

ωm(p)

︸ ︷︷ ︸
|(m,s)p,μ〉cov

= ei�p·y ∑
β

∑
α

|(m, s)�p, α〉Ds
αβ

[
B−1

c (�p)
]√

ωm(�p)

︸ ︷︷ ︸
|(m,s)�p,β〉cov

Ds
βμ[A] (50)
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or

U (A, y)
∑

α

|(m, s)p, α〉Ds
αμ[B†

c (p)]
√

ωm(p)

︸ ︷︷ ︸
|(m,s)p,μ〉cov∗

= ei�p·y ∑
β

∑
α

|(m, s)�p, α〉Ds
αβ [B†

c (�p)]
√

ωm(�p)

︸ ︷︷ ︸
|(m,s)�p,β〉cov∗

Ds
βμ[(A†)−1]. (51)

The degeneracy quantum numbers are suppressed in these
equations. These expressions replace the states Eq. (40) that
transform covariantly with respect to the Poincaré group with
states that transform covariantly with respect to SL(2, C):

U (A, y)|(m, s)p, μ〉cov

= ei�p·y ∑
ν

|(m, s)�p, ν〉covDs
νμ[A] (52)

U (A, y)|(m, s)p, μ〉cov∗

= ei�p·y ∑
ν

|(m, s)�p, ν〉cov∗Ds
νμ[(A†)−1]. (53)

These will be referred to as Lorentz covariant representations
while the representations (41) will be referred to as Poincaré
covariant representations. The transformations relating the
Lorentz and Poincaré covariant representations are invertible,

|(m, s)p, μ〉 =
∑

ν

|(m, s)p, ν〉cov
1√

ωm(p)
Ds

νμ[Bc(p)], (54)

|(m, s)p, μ〉 =
∑

ν

|(m, s)p, ν〉cov∗
1√

ωm(p)
Ds

νμ[(B†
c )−1(p)],

(55)

however, there are two distinct Lorentz covariant repre-
sentations, because while R = (R†)−1 for R ∈ SU(2), the
corresponding representations in SL(2, C) are inequivalent.
These two representations are called right- and left-handed
representations for reasons that will become apparent.

In the Lorentz covariant representations, Eqs. (50) and
(51), this equivalence can be used to show that the equivalent
Hilbert space inner product of two SL(2, C) covariant wave
functions has a nontrivial kernel

〈ψ |φ〉 =
∑

μ

∫
〈ψ |(m, s)p, μ〉dp〈(m, s)p, μ|φ〉

=
∫ ∑

μν

〈ψ |(m, s)p, μ〉covDs
μν[p · σ ]2δ(p2 + m2)

× θ (p0)d4 pcov〈(m, s)p, ν|φ〉 (56)

〈ψ |φ〉 =
∫ ∑

μ

〈ψ |(m, s)p, μ〉dp〈(m, s)p, μ|φ〉

=
∫ ∑

μν

〈ψ |(m, s)p, μ〉cov∗Ds
μν[�p · σ ]2δ(p2 + m2)

× θ (p0)d4 pcov∗〈(m, s)p, ν|φ〉, (57)

where Bc(p)B†
c (p) = Bc(p)2 = σ · p and B−1

c (p)(B†
c )−1(p) =

B−2
c (p) = (�p) · σ , was used in these equations. � is the

space reflection operator and p · σ = ωm(p)σ0 + p · σ. These
equations explain why Eqs. (56) and (57) are called right-

and left-handed representations. These kernels are, up to nor-
malization and change of representation, spin-s two-point
Wightman functions (see Eqs. (1.55–1.57) of Ref. [8]).

While both the left- and right-handed representations are
each related to the original Poincaré covariant representa-
tion, the kernels of the Lorentz covariant representations of
the Hilbert space inner product do not commute with space
reflection. Instead the right-handed (left-handed) kernel gets
mapped into the left-handed (right-handed) kernel under space
reflection.

More general classes of spinor representation can be con-
structed using tensor products

|(m, s; s1, s2)p, μ1, μ2〉cov

:=
∑

|(m, s)p, ν〉〈s, ν|s1, ν1, s2, ν2〉
√

ωm(p)

× Ds1
ν1μ1

[Bc(p)−1]Ds2
ν2μ2

[Bc(p)†] (58)

or direct sums of right- and left-handed representations

〈(m, s)p, μ1, μ2|φ〉cov

:= 1√
2

∑
ν

〈(m, s)p, ν|φ〉
√

ωm(p)

(
Ds

νμ1
[Bc(p)−1]

Ds
νμ2

[Bc(p)†]

)
. (59)

Dirac spinors are direct sums of s = 1/2 left- and right-
handed spinors while four vectors are tensor products of
s = 1/2 left- and right-handed spinors. The discussion that
follows considers the right- and left-handed representations
separately. General covariant representations can be built from
the right- and left-handed representations.

The motivation for considering these SL(2, C) covariant
representations is that they are directly related to the corre-
sponding Euclidean covariant representations.

A dense set of Hilbert space vectors in the Euclidean rep-
resentation are represented by Schwartz functions, f (xe, μ)
and g(ye, ν), of Euclidean space-time variables, xe and ye,
with positive Euclidean-time support and spins. In general,
the spins are assumed to transform under finite-dimensional
representations of SU(2) × SU(2).

The Euclidean time reflection operator, θ , is defined by

f (θxe, μ) = f
(
θ
(
x0

e , x
)
, μ

)
:= f

[( − x0
e , x

)
, μ

]
. (60)

Consider the following Euclidean covariant kernel:

Ss
e(xe, μ; ye, ν) :=

∫
d4 p

2

(2π )4

eipe·(xe−ye )

p2
e + m2

Ds
μν (pe · σe).

(61)
This is a distribution since the integral is not convergent,
however it makes perfect sense when considered as the kernel
of a quadratic form.
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The physical Hilbert space inner product for a particle of
mass m and spin s is defined by the sesquilinear form∫ ∑

μν

d4xed4ye f ∗(xe, μ)Ss
e(θxe, μ; ye, ν)g(ye, ν)

=
∫ ∑

μν

d4 pe f ∗(θxe, μ)
2

(2π )4

eipe·(xe−ye )

p2
e + m2

× Ds
μν (pe · σe)g(ye, ν)

=
∫ ∑

μν

ψ∗
cov(p, μ)

dp
ωm(p)

Ds
μν (p · σ )φcov(p, ν), (62)

where

ψ∗
cov(p, μ) := 1

(2π )3/2

∫
d4xeeip·x−ωm (p)x0

e f ∗(x, x0
e , μ

)
(63)

and

φcov(p, ν) := 1

(2π )3/2

∫
d4xee−ip·x−ωm (p)x0

e g
(
x, x0

e , ν
)
. (64)

The Euclidean time-support condition (which requires that f ∗
and g vanish unless x0

e > 0) ensures that the Laplace trans-
forms with respect to the Euclidean times in Eqs. (63) and (64)
are well defined. The resulting kernel in Eq. (62) is identical
to the Lorentz covariant kernel in Eq. (56) after perform-
ing the integrals over the p0

e. The covariant wave functions
(63) and Eq. (64) are related to the Poincaré covariant wave
functions by

φ(p, μ) =
∑

ν

Ds
μν[Bc(p)]φcov(p, ν)

1√
ωm(p)

(65)

and

ψ∗(p, μ) =
∑

ν

ψ∗
cov(p, ν)Ds

νμ(Bc(p))
1√

ωm(p)
. (66)

This shows that the “Euclidean” inner product Eq. (62) can
be identified with the corresponding Lorentz covariant inner
product, which itself is identical to the original Poincaré co-
variant inner product. These steps illustrate how the correct
Minkowski inner product is obtained from the Euclidean ex-
pression without analytic continuation.

This means that

Ss
r (xe, μ; ye, ν) :=

∫
2d4 pe

(2π )4

eipe·(xe−ye )

p2
e + m2

Ds
μν (pe · σe) (67)

is a Euclidean covariant reflection positive kernel for right-
handed representations of mass m and spin s, respectively. The
corresponding kernel for left-handed representations is

Ss
l (xe, μ; ye, ν) :=

∫
2d4 pe

(2π )4

eipe·(xe−ye )

p2
e + m2

Ds
μν ((�pe) · σe).

(68)
Space reflection interchanges right- and left-handed repre-
sentations. The space reflection operator does not commute
with the Euclidean covariant kernel. This implies that space
reflected states will not transform correctly under Lorentz
transformations in these Lorentz covariant representations.
Kernels for systems that allow a linear representation of space

reflection can be constructed by taking direct sums or tensor
products of right- and left-handed kernels [see Eqs. (58) and
(59)].

The kernels Eqs. (67) and (68) can be evaluated analyti-
cally using the methods in Ref. [20]. The results are

Ss
r (ze, μ, ν) := 2

(2π )4

∫
d4 p

p2
e + m2

Ds
μν (peσe)eipe·ze

= Ds
μν (−i∇ze · σe)

2m2

(2π )2

K1
(
m

√
z2

0 + z2
)

m
√

z2
0 + z2

,

(69)

Ss
l (ze, μ, ν) := 2

(2π )2

∫
d4 p

p2
e + m2

Ds
μν (�peσe)eipe·ze

= Ds
μν (−i�∇ze · σe)

2m2

(2π )2

K1
(
m

√
z2

0 + z2
)

m
√

z2
0 + z2

,

(70)

where ze = xe − ye and K1(x) is a modified Bessel function.
Note that K1(η)

η
behaves like 1/η2 near the origin. Since

Ds
μν (−i∇ze · σe) is a degree 2s polynomial in −i∇ze, these

kernels have power law singularities at the origin, but fall
off exponentially for large values of z2

e . The restriction of the
support of the vectors to positive Euclidean time ensures that
z2

e > 0, so the singularities at ze = 0 never cause a problem.
These kernels are reflection positive on this space. This is
because Ds

μν (p · σ ) factors into a product of a matrix and its
adjoint:

Ds
μν (p · σ ) =

∑
α

Ds
μα[Bc(p)]Ds

αν[Bc(p)]†. (71)

For any given spin the derivatives, Ds
μν (−i∇ze · σe), in

Eqs. (69) and (70) acting on K1(m
√

z2
e ) can be expressed

in terms of higher-order modified Bessel functions. See the
Appendix.

The Euclidean inner product in right- and left-handed rep-
resentations can be expressed directly in the x representation:

〈 f |g〉 =
∑
μν

∫
f ∗(x, μ)Ds

μν (−i∇x · σe)

× 2m2

(2π )2

K1(m
√

(θx − y)2
e

m
√

(θx − y)2
e

g(y, ν)d4xd4y, (72)

〈 f |g〉 =
∑
μν

∫
f ∗(x, μ)Ds

μν (−i�∇x · σe)

× 2m2

(2π )2

K1(m
√

(θx − y)2
e

m
√

(θx − y)2
e

g(y, ν)d4xd4y. (73)

The construction in this section demonstrated the equivalence
of the Poincaré covariant, Lorentz covariant and Euclidean
covariant Hilbert space inner products for massive particles
with any spin. Analytic continuation is not used to compute
the physical inner product in the Euclidean representation.
In addition, the Euclidean inner product, with the Euclidean
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time reflection on the final state, and the projection on the
space of functions with positive time support was shown to be
nonnegative, which demonstrates that these Euclidean kernels
are reflection positive for any spin.

V. RELATIVISTIC INVARIANCE-PARTICLES

The formulation of relativistic covariance in the Euclidean
representation is a consequence of the relation between the
four-dimensional Euclidean group and the associated complex
subgroup of the Lorentz group discussed in Sec. II.

This relation is used to relate the infinitesimal generators of
Euclidean transformations to the corresponding Poincaré gen-
erators and then show that the resulting Poincaré generators
are self-adjoint on the physical Hilbert space. This is not a new
result, but it is desirable to construct explicit representations
for the Poincaré generators for any spin to understand the
relativistic transformation properties of particles with differ-
ent spins or projections of multiparticle states on irreducible
subspaces.

The starting point is to consider the 2 × 2 matrix represen-
tations of Minkowski and Euclidean four vectors:

p · σ :=
(

p0 + p2 p1 − ip2

p1 + ip2 p0 − p3

)
,

pe · σe :=
(

ip0
e + p2

e p1
e − ip2

e

p1
e + ip2

e ip0
e − p3

e

)
. (74)

The SL(2, C) × SL(2, C) transformation properties of these
matrices (denoted by P) are

P → P′ = APCt . (75)

The associated complex 4 × 4 Lorentz and four-dimensional
orthogonal transformation matrices are

�(A,C)μν = 1
2 Tr(σμAσνCt ),

O(A, B)μν = 1
2 Tr(σ †

eμAσeνCt ). (76)

For ordinary rotations A = C∗ = ei λ
2 n̂. For rotations about the

ẑ axis

O(A, A∗)(λ) =

⎛
⎜⎝

1 0 0 0
0 cos(λ) sin(λ) 0
0 − sin(λ) cos(λ) 0
0 0 0 1

⎞
⎟⎠. (77)

These transformations commute with the Euclidean time re-
flection operator:

θO(A, A∗)(λ)θ = O(A, A∗)(λ). (78)

For real rotations in Euclidean space-time planes, A = Ct =
ei λ

2 n̂·σ . For the case of the x0
e -ẑ plane,

O(A, At )(λ)x =

⎛
⎜⎝

cos(λ) 0 0 sin(λ)
0 1 0 0
0 0 1 0

− sin(λ) 0 0 cos(λ)

⎞
⎟⎠, (79)

θOt (A, At )(λ)θ = O(A, At )(λ). (80)

While ordinary three-dimensional rotations are the same for
p · σ or pe · σe, real rotations in Euclidean space-time planes

become rotationless Lorentz boosts with imaginary rapidity
when applied to the Minkowski P.

These identifications imply the following algebraic re-
lations between the infinitesimal generators of the four-
dimensional orthogonal group and the Lorentz group:

Pm = Pe, Ji j
m = Ji j

e , (81)

Hm = iHe, Ki
m = −iJ0i

e . (82)

Because of the factor of i, if the Euclidean generators are
self-adjoint operators on a representation of the Hilbert space,
then the Poincaré generators Eqs. (81) and (82) cannot be
self-adjoint on that representation of the Hilbert space.

In the spinless case (s = 0) the identifications Eqs. (76)–
(80) result in the following expressions for the infinitesimal
generators of the Poincaré group on the Euclidean representa-
tion of the Hilbert space with the Euclidean time reflection:

Hm�(xe) = ∂

∂x0
e

�(xe), Pm�(xe) = −i
∂

∂xe
�(xe), (83)

Jm�(xe) = −ix × ∇x�(xe),

K j
m�(xe) =

(
x j ∂

∂x0
e

− x0
e

∂

∂x j

)
�(xe). (84)

It is straightforward to demonstrate that these operators sat-
isfy the Poincaré commutations relations Eqs. (28)–(30). For
example,

[
Ki

m, Hm
] =

[
xi ∂

∂x0
e

− x0
e

∂

∂xi
,

∂

∂x0
e

]
= i

(
− i

∂

∂xi

)
= iPi

m,

(85)
which agrees with Eq. (30). The other commutators can be
checked similarly.

The Euclidean time reflection of the final state makes both
the Hamiltonian Hm and the boost generators Km formally
Hermitian with respect to the scalar product Eq. (62). One
potential concern is that even an infinitesimal rotation in a
Euclidean space-time plane can map functions with positive
Euclidean time support to functions that violate the support
condition. This maps Hilbert space vectors out of the Hilbert
space. The resolution of this problem will be discussed in
Sec. IX. The subscript m will be suppressed in what follows.

To show the hermiticity of the rotationless boost genera-
tors Eq. (84) note that rotational invariance of the Euclidean
Green’s function in Euclidean space-time planes means that
the Euclidean rotation generators commute with the Euclidean
Green’s function:(

− ixi ∂

∂x0
e

+ ix0
e

∂

∂xi

)
S0

e (x − y)

= S0
e (x − y)

(
− iyi ∂

∂y0
e

+ iy0
e

∂

∂yi

)
. (86)

Multiplying both sides by i gives(
xi ∂

∂x0
e

− x0
e

∂

∂xi

)
S0

e (x − y) = S0
e (x − y)

(
yi ∂

∂y0
e

− y0
e

∂

∂yi

)
.

(87)
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Next, consider the inner product

〈 f |Ki|g〉 =
∫

d4xd4y f ∗(x,−x0
e

)
S0

e (x − y)

(
yi ∂

∂y0
e

− y0
e

∂

∂yi

)
g
(
y, y0

e

)
. (88)

Using Eq. (87) in Eq. (88) gives

=
∫

d4xd4y f ∗(x,−x0
e

)(
xi ∂

∂x0
e

− x0
e

∂

∂xi

)
S0

e (x − y)g
(
y, y0

e

)
. (89)

Integrating by parts again gives

= −
∫

d4xd4y

(
xi ∂

∂x0
e

+ x0
e

∂

∂xi

)
(θ f )∗

(
x, x0

e

)
S0

e (x − y)g
(
y, y0

e

)
. (90)

Finally, factoring the Euclidean time reversal out of f gives

−
(

xi ∂

∂x0
e

+ x0
e

∂

∂xi

)
θ f ∗(x, x0

e

) = θ

[(
xi ∂

∂x0
e

− x0
e

∂

∂xi

)
f ∗(x, x0

e

)]
, (91)

which when used in Eq. (90) gives

〈 f |Ki|g〉 =
∫

d4xd4y f ∗(x,−x0
e )S0

e (x − y)

(
yi ∂

∂y0
e

− y0
e

∂

∂yi

)
g
(
y, y0

e

)
=

∫
d4xd4yθ

((
xi ∂

∂x0
e

− x0
e

∂

∂xi

)
f
(
x, x0

e

))∗
S0

e (x − y)g
(
y, y0

e

) = 〈Ki f |g〉. (92)

This shows that Ki is a Hermitian operator on this representation of the Hilbert space.
The other nontrivial operator is the Hamiltonian Eq. (83). In this case,

〈 f |H |g〉 =
∫

d4xd4y f ∗(x,−x0
e

)
S0

e (x − y)
∂

∂y0
e

g
(
y, y0

e

)
= −

∫
d4xd4y f ∗(x,−x0

e

) ∂

∂y0
e

S0
e (x − y)g

(
y, y0

e

) =
∫

d4xd4y f ∗(x,−x0
e

) ∂

∂x0
e

S0
e (x − y)g

(
y, y0

e

)
= −

∫
d4xd4y

∂

∂x0
e

f ∗(x,−x0
e

)
S0

e (x − y)g
(
y, y0

e

) =
∫

d4xd4y
∂ f ∗

∂x0

(
x,−x0

e

)
S0

e (x − y)g
(
y, y0

e

) = 〈H f |g〉. (93)

Euclidean time reversal does not change the linear or angular
momentum operators. These methods can be used to demon-
strate that all of the s = 0 generators Eqs. (83) and (84) are
Hermitian in the Euclidean representation of the Hilbert space
and satisfy the Poincaré Lie algebra.

VI. SPIN

For application in hadronic physics or relativistic many-
body physics it is necessary to consider representations of the
Poincaré Lie algebra with higher spins. In this section explicit
formulas for generators for particles with arbitrary spin are
derived, generalizing the method used in Sec. V for scalar
particles. While these results are not new, explicit formulas
are needed for applications.

In the original Poincaré covariant theory the spin is asso-
ciated with the observable that is the ẑ-component of the spin
that would be measured in the particle’s rest frame if it was
transformed to the rest frame with a rotationless Lorentz trans-
formation. The spin in the covariant wave function is related
to this spin by multiplying by one of the SL(2, C) matrices,
Ds

μν[Bc(p)−1] or Ds
μν[Bc(p)†]. These transformations lead to

distinct right- or left-handed spinors. In discussing spin it is
important to understand that the Poincaré covariant spinors

and the Lorentz covariant spinors are related, but have differ-
ent transformation properties. Representations of the Poincaré
generators for right- and left-handed covariant spins must be
considered separately. In addition, for each type of covariant
spinor there are invariant linear functionals that define dual
spinors. The dual spinors are spinor analogs of covariant and
contravariant vectors. In conventional treatments [8,21,22] the
right-handed spinors are denoted by ξ a, left-handed spinors
are denoted by ξ ȧ and their duals are denoted by ξa and ξȧ,
respectively. In this section we consider each of these four
cases.

The first step is to determine the Euclidean covariance
properties of the Euclidean kernels for right and left handed
covariant spinors and their duals. Euclidean four vectors can
be represented by any of the four matrices:

pe · σe = pμ
e σeμ, pe · (σ2σeσ2) = pμ

e σ2σeμσ2,

pe · σ t
e = pμ

e σ t
eμ, pe · (

σ2σ
t
eσ2

) = pμ
e σ2σ

t
eμσ2. (94)

The determinant of each of these matrices is (−) the square
of the Euclidean length of pe, which is preserved under linear
transformations of the form

P′ = APCt , (95)
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where P represents any of the matrices in Eq. (94), and A,C ∈
SL(2, C). Real four-dimensional orthogonal transformations
are obtained by restricting A and C to be elements of SU(2).

The 4 × 4 orthogonal matrix O(A,C)μν is related to the
pair (A,C) by

O(A,C)μν := 1
2 Tr(σ †

eμAσeνCt ). (96)

It follows that

Apμ
e σeμCt = σeμO(A,C)μν pν

e = σeμ(O(A,C)pe)μ. (97)

Multiplying Eq. (97) by σ2 on both sides using σ2Aσ2 = A∗
for A ∈ SU(2) gives

A∗(pe · (σ2σeσ2))C† = (O(A,C)p)e · (σ2σeσ2). (98)

Taking transposes of the 2 × 2 matrices Eqs. (97) and (98)
gives

C
(
pe · σ t

e

)
At = σ t

e · (O(A,C)pe) (99)

and

C∗(pe · (
σ2σ

t
eσ2

))
A† = (σ2σ

t
eσ2) · (O(A,C)pe). (100)

In all four of these expressions A, C and the orthogonal matrix
O(A,C) are unchanged. All four of the matrices Eq. (94) be-
come positive when pe is replaced by the on-shell Minkowski

four-momentum, pμ
m = (

√
p2 + m2, p), and σμ

e is replaced
by σμ.

These identities will be used to derive the covariance prop-
erties of each type of Euclidean kernel.

The matrices Eq. (94) appear in the Euclidean covariant
kernels for the right- and left-handed representations and their
duals. The spin s Euclidean covariant inner product kernels
for each type of covariant spinor are

Ss
e(xe; μ, ν) = 2

(2π )4

∫ Ds
μν[pe · σe]

p2
e + m2

eipexe d4 pe, (101)

Ss
ed (xe; μ, ν) = 2

(2π )4

∫ Ds
μν[pe · (σ2σeσ2)]

p2
e + m2

eipexe d4 pe,(102)

Ss
e∗(xe; μ, ν) = 2

(2π )4

∫ Ds
μν

[
pe · σ t

e

]
p2

e + m2
eipexe d4 pe, (103)

Ss
ed∗(xe; μ, ν) = 2

(2π )4

∫ Ds
μν

[
pe · (

σ2σ
t
eσ2

)]
p2

e + m2
eipexe d4 pe.

(104)

It is possible to construct more general classes of kernels using
products or direct sums of left- and right-handed representa-
tions, for example,

Ssṡ
e:e∗(xe; μ, μ̇, ν, ν̇ ) = 2

(2π )4

∫ Ds
μν[pe · (σ2σeσ2)]Dṡ

μ̇ν̇

[
pe · σ t

e

]
p2

e + m2
eipexe d4 pe. (105)

The physical Hilbert space inner product associated with each of these kernels is

〈ψe|φe〉 =
∫ ∑

μν

ψ∗
e (θx, μ)Ss

e(xe − ye; μ, ν)φe(y, ν)d4xd4y, (106)

〈ψed |φed〉 =
∫ ∑

μν

ψ∗
ed (θx, μ)Ss

ed (xe − ye; μ, ν)φed (y, ν)d4xd4y, (107)

〈ψe∗|φe∗〉 =
∫ ∑

μν

ψ∗
e∗(θx, μ)Ss

e∗(xe − ye; μ, ν)φe∗(y, ν)d4xd4y, (108)

〈ψed∗|φed∗〉 =
∫ ∑

μν

ψ∗
ed∗(θx, μ)Ss

ed∗(xe − ye; μ, ν)φed∗(y, ν)d4xd4y. (109)

For wave functions with positive Euclidean time support,
the p0

e integral can be evaluated by the residue theorem,
closing the contour in the upper-half plane. This replaces
p0

e by iωm(p). The kernels become the two-point Minkowski
Wightman functions [8] for mass m spin s irreducible repre-
sentations of the Lorentz group. Equations (106) and (107)
are dual representations of the right-handed kernel, while

Eqs. (108) and (109) are dual representations of the left-
handed kernel. σ2 behaves like a metric tensor for the Lorentz
covariant spinors, relating the representations Eqs. (106)
and (107) or Eqs. (108) and (109). Contraction of the two
types of right- or left-handed spinors are Lorentz invariant.
The results of performing the p0

e integral for each type of
kernel are

〈ψe|φe〉 =
∫ ∑

μν

f ∗
m(p, μ)

dpDs
μν[pm · σ ]

ωm(p)
gm(p, ν), (110)

〈ψed |φed〉 =
∫ ∑

μν

f ∗
m(p, μ)

dpDs
μν[pm · (σ2σσ2)]

ωm(p)
gm(p, ν), (111)
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〈ψe∗|φe∗〉 =
∫ ∑

μν

f ∗
m(p, μ)

dpDs
μν[pm · σ ∗]

ωm(p)
gm(p, ν), (112)

〈ψed∗|φed∗〉 =
∫ ∑

μν

f ∗
m(p, μ)

dpDs
μν[pm · (σ2σ

∗σ2)]

ωm(p)
gm(p, ν), (113)

where

f ∗
m(p, μ) :=

∫
d4x

(2π )3/2
ψ∗(x, μ)eip·x−ωm (p)x0

, (114)

gm(p, ν) :=
∫

d4y

(2π )3/2
φ(y, ν)e−ip·y−ωm (p)y0

, (115)

for each type of spinor wave function.
Each of the spin matrices, Ds

μν[pm · σ ], Ds
μν[pm · (σ2σσ2)], Ds

μν[pm · σ ∗], and Ds
μν[pm · (σ2σ

∗σ2)] are positive Hermitian
matrices, so the Euclidean Green’s functions [Eqs. (101)–(104)] are all reflection positive.

The spinor transformation properties [Eqs. (97)–(100)] of the right- and left-handed spinors and their duals are used construct
the spinor parts of the Poincaré generators in the Euclidean representation:∫ ∑

μν

ψ∗
e (θx, μ)

eip·(x−y)

p2 + m2
Ds

μν[(Op) · σe]φe(y, ν)d4xd4yd4 p

=
∫ ∑

μν

ψ∗
e (θx, μ)

eip·(x−y)

p2 + m2
Ds

μν[p · (AσeC
t )]φe(y, ν)d4xd4yd4 p, (116)

∫ ∑
μν

ψ∗
ed (θx, μ)

eip·(x−y)

p2 + m2
Ds

μν[(Op) · (σ2σeσ2)]φed (y, ν)d4xd4yd4 p

=
∫ ∑

μν

ψ∗
ed (θx, μ)

eip·(x−y)

p2 + m2
Ds

μν[p · (A∗σ2σeσ2C
†)]φed (y, ν)d4xd4yd4 p, (117)

∫ ∑
μν

ψ∗
e∗(θx, μ)

eip·(x−y)

p2 + m2
Ds

μν

[
(Op) · σ t

e

]
φe∗(y, ν)d4xd4yd4 p

=
∫ ∑

μν

ψ∗
e∗(θx, μ)

eip·(x−y)

p2 + m2
Ds

μν

[
p · (

Cσ t
e At

)]
φe∗(y, ν)d4xd4yd4 p, (118)

∫ ∑
μν

ψ∗
ed∗(θx, μ)

eip·(x−y)

p2 + m2
Ds

μν

[
(Op) · (

σ2σ
t
eσ2

)]
φed∗(y, ν)d4xd4yd4 p

=
∫ ∑

μν

ψ∗
ed∗(θx, μ)

eip·(x−y)

p2 + m2
Ds

μν

[
p · (

C∗σ2σ
t
eσ2A†

)]
φed∗(y, ν)d4xd4yd4 p. (119)

The next step is to move the transformations in the kernels to the wave functions. The Euclidean invariance of the measures
and scalar products, the group representation properties of the Wigner functions, and re-definitions of the wave functions can be
used to show that Eqs. (116)–(119) are equivalent to∫ ∑

αμν

[
Ds

μα[A†]−1ψe(θOtθx, α)
]∗ eip·(θx−y)

p2 + m2
Ds

μν[p · σe]φe(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
e (x, μ)

eip·(θx−y)

p2 + m2
D j

μα[p · σe]Ds
αν[Ct ]φe(Oy, ν)d4xd4yd4 p, (120)

∫ ∑
αμν

[
Ds

μα[At ]−1ψed (θOtθx, α)
]∗ eip·(θx−y)

p2 + m2
Ds

μν[p · (σ2σeσ2)]φed (y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
ed (x, μ)

eip·(θx−y)

p2 + m2
D j

μα[p · (σ2σeσ2)]Ds
αν[C†]φed (Oy, ν)d4xd4yd4 p, (121)
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∫ ∑
αμν

[
Ds

μα[C†]−1ψe∗(θOtθx, α)
]∗ eip·(θx−y)

p2 + m2
Ds

μν

[
p · σ t

e

]
φe∗(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
e∗(x, μ)

eip·(θx−y)

p2 + m2
D j

μα

[
p · σ t

e

]
Ds

αν[At ]φ̃e∗(Oy, ν)d4xd4yd4 p, (122)

∫ ∑
αμν

[
Ds

μα[Ct ]−1ψed∗(θOtθx, α)
]∗ eip·(θx−y)

p2 + m2
Ds

μν

[
p · (

σ2σ
t
eσ2

)]
φed∗(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
ed∗(x, μ)

eip·(θx−y)

p2 + m2
Ds

μα

[
p · (

σ2σ
t
eσ2

)]
Ds

αν[A†]φed∗(Oy, ν)d4xd4yd4 p. (123)

For ordinary rotations, as well as rotations in space Eu-
clidean time planes, the SU(2) matrices A and C are related.

To derive expressions for the generators for each type of
spinor, check the hermiticity and verify the commutation rela-
tions the first step is to replace A and C with the pairs of SU(2)
matrices representing one-parameter groups for both ordinary
rotations about a fixed axis and rotations in a Euclidean space-
time plane.

For ordinary rotations about the n̂ axis, the one-parameter
group is

A(λ) = C∗(λ) = ei λ
2 n̂·σ (124)

and [θOt (λ)θ ] = Ot (λ), while for rotations in Euclidean n̂-x0

space-time planes the one-parameter group is

A(λ) = Ct (λ) = ei λ
2 n̂·σ (125)

and [θOt (λ)θ ] = O(λ). The 4 × 4 orthogonal transforma-
tions, O(λ) associated with each type of transformation are
shown explicitly for rotations about the ẑ axis and for rotations

in the ẑ-x0 plane: For rotations about the ẑ axis,

O(A, A∗)(λ) =

⎛
⎜⎝

1 0 0 0
0 cos(λ) sin(λ) 0
0 − sin(λ) cos(λ) 0
0 0 0 1

⎞
⎟⎠ (126)

and

θO(A, A∗)(λ)θ = O(A, A∗)(λ). (127)

For rotations in the ẑ-x0 plane,

O(A, At )(λ) =

⎛
⎜⎝

cos(λ) 0 0 sin(λ)
0 1 0 0
0 0 1 0

− sin(λ) 0 0 cos(λ)

⎞
⎟⎠ (128)

and

θOt (A, At )(λ)θ = O(A, At )(λ). (129)

For the case of ordinary rotations A = C∗ and Eqs. (120)–
(123) become

∫ ∑
αμν

{Ds
μα[A]ψe[Ot (λ)x, α]}∗ eip·(θx−y)

p2 + m2
Ds

μν[p · σe]φe(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
e (x, μ)

eip·(θx−y)

p2 + m2
D j

μα[p · σe]Ds
αν[A†]φe[O(λ)y, ν]d4xd4yd4 p, (130)

∫ ∑
αμν

{Ds
μα[A∗]ψed [Ot (λ)x, α]}∗ eip·(θx−y)

p2 + m2
Ds

μν[p · σ2σeσ2]φed (y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
ed (x, μ)

eip·(θx−y)

p2 + m2
Ds

μα[p · (σ2σeσ2)]Ds
αν[At ]φed [O(λ)y, ν]d4xd4yd4 p, (131)

∫ ∑
αμν

{
Ds

μα[A∗]ψe∗[Ot (λ)x, α]
}∗ eip·(θx−y)

p2 + m2
Ds

μν

[
p · σ t

e

]
φe∗(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
e∗(x, μ)

eip·(θx−y)

p2 + m2
Ds

μα

[
p · σ t

e

]
Ds

αν[At ]φe∗(O(λ)y, ν)d4xd4yd4 p, (132)
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∫ ∑
αμν

{
Ds

μα[A]ψed∗[Ot (λ)x, α]
}∗ eip·(θx−y)

p2 + m2
Ds

μν

[
p · (

σ2σ
t
eσ2

)]
φed∗(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
ed∗(x, μ)

eip·(θx−y)

p2 + m2
Ds

μα

[
p · (

σ2σ
t
eσ2

)]
Ds

αν[A†]φed∗(O(λ)y, ν)d4xd4yd4 p. (133)

For the case of rotations in Euclidean space-time planes for A = Ct Eqs. (120)–(123) become∫ ∑
αμν

{Ds
μα[A]ψe[O(λ)x, α]}∗ eip·(θx−y)

p2 + m2
Ds

μν[p · σe]φe(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
e (x, μ)

eip·(θx−y)

p2 + m2
Ds

μα[p · σe]Ds
αν[A]φe(O(λ)y, ν)d4xd4yd4 p, (134)

∫ ∑
αμν

{Ds
μα[A∗]ψed [O(λ)x, α]}∗ eip·(θx−y)

p2 + m2
Ds

μν[p · (σ2σeσ2)]φed (y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
ed (x, μ)

eip·(θx−y)

p2 + m2
Ds

μα[p · (σ2σeσ2)]Ds
αν[A∗]φed (O(λ)y, ν)d4xd4yd4 p, (135)

∫ ∑
αμν

{Ds
μα[At ]ψe∗[O(λ)x, α]}∗ eip·(θx−y)

p2 + m2
Ds

μν

[
p · (

σ t
e

)]
φe∗(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
e∗(x, μ)

eip·(θx−y)

p2 + m2
Ds

μα

[
p · (

σ t
e

)]
Ds

αν[At ]φe∗(O(λ)y, ν)d4xd4yd4 p, (136)

∫ ∑
αμν

{Ds
μα[A†]ψed∗[O(λ)x, α]}∗ eip·(θx−y)

p2 + m2
Ds

μν

[
p · (

σ2σ
t
eσ2

)]
φed∗(y, ν)d4xd4yd4 p

=
∫ ∑

αμν

ψ∗
ed∗(x, μ)

eip·(θx−y)

p2 + m2
Ds

μα

[
p · (

σ2σ
t
eσ2

)]
Ds

αν[A†]φed∗(O(λ)y, ν)d4xd4yd4 p. (137)

To construct generators of ordinary rotations differentiate the right-hand side of Eqs. (130)–(133) by λ, set λ = 0, and multiply
the result by i. To construct the generators of Euclidean space-time rotations differentiate the right-hand side of Eqs. (134)–(137)
by λ, set λ = 0, and multiply the result by i to get expressions for the generators. To get expressions for the Lorentz boost
generators multiply the Euclidean space-time rotation generators by an additional factor of −i. The derivatives of the Wigner
functions can be computed using

d

dλ
Ds

μν[A(λ)]|λ=0 = d

dλ
〈s, μ|eiλn̂·S|s, ν〉|λ=0 = i〈s, μ|n̂ · S|s, ν〉, (138)

d

dλ
Ds

μν[A(λ)†]|λ=0 = d

dλ
〈s, μ|e−iλn̂·S|s, ν〉|λ=0 = −i〈s, μ|n̂ · S|s, ν〉, (139)

d

dλ
Ds

μν[A∗(λ)]|λ=0 = d

dλ
(Ds

μν[A(λ)])∗|λ=0
= −i〈s, μ|n̂ · S|s, ν〉∗ = −i〈s, ν|n̂ · S|s, μ〉, (140)

d

dλ
Ds

μν[At (λ)]|λ=0 = d

dλ
(Ds

μν ([A(λ)])∗)−1
|λ=0

= i〈s, μ|n̂ · S|s, ν〉∗ = i〈s, ν|n̂ · S|s, μ〉. (141)

These can be evaluated using Sz and angular momentum raising and lowering operators. The rotation generators for each type of
spinor representation can be read off of Eqs. (130)–(133):

〈x, s, ν|J|ψe〉 =
∑

ν

(
δμνx ×

(
−i

∂

∂x

)
+ 〈s, μ|n̂ · S|s, ν〉

)
〈x, s, ν|ψe〉, (142)

〈x, s, ν|J|ψed〉 =
∑

ν

(
δμνx ×

(
−i

∂

∂x

)
− 〈s, ν|n̂ · S|s, μ〉

)
〈x, s, ν|ψed〉, (143)

〈x, s, ν|J|ψe∗〉 =
∑

ν

(
δμνx ×

(
−i

∂

∂x

)
− 〈s, ν|n̂ · S|s, μ〉

)
〈x, s, ν|ψe∗〉, (144)

〈x, s, ν|J|ψed∗〉 =
∑

ν

(
δμνx ×

(
−i

∂

∂x

)
+ 〈s, μ|n̂ · S|s, ν〉

)
〈x, s, ν|ψed∗〉. (145)
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The first and fourth term are representations of standard rotation generators . In the second and third terms the spin generator
matrix elements are transposed and multiplied by with a (-) sign. To show that these operator satisfy SU(2) commutation
relations, consider matrices satisfying SU(2) commutation relations:

[Mm, Mn] = i
∑

k

εmnkMk . (146)

The transposes satisfy [
Mt

n, Mt
m

] = i
∑

k

εmnkMt
k, (147)

[( − Mt
m

)
,
( − Mt

n

)] = i
∑

k

εmnk
( − Mt

k

)
, (148)

which shows that the negative transpose of these matrices also satisfy SU(2) commutation relations. This shows that all of the
spin generators satisfy SU(2) commutation relations.

Generators for rotations in Euclidean space-time planes are constructed the same way from

〈x, s, ν|J0n̂|ψe〉 =
∑

ν

(
iδμν

(
x

∂

∂x0
− x0 ∂

∂x

)
− 〈s, μ|n̂ · S|s, ν〉

)
〈x, s, ν|ψe〉, (149)

〈x, s, ν|J0n̂|ψed〉 =
∑

ν

(
iδμν

(
x

∂

∂x0
− x0 ∂

∂x

)
+ 〈s, ν|n̂ · S|s, μ〉

)
〈x, s, ν|ψed〉, (150)

〈x, s, ν|J0n̂|ψe∗〉 =
∑

ν

(
iδμν

(
x

∂

∂x0
− x0 ∂

∂x

)
− 〈s, ν|n̂ · S|s, μ〉

)
〈x, s, ν|ψe∗〉, (151)

〈x, s, ν|J0n̂|ψed∗〉 =
∑

ν

(
iδμν

(
x

∂

∂x0
− x0 ∂

∂x

)
+ 〈s, μ|n̂ · S|s, ν〉

)
〈x, s, ν|ψed∗〉. (152)

To construct the boost generators it is necessary to multiply these expression by an additional factor of (−i)

〈x, s, ν|K|ψe〉 =
∑

ν

(
δμν

(
x

∂

∂x0
− x0 ∂

∂x

)
+ i〈s, μ|n̂ · S|s, ν〉

)
〈x, s, ν|ψe〉, (153)

〈x, s, ν|K|ψed〉 =
∑

ν

(
δμν

(
x

∂

∂x0
− x0 ∂

∂x

)
− i〈s, ν|n̂ · S|s, μ〉

)
〈x, s, ν|ψed〉, (154)

〈x, s, ν|K|ψe∗〉 =
∑

ν

(
δμν

(
x

∂

∂x0
− x0 ∂

∂x

)
+ i〈s, ν|n̂ · S|s, μ〉

)
〈x, s, ν|ψe∗〉, (155)

〈x, s, ν|K|ψed∗〉 =
∑

ν

(
δμν

(
x

∂

∂x0
− x0 ∂

∂x

)
− i〈s, μ|n̂ · S|s, ν〉

)
〈x, s, ν|ψed∗〉. (156)

The continuous part of these expressions agree with Eqs. (83) and (84) for spinless operators. The relevant commutators involving
the spin parts of the boost generators in each of the four representations are

[Ki, Kj]spin = [iSi, iS j] = −i
∑

k

εi jkSk = −i
∑

k

εi jkJk spin, (157)

[Ki, Kj]spin = [ − iSt
i ,−iSt

j

] = −i
∑

k

εi jk
( − St

k

) = −i
∑

k

εi jkJk spin, (158)

[Ki, Kj]spin = [
iSt

i , iSt
j

] = −i
∑

k

εi jk
( − St

k

) = −i
∑

k

εi jkJk spin, (159)

[Ki, Kj]spin = [−iSi,−iS j] = −i
∑

k

εi jkSk = −i
∑

k

εi jkJk spin, (160)

[Ki, S j]spin = [iSi, S j] = i
∑

k

εi jk (iSk ) = i
∑

k

εi jkKk spin, (161)

[Ki, S j]spin = [ − iSt
i ,−St

j

] = iεi jk
( − iSt

k

) = i
∑

k

εi jkKk spin, (162)

[Ki, S j]spin = [
iSt

i ,−St
j

] = iεi jk iSt
k = i

∑
k

εi jkKk spin, (163)

[Ki, S j]spin = [−iSi, S j] = iεi jk (−iSk ) =
∑

k

εi jkKk spin, (164)
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where the spin generators in Eqs. (158), (159), (162), and
(163) are (−) the transposes of the matrices satisfying SU(2)
commutation relations, which were shown in Eqs. (146)–
(148) to satisfy SU(2) commutation relations. It follows that
Eqs. (142)–(145) and (153)–(156) for the Lorentz generators
in each of the four spinor representations satisfy the Poincaré
commutation relations.

The hermiticity of these generators follows from
Eqs. (130)–(133) and (134)–(137). Each of Eqs. (130)–(133)
has the form

〈U †(λ)ψ |φ〉 = 〈ψ |U (λ)|φ〉, (165)

so the rotation operators, which are generators of unitary one-
parameter groups [23], are self-adjoint in the Hilbert spaces
with inner products Eqs. (106)–(109).

For the boost generators hermiticity follows from
Eqs. (134)–(137). In this case all of these equations have the
form

〈T (λ)ψ |φ〉 = 〈ψ |T (λ)|φ〉. (166)

In these cases T (λ) is Hermitian, but the generators are con-
structed by multiplying the λ derivative by 1 = (i)(−i) rather
than i, resulting in Hermitian operators.

The self-adjointness of the Hamiltonian and boost genera-
tors is discussed in Sec. IX.

In these covariant representations the spin does not enter in
the Hamiltonian or the linear momentum operators. These op-
erators all commute with the spin operators and commutators
with these operators follow from the scalar case.

The main result of this section is Eqs. (149)–(156) for the
Poincaré generators. These operators are formally Hermitian
on the different representations of the Euclidean Hilbert space
and they satisfy the Poincaré commutation relations with the
translations generators Eq. (83).

The construction in this section is limited to a description
of a particle of mass m > 0 and spin s.

VII. SYSTEMS OF FREE PARTICLES

The Hilbert space for systems of free particles is the direct
sum of tensor products of single-particle Hilbert spaces.

A dense set of vectors in Euclidean Hilbert space for a
system N noninteracting particles are represented by functions
of the form

ψ (x1, μ1, x2, μ2 · · · xN , μN ), (167)

which vanish unless x0
ei > 0. The indices μi are SU(2) ×

SU(2) spinor indices.
The Hilbert space inner product is

〈ψ |φ〉 =
∑ ∫

d4N xd4N yψ∗(x1, μ1, x2, μ2 · · · , xN , μN )

×
N∏

n=1

S(θxn − yn, μn, νn)φ(y1, ν1, y2, ν2 · · · yN , νN ).

(168)

This is reflection positive since each of the S(xn − yn, μn, νn)
is reflection positive and given explicitly by Eqs. (101)–(104).

This is simply an N-fold tensor product single-particle Hilbert
spaces.

When the particles are identical the initial and final states
can be symmetrized or antisymmetrized as appropriate. Both
of these operations commute with the Euclidean time reflec-
tion and consequently preserve the reflection positivity.

The θx0
n − y0

m will always be negative for functions with
support for positive Euclidean time.

Unlike the field theory case, the kernels are not assumed
to be completely symmetric (antisymmetric) which leads to
locality.

The Poincaré generators are sums of single-particle gener-
ators.

VIII. DYNAMICS

In Lorentz and Euclidean covariant representations of rel-
ativistic quantum mechanics the dynamics enters through a
kernel. The reflection positivity constraint on Euclidean ker-
nels is less restrictive in the particle case than it is in the
local field theory case. In a local field theory there is one
N-point kernel for any combination of M initial degrees of
freedom and K final degrees of freedom for N = M + K .
When locality is not required there can be different reflection
positive kernels for each combination of M initial degrees of
freedom and K final degrees of freedom that add up to N . This
is a weaker form of reflection positivity.

For the purpose of making models the biggest challenge is
to understand the structure of model reflection positive kernels
or to verify that model kernels are reflection positive. While
in general any positive-mass positive-energy unitary represen-
tation of the Poincaré group can be decomposed into a direct
integral of irreducible representations, where the methods of
Sec. IV can be applied to construct the equivalent Euclidean
kernels, typical model input is normally a collection of mul-
tipoint Euclidean covariant distributions, where the reflection
positivity must be established.

This section discusses the structure of reflection positive
multipoint kernels. This is illustrated by considering the ex-
ample of a four-point function, however the method can be
applied to more general kernels. Four-point functions have a
cluster decomposition as the sum of products of two-point
functions and a connected four-point function. The dynam-
ics appears in the connected part of the four-point function.
Reflection positivity of two-point functions was demonstrated
in Sec. IV. This is also true for products of these kernels. A
sufficient condition for the dynamical four-point function to
be reflection positive is that the connected part of the four-
point function is reflection positive.

The method that was used to construct reflection posi-
tive two-point functions is used to examine the structure of
reflection positive four-point functions. This construction is
performed in two steps. Lorentz covariant kernels are defined
as vacuum expectation values of formal Lorentz covariant
fields and their adjoints. Complete sets of Poincaré irreducible
states are inserted between the fields. These states are assumed
to be positive-mass positive-energy states. These are replaced
by equivalent complete sets of Lorentz covariant intermediate
states. This results in a decomposition of the kernel in terms of
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Lorentz covariant matrix elements of Lorentz covariant fields.
The spin structure of these matrix elements follows from the
covariance. Analytic properties of covariant matrix elements
that are sufficient to construct an equivalent reflection positive
Euclidean kernel are identified.

In Sec. IV right- and left-handed representations were
treated separately. This section considers the general case
of products of these representations. This is relevant for
four vectors which transform as a product of s = 1/2 right-
and left-handed representations. To distinguish the right- and
left-handed degrees of freedom, left-handed spin degrees of
freedom appear with a dot superscript, ṡ, μ̇.

The analysis begins by considering fields

φsṡ
μμ̇(x), (169)

which transform covariantly under SL(2, C):

U (A)φsṡ
μμ̇(0)U †(A) =

∑
νν̇

φsṡ
νν̇ (�x)Ds

νμ[A]Dṡ
ν̇μ̇[(A†)−1]

(170)
and

U (A)φsṡ†
μμ̇(x)U †(A) =

∑
νν̇

φ
sṡ†
νν̇ (�x)Ds′

νμ[A∗]Dṡ
ν̇μ̇[(At )−1].

(171)
Locality is not assumed. Next consider the vacuum expecta-
tion value of the product of two such fields and their adjoints:

〈0|φs2 ṡ2†
μ2μ̇2

(x2)φs1 ṡ1†
μ1μ̇1

(x1)φs1 ṡ1
ν1ν̇1

(y1)φs2 ṡ2
ν2 ν̇2

(y2)|0〉
:= W2:2(x2, μ2, μ̇2, x1, μ1, μ̇1; y1, ν1, ν̇1, y2, ν2, ν̇2).

(172)

This kernel is Lorentz covariant and manifestly positive since
it has the from

〈0|O†O|0〉. (173)

This is referred to as a quasi-Wightman function.
The next step is to insert complete sets of Poincaré ir-

reducible intermediate states between the fields. Vacuum
intermediate states do not appear in the truncated part of the
kernel. The states that appear are assumed to be positive-mass
positive-energy intermediate states.

This results in a decomposition of Eq. (172) in the form

W2:2(x2, μ2, μ̇2, x1, μ1, μ̇1; y1, ν1, ν̇1, y2, ν2, ν̇2)

=
∑

μaμbμc

∫
〈0|φs2 ṡ2

μ2μ̇2
(x2)†|pa, μa〉dpa〈pa, μa|φs1 ṡ1

μ1μ̇1
(x1)†

× |pb, μb〉dpb〈pb, μb|φs1 ṡ1
ν1ν̇1

(y1)|pc, μc〉
× dpc〈pc, μc|φs2 ṡ2

ν2 ν̇2
(y2)|0〉, (174)

where invariant degeneracy quantum numbers have been sup-
pressed.

To take advantage of the Lorentz covariance of the fields,
the intermediate states are replaced by equivalent Lorentz
covariant intermediate states as was done in Sec. IV. As was
mentioned in Sec. IV, the Lorentz covariant states can be
represented by right- or left-handed representations. In this
application the Poincaré covariant states are decomposed into
products of spin states which are transformed to products
of right- and left-handed Lorentz covariant states. This is
done by decomposing the Poincaré irreducible intermediate
spins states into tensor products using SU(2) Clebsch-Gordan
coefficients. In transforming to the Lorentz covariant rep-
resentation one factor in the tensor product is put in a
right-handed representation and the other in a left-handed
representation.

The resulting mixed Lorentz covariant states are defined by

|(m, s)p, s1, ṡ2; μ1, μ̇2〉cov :=
∑

|(m, s)p, μ〉
√

ωm(p)〈s, μ|s1, ν1, ṡ2, ν̇2〉Ds1
ν1μ1

[
B−1

c (p)
]
Dṡ2

ν̇2μ̇2
[B†

c (p)]. (175)

These states transform covariantly

U (A)|(m, s)p, s1, ṡ2; μ1, μ̇2〉cov :=
∑

|(m, s)�p, s1, ṡ2; ν1, ν̇2〉covDs1
ν1μ1

[A]Dṡ2
ν̇2μ̇2

[(A†)−1]. (176)

The identity can be expressed in terms of these states as

I =
∫ ∑

sμ

|(m, s)p, μ〉dp〈(m, s)p, μ〉 =
∑ ∫

|(m, s)p, s1, ṡ2; ν1, ν̇2〉cov

× dp
ωm(p)

Ds1
ν1μ1

[p · σ ]Dṡ2
ν̇2μ̇2

[(�p) · σ ]cov〈(m, s)p, s1, ṡ2; μ1, μ̇2|. (177)

The choice of how to break up the intermediate Poincaré covariant states into right- and left-handed Lorentz covariant states is
determined by the spin structure of the fields.

Replacing the Poincaré covariant intermediate states by the corresponding mixed Lorentz covariant intermediate states in
Eq. (174) gives

W2:2(x2, μ2, μ̇2, x1, μ1, μ̇1; y1, ν1, ν̇1, y2, ν2, ν̇2)

=
∑ ∫

〈0|φs2 ṡ2†
μ2μ̇2

(x2)|pa, sa1, ṡa2; μa1, μ̇a2〉cov
dpa

ωma (pa)
Dsa1

μa1νa1
[pa · σ ]Dṡa2

μ̇a2 ν̇a2
[(�pa) · σ ]
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×cov〈pa, sa1, ṡa2; νa1, ν̇a2|φs1 ṡ1†
μ1μ̇1

(x1)|pb, sb1, ṡb2; μb1, μ̇b2〉cov
dpb

ωmb (pb)
Dsb1

μb1νb1
[pb · σ ]Dṡb2

μ̇b2 ν̇b2
[(�pb) · σ ]

×cov〈pb, sb1, ṡb2; νb1, ν̇b2|φs1 ṡ1
ν1ν̇1

(y1)|pc, sc1, ṡc2; μc1, μ̇c2〉cov
dpc

ωmc (pc)
Dsc1

μc1νc1
[pc · σ ]Dṡc2

μ̇c2 ν̇c2
[(�pc) · σ ]

×cov〈pc, sc1, ṡc2; νc1, ν̇c2|φs′
2 ṡ2

ν ′
2 ν̇2

(y2)|0〉. (178)

This expression contains four Lorentz covariant matrix elements of Lorentz covariant field operators.
Translational covariance can be used to remove the space-time dependence from each of these four matrix elements:

〈0|φs2 ṡ2†
μ2μ̇2

(x2)|pa, sa1, ṡa2; μa1, μ̇a2〉cov = eipa·x2〈0|φs2 ṡ2†
μ2μ̇2

(0)|pa, sa1, ṡa2; μa1, μ̇a2〉cov, (179)

cov〈pa, sa1, ṡa2; νa1, ν̇a2|φs1 ṡ1†
μ1μ̇1

(x1)|pb, sb1, ṡb2; μb1, μ̇b2〉cov

= ei(pb−pa )·x1
cov〈pa, sa1, ṡa2; νa1, ν̇a2|φs1 ṡ1

μ1μ̇1
(0)†|pb, sb1, ṡb2; μb1, μ̇b2〉cov, (180)

cov〈pb, sb1, ṡb2; νb1, ν̇b2|φs1 ṡ1
ν1ν̇1

(y1)|pc, sc1, ṡc2; μc1, μ̇c2〉cov

= ei(pc−pb)·y1
cov〈pb, sb1, ṡb2; νb1, ν̇b2|φs1 ṡ1

ν1ν̇1
(0)|pc, , sc1, ṡc2; μc1, μ̇c2〉cov, (181)

cov〈pc, sc1, ṡc2; νc1, ν̇c2|φs2 ṡ2
ν2 ν̇2

(y2)|0〉 = e−ipc·y2
cov〈pc, sc1, ṡc2; νc1, ν̇c2|φs2 ṡ2

ν2 ν̇2
(0)|0〉. (182)

The Lorentz covariance properties of these matrix elements with the space-time coordinate set to 0 are

〈0|φs2 ṡ2†
μ2μ̇2

(0)|pa, sa1, ṡa2; μa1, μ̇a2〉cov

=
∑

〈0|φs2 ṡ2†
ν2 ν̇2

(0)|�pa, sa1, ṡa2; νa1, ν̇a2〉covDs2
ν2μ2

[A∗]Dṡ2
ν̇2μ̇2

[(At )−1]Dsa1
νa1μa1

[A]Dṡa2
ν̇a2μ̇a2

[(A†)−1], (183)

cov〈pa, sa1, ṡa2; μa1, μ̇a2|φs1 ṡ1
ν1ν̇1

(0)†|pb, sb1, ṡb2; μb1, μ̇b2〉cov

=
∑

cov〈�pa, sa, sa1, ṡa2; νa1, ν̇a2|φs′
1 ṡ1

μ′
1μ̇1

(0)†|�pb, sb, sb1, ṡb2; νb1, ν̇b2〉cov

×Dsa1
νa1μa1

[A∗]Dṡa2
ν̇a2μ̇a2

[(At )−1]Ds1
ν1μ1

[A∗]Dṡ1
ν̇1μ̇1

[(At )−1]Dsb1
νb1μb1

[A]Dṡb2
ν̇b2μ̇b2

[(A†)−1], (184)∑
cov〈pb, sb1, ṡb2; νb1, ν̇b2|φs1 ṡ1

ν1ν̇1
(0)|pc, sc1, ṡc2; μc1, μ̇c2〉cov

= cov〈�pb, sb1, ṡb2; νb1, ν̇b2|φs1 ṡ1
ν1ν̇1

(0)|�pc, sc1, ṡc2; νc1, ν̇c2〉cov

×Dsb2
ν ′

b2μb2
[A∗]Dṡb2

ν̇b2μ̇b2
[(At )−1]Ds1

ν1μ1
[A]Dṡ1

ν̇1μ̇1
[(A†)−1]Dsc1

νc1μc1
[A]Dṡc2

ν̇c2μ̇2
[(A†)−1], (185)∑

cov〈pc, sc1, ṡc2; νc1, ν̇b2|φs2 ṡ2
ν2 ν̇2

(0)|0〉
= cov〈�pc, sc1, ṡc2; νc1, ν̇b2|φs2 ṡ2

ν2 ν̇2
(0)|0〉Dsc2

νc2μc2
[A∗]Dṡc2

ν̇c2μ̇c2
[(At )−1]Ds2

ν2μ2
[A]Dṡ2

ν̇2μ̇2
[(A†)−1]. (186)

In Eqs. (184) and (185) SU(2) Clebsch-Gordan coefficients can be used to replace

Dsa1
νa1μa1

[A∗]Dṡa2
ν̇a2μ̇a2

[(At )−1]Ds1
ν1μ1

[A∗]Dṡ1
ν̇1μ̇1

[(At )−1] (187)

and

Ds1′
ν1′μ1′ [A]Dṡ1

ν̇1μ̇1
[(A†)−1]Dsb1

νb1μb1
[A]Dṡb2

ν̇b2μ̇b2
[(A†)−1], (188)

by ∑
〈sa1, νa1, s1, ν1|s, ν〉Ds

νμ[A∗]〈s, μ, |sa1, μa1, s1, μ1〉〈ṡa2, ν̇a2, ṡ1, ν̇1 |̇ṡ, ν̇〉Ds
ν̇μ̇[(At )−1]〈ṡ, μ̇, |ṡa2, μ̇a2, ṡ1, μ̇1〉 (189)

and ∑
〈s1, ν1, sb1, νb1|s, ν〉Ds

νμ[A]〈s, μ, |s1, μ1, sb1, μb1〉〈ṡ1, ν̇1, ṡb2, ν̇b2 |̇ṡ, ν̇〉Ds
ν̇μ̇[(A†)−1]〈ṡ, μ̇, |ṡ1, μ̇1, ṡ2b, μ̇2b〉. (190)

After these replacements the spin dependence of Eqs. (184) and (185) has the same structure as Eqs. (183) and (186):

Ds2
ν2′μ2

[A∗]Dsa1
νa1μa1

[A]Dṡ2
ν̇2μ̇2

[(At )−1]Dṡa2
ν̇a2μ̇a2

[(A†)−1] (191)

and

Dsc1
νc1μc1

[A∗]Ds2
ν2μ2

[A]Dṡc2
ν̇c2μ̇c2

[(At )−1]Dṡ2
ν̇2μ̇2

[(A†)−1]. (192)
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The spins appearing in the fields are properties of the kernel. The spins appearing in the intermediate states are determined by
the spin of the fields. For example the spin of the field applied to the vacuum fixes the spins of the first set of intermediate states.
These states, along with the spin of the second field fix the allowed spins in the next set of intermediate, etc.

The building blocks of each of these covariant matrix elements are the four momenta and the covariant spinors, σμ, σ ∗
μ,

σ2σμσ2 and σ2σ
∗
μσ2. Functions of these quantities that that have the transformation properties of Eqs. (183)–(186) follow from

Eq. (8). They are products of the matrices

Dṡ
μ̇ν̇[p · σ ] : Dṡ

μ̇ν̇[p · σ ] =
∑

Dṡ
α̇β̇

[(�p) · σ ]Dṡ
α̇μ̇[(At )−1]Dṡ

β̇ν̇
[(A†)−1] (193)

and

Ds
μν[p · (σ2σ

∗σ2)] : Ds
μν[p · (σ2σ

∗σ2)] =
∑

Ds
αβ[(�p) · (σ2σ

∗σ2)]Ds
αμ[A∗]Ds

βν[A], (194)

for any four-momentum pμ appearing in the matrix element. The following expressions have the covariance properties of
Eqs. (183)–(186) of each matrix element in Eq. (178):

〈0|φs2 ṡ2
μ2μ̇2

(0)†|pa, sa1, ṡa2; μa1, μ̇a2〉cov

= δs2sa1δṡ2 ṡa2F (s2, sa1, ṡ2, ṡa2, pa2, ma)Ds2
μ2μa1

[pa · (σ2σ
∗σ2)]Dṡ2

μ̇2μ̇a1
[pa · σ ], (195)

cov〈pa, sa1, ṡa2; μ1a, μ̇a2|φs′
1 ṡ1

μ′
1μ̇1

(0)†|pb, sb, sb1, ṡb2; μb1, μ̇b2〉cov

=
∑

Fi j (· · · ) × 〈sa1, νa1, s1, ν1, |sb1, νb1〉Dsb1
νb1μb1

[pi · (σ2σ
∗σ2)]〈ṡ1, ν̇1, ṡa2, μ̇a2|ṡb2, ν̇b2〉Dṡb2

ν̇b2μ̇b2
[p j · σ ], (196)

cov〈pb, sb1, ṡb2; νb1, ν̇b2|φs1 ṡ1
ν ′

1ν̇1
(0)|pc, sc1, ṡc2; μc1, μ̇c2〉cov

=
∑

Fi j (· · · )〈sb1, ν1b|s1, μ1, sc1, μc1〉Dsb1
μb1νb1

[pi · (σ2σ
∗σ2)]Dṡb2

μ̇b2 ν̇b2
[p j · σ ]〈ṡ21, ν̇b2|ṡ1, ν̇1, ṡc2, μ̇c2, 〉, (197)

cov〈pc, sc1, ṡc2; νc1, ν̇c2|φs2 ṡ2
ν2 ν̇2

(0)|pc, sc1, ṡc2; μc1, μ̇c2〉cov

= F (s1, sc1, ṡ1, ṡc2, p2
c, mc)δsc1s1δṡc2 ṡ1

∑
Dṡ1

μ̇c2μ̇1
[p j · σ ]Ds1

μc1ν1
[pi · (σ2σ

∗σ2)], (198)

where the coefficient functions, F (· · · ), are scalars. In the Lorentz covariant expressions all of the energies are on shell. The
Wigner functions, D[p · σ ] and D[�p · σ ], are polynomials in the components of p. In what follows the coefficient functions
F (· · · ) are assumed to be analytic functions of the momenta in the upper- or lower-half energy planes.

The integrals appearing in Eq. (178) have the form∫
eipa·(x2−x1 )+ipb·(x1−y1 )+ipc·(y1−y2 )dpadpbdpc

ωma (pa)ωmb (pb)ωmc (pc)
· · · , (199)

with

p0
a = ωma (pa), p0

b = ωmb (pb), p0
c = ωmc (pc). (200)

If x0
2e > x0

1e > 0 and y0
2e > y0

1e > 0, then the following Euclidean integral over the p0
e’s below can be evaluated:∫

eipae·(θx2e−θx1e )+ipbe·(θx1e−y1e )+ipce·(y1e−y2e )8d4 paed4 pbed4 pce

(2π )3
(
p2

ae + m2
a

)(
p2

be + m2
b

)(
p2

ce + m2
c

) · · ·

=
∫

eipa·(x2−x1 )+ipb·(x1−y1 )+ipc·(y1−y2 )dpadpbdpc

ωma (pa)ωmb (pb)ωmc (pc)
e−ωma (pa )(x0

2e−x0
1e )−ωmb (pb)(x0

1e+y0
1e )−ωmc (pc )(y0

2e−y0
1e ) · · · , (201)

with

p0
ea = −iωma (pa) = −ip0

a, p0
eb = −iωmb (pb) = −ip0

b, p0
ec = −iωmb (pc) = −ip0

c. (202)

Except for the Euclidean and Minkowski time components,
which can be absorbed in the test functions, both integrals
Eqs. (199) and (201) are identical. The · · · that appear in
Eq. (199) are only functions of three momenta (including the
on-shell energies). The covariance condition means that the
on shell-four momenta only appear in Lorentz invariant inner
products or in the combinations p · σ or p · (σ2σ

∗σ2) that
appear in the Wigner functions. If the σ ’s and the on-shell

Minkowski momenta are replaced by the Euclidean 4 mo-
menta and σe’s, then all of the Euclidean quantities become the
corresponding Minkowski quantities with the replacements
Eq. (202). This replacement will be made in the residue of
the pole term in Eq. (201) provided the · · · terms contain
no additional p0

e singularities in the lower-half p0
e plane. This

is not a problem for the Wigner functions since they are
polynomials in pe · σe or p · (σ2σ

∗σ2). It does require that
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when the replacements p0 → ip0
e Eq. (202) are made in the

invariant functions F , the resulting functions must be analytic
in the lower-half Euclidean energy plane. If this is true, then
it follows from the positivity of Eq. (173) that the resulting
Euclidean kernel will be reflection positive.

This general structure is not surprising. It illustrates how
reflection positivity in the Euclidean representation is related
to positivity and the spectral condition in the Lorentz covariant
representation. This is of limited value, since for models it
requires building in the observed mass spectrum. On the other
hand it shows that the spin structures do not introduce new
singularities.

It is also important to note that unlike the case of ir-
reducible representations where the test functions of one
variable are required to have support for positive Euclidean
time, for the case of general multipoint functions the test
functions in the physical Hilbert space must have support for

0 < x0
1e < x0

2e · · · x0
Ne (203)

[see below Eq. (200)]. In the field theory case the ordering of
the Euclidean time supports fixes the ordering of the fields in
the corresponding Wightman functions.

A standard method to construct the Euclidean covariant
four-point functions is to solve the Bethe-Salpeter integral
equation, which has the form

S4 = S0 + S0KS4, (204)

where K is the Euclidean Bethe-Salpeter kernel. This integral
equation can be iterated to get

S4 = S0 + S0KS0 + S0KS0KS0 + · · · . (205)

The corresponding series for the connected part of the four
point function is

Sc
4 = S0KS0 + S0KS0KS0 + · · · . (206)

This series can be formally expressed as

Sc
4 = S0T S0 T = K + KS0K + KS0KS0K + · · · . (207)

Each term in the series for K has the same Euclidean co-
variance property. If the series converges, then the sum will
not generate any new singularities that are not already in K .
This suggest that if S0KS0 is reflection positive and the series
converges, then S0T S0 will be reflection positive. When the
series does not converge, the solution of the Bethe-Salpeter
equation could result in new singularities that violate the spec-
tral condition, which would necessarily also lead to a violation
of reflection positivity, since it implies the spectral condition.

These observations suggest that suitable Bethe-Salpeter
kernels K should have the property that S0KS0 is reflection
positive, however this condition alone is not sufficient to
ensure reflection positivity of the resulting connected four
point function. The condition that S0KS0 is reflection positive
should be good starting point for constructing model dynami-
cal four point function.

For dynamical models, while the dynamics appears in the
kernel, the expression for the Poincaré generators are sums of
the generators in Sec. (IV) for each degree of freedom.

IX. SELF ADJOINTNESS

While the self-adjointness of the generators of ordinary ro-
tations follows from the unitarity of the one-parameter group
of rotations on the Hilbert spaces [Eqs. (106)–(109)], this
argument does not apply to either the Hamiltonian or the boost
generators. In both cases the operators were derived from
the corresponding Euclidean generators by multiplication by
an imaginary constant. The Euclidean generators and corre-
sponding Lorentz generators act on different Hilbert space
representations. The problem is that the corresponding finite
Euclidean transformations can map functions with positive
time support to functions that violate this condition.

For the Hamiltonian this can be treated by only consid-
ering translations in the positive Euclidean time direction.
These translations map functions with positive Euclidean time
support into functions with positive Euclidean time support.
Reflection positivity can be used to show that translations in
the positive Euclidean time direction define a contractive Her-
mitian semigroup on the Hilbert space with the scalar product
Eqs. (106)–(109). The argument [24] uses the Schwartz in-
equality on both the physical and Euclidean Hilbert spaces.
One application of the Schwartz inequality on the physical
Hilbert space gives

‖|e−Hx0 |φ〉‖ = 〈e−Hx0
φ|e−Hx0 |φ〉1/2 = 〈φ|e−H2x0 |φ〉1/2

� ‖|e−H2x0 |φ〉‖1/2‖|φ〉‖1/2. (208)

Repeating these steps n-times gives

‖|e−Hx0 |φ〉‖ � ‖|e−H2nx0 |φ〉‖1/2n‖|φ〉‖1−1/2n
. (209)

The quantity

‖|e−H2nx0 |φ〉‖ � ‖θUe(2nx0)|φ〉‖e < ‖|φ〉‖e < ∞ (210)

is bounded by the Euclidean norm, ‖ · ‖e, since Ue(2nx0) is
unitary and ‖θ‖e = 1 on that Hilbert space. Since this is finite
and independent of n, taking the limit as n → ∞ gives

‖|e−Hx0 |φ〉‖ � ‖|φ〉‖. (211)

It follows that positive Euclidean time translations define
a contractive Hermitian semigroup on the Hilbert spaces
[Eqs. (106)–(109)]. The generator is a positive self-adjoint
operator [23,25].

Boosts present additional complications. Even an infinites-
imal rotation in a Euclidean space-time plane will map a
general function with positive Euclidean time support to one
that violates this condition. The self-adjointness of the boost
generator cannot be demonstrated by showing that it defines a
unitary one-parameter group or contractive semigroup, how-
ever it turns out that rotations in Euclidean space-time planes,
which are interpreted as boosts with complex rapidity, define
local symmetric semigroups [26–28] on the Hilbert spaces
Eqs. (106)–(109). These have self-adjoint generators, which
are exactly the boost generators.

The conditions for a local symmetric semigroup [26] are

1. For each θ ∈ [0, θ0], there is a linear subset Dθ such that
Dθ1 ⊃ Dθ2 if θ1 < θ2, and ∪0<θ<θ0Dθ2 is dense.

2. For each θ ∈ [0, θ0], E (θ ) is a linear operator on the
Hilbert space with domain Dθ .
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3. E (0) = I , E (θ1) : Dθ2 → Dθ2−θ1 , and E (θ1)E (θ2) =
E (θ1 + θ2) on Dθ1+θ2 for θ1, θ2, θ1 + θ2 ∈ [0, θ0].

4. E (θ ) is Hermitian for θ ∈ [0, θ0].
5. E (θ ) is weakly continuous on [0, θ0].

When these conditions are satisfied there is a unique self-
adjoint operator K such that Dθ ⊂ De−Kθ and E (θ ) is the
restriction of e−Kθ to Dθ .

In this case, E (θ ) represents Euclidean space-time rota-
tions considered as operators on the Hilbert space Eqs. (106)–
(109) restricted to domains that will be described below.

The domains are Schwartz functions with space Euclidean
time support in the wedge shaped region defined by

x · n̂ − x0
e

ε
+ ε < 0, (212)

x · n̂ + x0
e

ε
− ε > 0. (213)

The wedge shaped region becomes the positive Euclidean
time half plane in the limit that ε → 0. Schwartz functions
with support on this half plane are dense. In addition, if this
domain is rotated by an angle less than θε := ± tan−1(ε), it
will still be contained in the positive Euclidean time half
plane. Schwartz functions with support in these wedge shaped
regions can be constructed from Schwartz functions that have
support for positive Euclidean time by multiplying the func-
tion by g(x0, x · n̂, ε), where

g(x0, x · n̂, ε)) = h

(
x0

e

ε
− ε + x · n̂

)
h

(
x0

e

ε
− ε − x · n̂

)
(214)

and

h(λ) =
{

e− 1
(λ)2 λ > 0

0 λ � 0
(215)

is a smoothed Heaviside function. g[x0, x · n̂, ε)] is a Schwartz
function with support in the wedge shaped region [Eqs. (212)–
(213)] that approaches 1 as ε(θ ) approaches 0.

The domain Dθ is taken as the space of Schwartz func-
tions with positive time support multiplied by the function
g(x0, x · n̂, ε), where θ = θε . The Euclidean space-time rota-
tions restricted to these domains have all of the properties of
local symmetric semigroup. It follows that the boost genera-
tors K are self-adjoint on the physical Hilbert space.

X. SUMMARY AND CONCLUSION

Relativistic formulations of quantum mechanics are useful
for understanding the short-distance properties of strongly
interacting systems. The advantage is that they can be solved
using the same Hilbert space methods that are used in non-
relativistic quantum theories. The challenges are formulating
the models so isolated subsystems are separately Poincaré in-
variant (cluster properties) and relating the phenomenological
interactions to QCD. A Euclidean approach provides a one
way of addressing these challenges, while creating a different
set of challenges. The Euclidean formulation of relativistic
quantum mechanics is motivated by the axioms of Euclidean
quantum field theory. The axiom that leads to microscopic

locality is logically independent of the other axioms. This in-
vestigation of Euclidean formulations of relativistic quantum
theories of particles is motivated by the possibility of being
able to satisfy all of the axioms of relativistic quantum field
theory without having to require locality. While microscopic
locality is desirable, it is the source of most of the difficulties
of quantum field theory, and is difficult to test experimentally.
In the Euclidean formulation cluster properties can be easily
satisfied, there is a natural relation to quantum field theories,
and the formalism is still a theory of linear operators acting on
a Hilbert space.

An appealing feature of the Euclidean representation is that
the physical Hilbert space and the infinitesimal generators of
the Poincaré group can be constructed without any need for
an analytic continuation to Minkowski space.

The new property of this representation is that the Hilbert
space inner product has a nontrivial kernel that is not man-
ifestly symmetric. The requirement that Hilbert space inner
product has a positive norm is called reflection positivity,
which constrains the form of the kernel. While being able to
use standard Hilbert space methods in the Euclidean repre-
sentation has some advantages, these methods get modified
in unfamiliar ways when the inner product has a nontrivial
kernel. Among the unfamiliar properties are that self-adjoint
operators have unfamiliar forms, distributions, like delta func-
tions, can become normalizable vectors, and the Poincaré
generators have a form that does not depend on the interac-
tions. In addition, a deviation from the Euclidean formulation
of field theory is that a single N-point kernel can be replaced
by N − 1, K + M = N point kernels.

The primary purpose of this paper is to provide explicit ex-
pressions for the Poincaré generators for particles of any spin
in the Euclidean representation. While these formulas follow
from the definitions in a straightforward manner, explicit for-
mulas are needed for applications, especially for hadronic and
nuclear physics applications that can involve particles with
high spins. Since the forms of these operators are unfamiliar,
the commutation relations and self-adjointness of each one is
demonstrated explicitly.

Generators and Euclidean kernels were derived by starting
with positive mass irreducible representations of the Poincaré
group, constructing equivalent Lorentz covariant represen-
tations, and using these to construct Euclidean covariant
representations. This automatically results in reflection pos-
itive irreducible representations. These results are general
since any unitary representation of the Poincaré group can be
decomposed into a direct integral of positive-mass positive-
energy irreducible representations. While this also applies
to systems of particles, for systems it is useful to replace
the irreducible representation by products of single particle
irreducible representations. Interactions require introducing
correlations in the N free particle kernel. While the corre-
lations preserve the covariance properties, the requirement
that they preserve reflection positivity is not automatic. The
formulas for the Poincaré generators remain unchanged.

The structure of reflection positive kernels with arbitrary
spin was investigated. On one hand the spin structures that
result from covariance do not impact the reflection positiv-
ity, however the coefficient functions must be analytic in the
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lower-half Euclidean energy planes. Ideally one would like to
be able find sufficient conditions on the input to Schwinger
Dyson equations so the solution generates reflection positive
kernels. Even for the simplest case of the Bethe-Salpeter
equation, the solution can introduce singularities that violate
reflection positivity.

In the Euclidean representation the dynamics appears in the
Hilbert space kernel. While in principle Hilbert space methods
can be used in calculations, because of the kernel, applica-
tions favor different methods of computation. These have been

discussed elsewhere, [15–18]. In addition, the triviality of the
Poincaré generators puts the burden of constructing dynamical
models on the structure of reflection positive kernels.
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APPENDIX

The kernels in the Euclidean space-time representation for higher spin are given by Eq. (70). This requires the computation
of a finite number of derivatives applied to

K1
(
m

√
z2

0 + z2
)

m
√

z2
0 + z2

. (A1)

These derivatives can be expressed in terms of higher-order modified Bessel functions using

dn

dxn

K1(x)

x
=

n∑
m=0

n!

m!(n − m)!

dm

dxm
K1(x)(−)n−m (n − m)!

xn−m−1
=

n∑
m=0

n!(−)n−m

m!xn−m+1

dm

dxm
K1(x)

= dm

dxm
K1(x) = 1

2m
(−)1−m

[
K1−m(x) + m!

1!(m − 1)!
K1−m−2(x)

m!

2!(m − 2)!
K1−m−4(x) + · · · + K1+m(x)

]
, (A2)

where

Kn(x) = K−n(x) (A3)

and

Kn+1(x) = Kn−1(x) + 2n

x
Kn(x). (A4)
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