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The strangeness S = −3 and −4 baryon-baryon interactions are investigated in the relativistic chiral
effective-field theory at leading order. First, the 12 tree-level low-energy constants contributing to the S = −1
hyperon-nucleon interaction are fixed by fitting to the 36 hyperon-nucleon scattering data. Then the S = −3 and
−4 baryon-baryon interactions are derived from that of S = −1 assuming that the corresponding low-energy
constants are related to each other via SU(3) flavor symmetry. The comparison with the state-of-the-art lattice
QCD simulations, show, however, that SU(3) flavor symmetry-breaking effects cannot be neglected. To take
into account these effects, we redetermine two sets of low-energy constants by fitting to the lattice QCD data
in the �� and �� channels, respectively. The fitting results demonstrate that the lattice QCD S-wave phase
shifts for both channels can be described rather well. Without any additional free low-energy constants, the
predicted phase shifts for the 3D1 channel and the mixing angle ε1 are also in qualitative agreement with the
lattice QCD data for the S = −3 channel, while the results for the S = −4 channel remain to be checked by
future lattice QCD simulations. With the so-obtained low-energy constants, the S-wave scattering lengths and
effective ranges are calculated for these two channels at the physical point. Finally, in combination with the
S = 0 and −2 results obtained in our previous works, we study the evolution of the irreducible representation
“27” in the baryon-baryon interactions as a function of increasing strangeness. It is shown that the attraction
decreases dramatically as strangeness increases from S = 0 to S = −2, but then remains relatively stable until
S = −4. The results indicate that the existence of bound states in the �� and �� channels is rather unlikely.
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I. INTRODUCTION

Hyperon-nucleon (Y N) and hyperon-hyperon (YY ) in-
teractions, as natural extensions of the nucleon-nucleon
interaction in the u, d , s flavor space, are fundamental quan-
tities not only in hypernuclear physics but also in nuclear
astrophysics [1,2]. There is no doubt that baryon-baryon in-
teractions involving strangeness are facing an unprecedented
opportunity with the development of large facilities for heavy-
ion collisions and in the new era of multimessenger astronomy
[3,4].

Up to now, there is a fair amount of experimental data
for the �N and �N systems [5–9], which have been used to
determine the strangeness S = −1 hyperon-nucleon interac-
tion [10–12]. However, direct data are less stringent for the
strangeness S = −2 sector [13,14], and even more so for the
S = −3 and −4 systems.

*kaiwen.li@buaa.edu.cn
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In principle, SU(3) flavor symmetry could serve as a bridge
to relate the strangeness S = 0 and −1 systems to those of
S = −3 and −4 [15–17]. For instance, the Nijmegen group
obtained the S = −3 and −4 YY interactions in the one-
boson-exchange model without any additional free parameters
[15], based on (broken) SU(3) symmetry. The Kyoto-Niigata
group investigated all the possible interactions between two
octet baryons in the SU(6) quark cluster model, where SU(3)
breaking was introduced via the Fermi-Breit interaction [16].
Moreover, assuming strict SU(3) symmetry in the contact
terms, the Bonn-Jülich group predicted the S = −3 and
−4 YY interactions from that of S = −1 in the nonrelativistic
chiral effective-field theory (ChEFT) at leading order [17].1 It

1We note that the Bonn-Jülich group had developed the nonrel-
ativistic ChEFT up to the next-to-leading order, which improved
the description of the S = −1 and −2 baryon-baryon interactions
[18–20]. In Ref. [21], it was shown that the SU(3) symmetry-
breaking contact terms arising at the next-to-leading order could play
a key role in predicting the S = −2, −3, and −4 interactions from the
S = 0 and −1 interactions.
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should be noted that, due to lack of experimental constraints,
substantial differences exist in the theoretical predictions for
the S = −3 and −4 sectors, such as the existence of a ��

bound state and the magnitude of the �0� cross section
[15–17].

In this work, we use the relativistic ChEFT to study the
S = −3 and −4 baryon-baryon interactions at leading or-
der. This is an extension of our previous works on the S =
0,−1,−2 baryon-baryon systems [12,22–24]. The leading-
order potential consists of four baryon contact terms (CT) and
one-pseudoscalar-meson exchange (OPME) terms. Twelve
and five free low-energy constants (LECs) appear in the CT
potentials of the S = −3 and −4 sectors, respectively. First,
we show that SU(3) flavor symmetry breaking must be taken
into account in studying the S = −3 and −4 baryon-baryon
interactions, in agreement with previous studies [12,21]. Next
we use the latest lattice QCD (LQCD) results from the HAL
QCD Collaboration [25,26] to fix four of the S-wave LECs
independently for the S = −3 and −4 systems. The others
would be left for future works. In addition, we also extrapolate
the results to the physical point and study the systematics of
SU(3) breaking from NN to �� interactions, particularly, the
evolution of the “27” irreducible representation with increas-
ing strangeness.

The paper is organized as follows. In Sec. II we briefly
introduce the relativistic ChEFT for the S = −3 and −4
baryon-baryon interactions. Results for the �� and �� sys-
tems are shown in Sec. III. Finally, we conclude with a short
summary and outlook in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, the essential ingredients of the relativistic
ChEFT will be briefly recalled for baryon-baryon interactions,

especially for the strangeness S = −3 and −4 sectors at lead-
ing order (LO). For more details of the relativistic ChEFT,
we refer the reader to Refs. [12,22–24]. To maintain Lorentz
invariance, the complete baryon spinor is retained in the rela-
tivistic ChEFT approach, namely,

uB(p, s) = Np

(
1

σ·p
Ep+MB

)
χs, Np =

√
Ep + MB

2MB
, (1)

where Ep = (p2 + M2
B)1/2, and MB is the averaged baryon

mass, while a nonrelativistic reduction of uB is employed in
the nonrelativistic ChEFT approach.

The LO baryon-baryon potentials consist of four-baryon
contact terms (CT) without derivatives and one-pseudoscalar-
meson exchange terms. The CT potential in momentum space
reads

V YY′
CT = CYY′

i (ū3�iu1)(ū4�iu2), (2)

where CYY′
i are the LECs corresponding to independent four-

baryon terms. The superscript YY′ denotes the hyperons in the
reaction of Y N → Y ′N . �i denote the elements of the Clifford
algebra,

�1 = 1, �2 = γ μ, �3 = σμν, �4 = γ μγ5, �5 = γ5.

(3)

The contact potentials are first calculated in the helicity basis,
and then projected into different partial waves in the |LSJ〉
basis [27]. The partial-wave projected potentials have the fol-
lowing form:

V YY′
CT

(
1S0

) = ξB
[(

CYY′
1 + CYY′

2 − 6CYY′
3 + 3CYY′

4

)(
1 + R2

pR2
p′
) + (

3CYY′
2 − 6CYY′

3 + CYY′
4 + CYY′

5

)(
R2

p + R2
p′
)]

≡ ξB
[
CYY′

1S0

(
1 + R2

pR2
p′
) + ĈYY′

1S0

(
R2

p + R2
p′
)]

, (4a)

V YY′
CT

(
3S1

) = ξB

[
1

9

(
CYY′

1 + CYY′
2 + 2CYY′

3 − CYY′
4

)(
9 + R2

pR2
p′
) + 1

3

(
CYY′

2 − 2CYY′
3 − CYY′

4 − CYY′
5

)(
R2

p + R2
p′
)]

≡ ξB

[
1

9
CYY′

3S1

(
9 + R2

pR2
p′
) + 1

3
ĈYY′

3S1

(
R2

p + R2
p′
)]

, (4b)

V YY′
CT

(
3P0

) = ξB
[−2

(
CYY′

1 − 4CYY′
2 − 12CYY′

3 − 4CYY′
4 + CYY′

5

)
RpRp′

] ≡ ξB
[−2CYY′

3P0 RpRp′
]
, (4c)

V YY′
CT

(
3P1

) = ξB

[
−4

3

(
CYY′

1 − 2CYY′
2 + 2CYY′

4 − CYY′
5

)
RpRp′

]
= ξB

[
−4

3

(
CYY′

1S0 − ĈYY′
1S0

)
RpRp′

]
, (4d)

V YY′
CT

(1P1
) = ξB

[
−2

3

(
CYY′

1 + 4CYY′
3 + CYY′

5

)
RpRp′

]
= ξB

[
−2

3

(
CYY′

3S1 − ĈYY′
3S1

)
RpRp′

]
, (4e)

V YY′
CT

(3D1
) = ξB

[
8

9

(
CYY′

1 + CYY′
2 + 2CYY′

3 − CYY′
4

)
R2

pR2
p′

]
= ξB

[
8

9
CYY′

3S1 R2
pR2

p′

]
, (4f)

V YY′
CT

(
3SD1

) = ξB

[
2
√

2

9

(
CYY′

1 + CYY′
2 + 2CYY′

3 − CYY′
4

)
R2

pR2
p′ + 2

√
2

3

(
CYY′

2 − 2CYY′
3 − CYY′

4 − CYY′
5

)
R2

p

]

= ξB

[
2
√

2

9
CYY′

3S1 R2
pR2

p′ + 2
√

2

3
ĈYY′

3S1 R2
p

]
, (4g)
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TABLE I. Leading-order baryon-baryon contact potentials in the isospin basis.

VCT

Channel Isospin ξ = 1S0,
3P0,

3P1 ζ = 3S1,
1P1,

3D1,
3SD1

S = 0 NN → NN 0 V ��
ζ + V ��

ζ

NN → NN 1 V ��
ξ

S = −1 �N → �N 1/2 V ��
ξ V ��

ζ

�N → �N 1/2 3(V ��
ξ − V ��

ξ ) V ��
ζ

�N → �N 1/2 9V ��
ξ − 8V ��

ξ V ��
ζ

�N → �N 3/2 V ��
ξ V ��

ζ

S = −2 �� → �� 2 V ��
ξ

...
S = −3 �� → �� 1/2 V ��

ξ (V ��
ζ + V ��

ζ − V ��
ζ )/2

�� → �� 1/2 3(V ��
ξ − V ��

ξ ) (V ��
ζ − V ��

ζ + V ��
ζ )/2

�� → �� 1/2 9V ��
ξ − 8V ��

ξ (V ��
ζ + V ��

ζ − V ��
ζ )/2

�� → �� 3/2 V ��
ξ V ��

ζ + V ��
ζ

S = −4 �� → �� 0 V ��
ζ

�� → �� 1 V ��
ξ

V YY′
CT

(3DS1
) = ξB

[
2
√

2

9

(
CYY′

1 + CYY′
2 + 2CYY′

3 − CYY′
4

)
R2

pR2
p′ + 2

√
2

3

(
CYY′

2 − 2CYY′
3 − CYY′

4 − CYY′
5

)
R2

p′

]

= ξB

[
2
√

2

9
CYY′

3S1 R2
pR2

p′ + 2
√

2

3
ĈYY′

3S1 R2
p′

]
, (4h)

where ξB = N2
p N2

p′ , Rp = |p|/(Ep + MB), Rp′ = |p′|/(Ep′ + MB). p and p′ denote the initial and final momenta, respectively.
Here, we only list the final results for independent potentials respecting SU(3) symmetry, as shown in Table I. There are 12
independent LECs in the present work, namely, C��

1S0 , C��
1S0 , C��

3S1 , C��
3S1 , C��

3S1 , Ĉ��
1S0 , Ĉ��

1S0 , Ĉ��
3S1 , Ĉ��

3S1 , Ĉ��
3S1 , C��

3P0 , and C��
3P0.

The OPME potentials in momentum space can be written as

VOPME = − NB1B3φNB2B4φ

(ū3γ
μγ5qμu1)(ū4γ

νγ5qνu2)

q2 − m2
IB1B2→B3B4 , (5)

where q = p′ − p is the momentum transfer, q2 = (Ep′ − Ep)2 − (p′ − p)2, and m is the mass of the exchanged pseudoscalar
meson. The SU(3) coefficient NBB′φ and isospin factor IB1B2→B3B4 can be found in Refs. [10,11]. It is easy to obtain VOPME in
the |LSJ〉 basis following the same procedure as that for the contact terms. Note that, due to the mass difference of exchanged
mesons, SU(3) symmetry is not fulfilled strictly in the OPME potentials.

To take into account the nonperturbative nature of the baryon-baryon interactions, following Ref. [11], we solve the coupled-
channel Kadyshevsky equation,

T νν ′,J
ρρ ′

(
p′, p;

√
s
) = V νν ′,J

ρρ ′ (p′, p) +
∑
ρ ′′,ν ′′

∫ ∞

0

d p′′ p′′2

(2π )3

MB1,ν′′ MB2,ν′′V
νν ′′,J
ρρ ′′ (p′, p′′)T ν ′′ν ′,J

ρ ′′ρ ′ (p′′, p;
√

s)

E1,ν ′′E2,ν ′′ (
√

s − E1,ν ′′ − E2,ν ′′ + iε)
, (6)

where
√

s is the total energy of the baryon-baryon system in
the center-of-mass frame and En,ν ′′ = (p′′2 + M2

Bn,ν′′ )
1/2, (n =

1, 2). The labels ν, ν ′, ν ′′ denote the particle channels, and ρ,
ρ ′, ρ ′′ denote the partial waves. In addition, to avoid ultraviolet
divergence in numerical evaluations, baryon-baryon potentials
are regularized with an exponential form factor,

f�F (p, p′) = exp

[
−

( p
�F

)2n
−

(
p′

�F

)2n]
, (7)

where n = 2 [28]. In the present work, following Ref. [17],
we consider cutoff values in the range of 550–700 MeV.

III. RESULTS AND DISCUSSION

A. Predictions for the S = −3 and −4 baryon-baryon
interactions via strict SU(3) symmetry

As described in the previous section, the 12 LECs appear-
ing in the S = −3 and −4 systems are the same as those
in the S = −1 sector [12], assuming strict SU(3) symme-
try. To be self-consistent, we have refitted the LECs to the
36 S = −1 Y N scattering data [5–9] with the average baryon
mass MB = 1151 MeV, instead of MB = 1080 MeV as in our
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TABLE II. Low-energy constants (in units of 104 GeV−2) obtained with various cutoff �F (in units of MeV) in the relativistic ChEFT.
These LECs are determined by fitting to the S = −1 hyperon-nucleon scattering data.

�F C��
1S0 C��

1S0 C��
3S1 C��

3S1 C��
3S1 Ĉ��

1S0 Ĉ��
1S0 Ĉ��

3S1 Ĉ��
3S1 Ĉ��

3S1 C��
3P0 C��

3P0

550 −0.0671 −0.0951 0.0244 0.0696 0.0528 3.0342 3.3680 1.0971 −0.2827 1.5582 −2.7564 −1.2394
600 −0.0553 −0.0801 0.0244 0.0839 0.0384 3.0928 3.4223 0.5519 −0.2351 1.2292 −2.7674 −1.3346
650 −0.0377 −0.0588 0.0255 0.0995 0.0254 3.1119 3.4313 0.1908 −0.2344 0.9751 −2.7698 −1.4623
700 −0.0126 −0.0296 0.0293 0.1163 0.0168 3.1250 3.4343 −0.0179 −0.2273 0.7962 −2.7703 −1.6516

previous work [12].2 In addition, we choose C��
3P0 and C��

3P0 to
be the P-wave free parameters in the fits. The updated values
of the LECs for different �F are listed in Table II.

More recently, the HAL QCD Collaboration have per-
formed LQCD simulations for the S = −3 and −4 baryon-
baryon interactions with an almost physical pion mass (mπ =
146 MeV), using the so-called HAL QCD approach. They
have obtained time-dependent S- and D-wave phase shifts
for �� (I = 3/2) scattering with time t = 11–15 [25] and
S-wave phase shifts for �� scattering with t = 16–18 [26].
These data provide us an opportunity to check the above
obtained ChEFT potential. As the LQCD results are still
obtained at unphysical pion masses, although very close to
the physical point, we employ the LQCD hadron masses in
our numerical study, i.e., mπ = 146 MeV, mK = 525 MeV,
M� = 1356 MeV, M� = 1222 MeV, and the average mass of
the octet baryons MB = 1179 MeV [25,26].

In Fig. 1 we compare the �� (I = 3/2) phase shifts for
the 1S0, 3S1, 3D1 partial waves and the mixing angle ε1 with
the HAL QCD results (t = 14) [25]. It is worthwhile to em-
phasize that the 3S1, 3D1 channels and the mixing angle ε1

can be described self-consistently in the relativistic ChEFT at
LO. From Fig. 1 one observes that both the relativistic and
nonrelativistic ChEFT predict strong attractions in the ��

(I = 3/2) 1S0 channel, suggesting the likely existence of a
bound state. On the other hand, although the interaction given
by the HAL QCD Collaboration is attractive, the strength is
not strong enough to generate a bound state. For the 3S1 - 3D1

channels, there are still quantitative differences between the
ChEFT results and the HAL QCD results, especially for the
3D1 channel and the mixing angle ε1. These discrepancies in-
dicate that SU(3) flavor symmetry breaking must be taken into
account in relating the S = −1 and S = −3 baryon-baryon
interactions.

For the S = −4 sector, the HAL QCD Collaboration have
studied the two-� systems for the 1S0 channel and 3S1 - 3D1

coupled channel, while they only showed the phase shifts for
the 1S0 and 3S1 partial waves in Ref. [26]. Accordingly, we
also calculate the �� phase shifts for the 1S0 and 3S1 channels
in the relativistic ChEFT and the nonrelativistic ChEFT. As
shown in Fig. 2, there exist relatively large discrepancies
between the ChEFT results and the HAL QCD results for
the �� phase shifts, indicating the need to take into account
SU(3) breaking effects.

2MB = 1080 MeV is obtained by taking the average mass of N , �,
and � baryons, while MB = 1151 MeV is the average mass of the
octet baryons.

From the above comparisons with the LQCD results, we
conclude that SU(3) symmetry breaking is large when one
moves from the S = −1 system to the S = −3,−4 sectors.
As a result, we refrain from using the LECs tabulated in
Table II to predict the corresponding cross sections for these
two sectors.

A few remarks are in order concerning the differences
between the relativistic and nonrelativistic results. Although
the OPME potentials are quite similar in both approaches,
the contact potentials obtained in the relativistic ChEFT are
quite different from those in the nonrelativistic case, which
are responsible for the differences between the relativistic
and nonrelativistic phase shifts shown in Figs. 1 and 2. In
the covariant power counting [22,29], the LO contact terms
contribute not only to the central and spin-spin potentials (in
the language of the nonrelativistic ChEFT), but also to the
tensor, spin-orbit, and quadratic spin-orbit potentials, while
only the central and spin-spin potentials appear in the LO
contact terms in the Weinberg approach. Moreover, the tree-
level LECs in the 3S1 and 3D1 channels are coupled in the LO
relativistic ChEFT, but there is no such correlations in the LO
nonrelativistic ChEFT. More related discussions can be found
in Ref. [30].

B. Fits to the S = −3 and −4 lattice QCD data

As shown in the previous section, SU(3) flavor symmetry-
breaking effects must be taken into account in relating the S =
−3 and −4 baryon-baryon interactions with those of S = −1.
In practical terms, this implies that we have to refit the relevant
LECs to the LQCD data.

First, we fit to the �� (I = 3/2) S-wave phase shifts with
the center-of-mass (c.m.) energy Ecm � 30 MeV [25]. As
it has been described in Ref. [26], the present HAL QCD
approach could provide more reliable results with increasing
time t , but the uncertainties increase as well. To balance re-
liability and uncertainty, we studied the phase shifts obtained
with t = 12, 13, 14 and found that the results of t = 14 can
be better described in the whole energy region. Therefore, in
the following, we only focus on the LQCD results obtained
with t = 14. Six LECs appear in this single channel and the
corresponding potentials read

V ��→��
CT,I=3/2 (1S0) = ξB

[
C��

1S0

(
1+R2

pR2
p′
) + Ĉ��

1S0

(
R2

p + R2
p′
)]

, (8a)

V ��→��
CT, I=3/2

(
3S1

) = ξB

[
1

9

(
C��

3S1 + C��
3S1

)(
9 + R2

pR2
p′
) + 1

3

(
Ĉ��

3S1

+ Ĉ��
3S1

)(
R2

p + R2
p′
)]

. (8b)
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FIG. 1. �� (I = 3/2) phase shifts for the 1S0, 3S1, 3D1 channels and the mixing angle ε1 as functions of the c.m. kinetic energy. The results
are calculated in the relativistic ChEFT (light magenta) and the nonrelativistic ChEFT (dark blue) at LO. The shaded bands reflect the variation
of the cutoff in the range �F = 550–700 MeV. The HAL QCD phase shifts (t = 14) are from Ref. [25]. Note that SU(3) symmetry has been
employed in relating the relevant LECs to those of the S = −1 sector.

Note that, in the 3S1 partial wave, only the two com-
binations, namely, C��

3S1 + C��
3S1 and Ĉ��

3S1 + Ĉ��
3S1 , can be

determined. The cutoff value �F is varied in the range of
550–700 MeV. Then we extrapolate the results to the physical
point. Note that the phase shifts of �� 3D1 and ε1 from
LQCD are not used in the fits, which will be discussed in the
following.

A similar strategy is applied to the fits of the �� system.
The S-wave LQCD data with the same energy range but dif-
ferent time (t = 18) are taken into account. Four LECs in the
CT potential need to be determined, which are defined as

V ��→��
CT, I=1

(1S0
) = ξB

[
C��

1S0

(
1 + R2

pR2
p′
) + Ĉ��

1S0

(
R2

p + R2
p′
)]

, (9a)

V ��→��
CT, I=0

(
3S1

) = ξB

[
1

9
C��

3S1

(
9 + R2

pR2
p′
) + 1

3
Ĉ��

3S1

(
R2

p + R2
p′
)]

,

(9b)

where C��
1S0 and Ĉ��

1S0 are the same as those in the S = −3
system, as they belong to the same SU(3) irreducible repre-
sentation “27.”

The fitted and extrapolated �� (I = 3/2) S- and D-wave
phase shifts are shown in Fig. 3. The bands represent the
variations within the cutoff range of �F = 550–700 MeV.
The corresponding values of the LECs are listed in Table III.
The two S-wave phase shifts are in very good agreement with
the LQCD data, while the predicted 3D1 phase shifts and ε1 are
also qualitatively similar to the LQCD data but are larger than
their LQCD counterparts at high energies. The reason might
be traced back to the fact that at LO, the same two LECs are
responsible for the 3S1 - 3D1 coupled channels.

For the �� system, we show the fit and extrapolated results
in Fig. 4 within the same cutoff range. The corresponding
LECs are listed in Table IV. The differences of the LECs
values listed in Tables II–IV, especially for the Ĉ��

1S0 , testify to
the SU(3) flavor symmetry breaking in different strangeness
sectors again. The relativistic ChEFT can describe the S-wave
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FIG. 2. �� phase shifts for the 1S0 and 3S1 channels as functions of the c.m. kinetic energy. The theoretical results are calculated in the
relativistic ChEFT (light magenta) and the nonrelativistic ChEFT (dark blue) at LO. The shaded bands reflect the variation of the cutoff in the
range �F = 550–700 MeV. The HAL QCD phase shifts (t = 18) are from Ref. [26]. Note that SU(3) symmetry has been employed in relating
the relevant LECs to those of the S = −1 sector.

LQCD data very well. Phase shifts of the 3D1 and ε1 are also
predicted, although no LQCD data exist. The mixing angle ε1

of the �� system is even larger than that of the �� system,
which implies that the 3S1 - 3D1 coupling is even stronger.
Given the comparison in the S = −3 system, we anticipate
that the real numbers might be smaller but the trend should be
the same, namely, positive phase shifts for 3D1 and positive
ε1, which can be tested by future LQCD simulations.

The extrapolated phase shifts to the physical point for both
the S = −3 and −4 baryon-baryon interactions, shown in
Figs. 3 and 4, are almost the same as the fit results. This
is reasonable since the LQCD simulations were performed
with almost physical hadron masses. Moreover, we also cal-
culate the physical scattering lengths and effective ranges for
these two systems, which are listed in Table V. The results
from other three phenomenological models are also shown
for comparison. The Rel. ChEFT results are calculated with
the LECs listed in Tables III and IV. The corresponding pre-
dictions imply that the 1S0 potentials of both �� (I = 3/2)
and �� (I = 1) are weakly attractive, and with the increase

TABLE III. Low-energy constants (in units of 104 GeV−2) for
various cutoff �F (in units of MeV) in the relativistic ChEFT. These
LECs are determined by fitting to the �� 1S0 and 3S1 phase shifts up
to Ecm = 30 MeV, taken from the HAL QCD Collaboration (t = 14)
[25].

LECs (S = −3)

�F C��
1S0 C��

3S1 + C��
3S1 Ĉ��

1S0 Ĉ��
3S1 + Ĉ��

3S1

550 −0.0349 −0.0315 −0.0875 −0.8322
600 −0.0348 −0.0294 −0.0677 −0.8514
650 −0.0347 −0.0278 −0.0555 −0.8855
700 −0.0347 −0.0267 −0.0474 −0.9126

of strangeness, the attraction becomes even weaker. For the
3S1 partial wave, the �� interaction is moderately attractive
while the �� interaction becomes repulsive.

C. Evolution of the “27” irreducible representation
in two-octet-baryon interactions

Up to now we have systematically studied two-octet-
baryon interactions in the relativistic ChEFT at leading order.
Our results show that the NN (I = 1) 1S0 interaction [22] is
strongly attractive to generate a virtual bound state, the �N
(I = 3/2) 1S0 interaction [12] is moderately attractive, and
the �� (I = 2) [24], �� (I = 3/2), and �� (I = 1) 1S0

interactions are weakly attractive. All of these five systems
belong to the same SU(3) irreducible representation “27.”
Ideally the behavior of these five states should be the same
under strict SU(3) symmetry, but in practice SU(3) symmetry
is broken due to the mass difference of octet baryons and pseu-
doscalar mesons. Thus it offers an ideal place to understand
SU(3) symmetry breaking via the evolution of the irreducible
representation “27.” We list the scattering lengths of these

TABLE IV. Low-energy constants (in units of 104 GeV−2) at
various cutoff �F (in units of MeV) in the relativistic ChEFT. These
LECs are determined by fitting to the �� 1S0 and 3S1 phase shifts up
to Ecm = 30 MeV, taken from the HAL QCD Collaboration (t = 18)
[26].

LECs (S = −4)

�F C��
1S0 C��

3S1 Ĉ��
1S0 Ĉ��

3S1

550 −0.0221 0.0195 −0.0356 1.3522
600 −0.0221 0.0193 −0.0267 1.1246
650 −0.0220 0.0193 −0.0197 0.9594
700 −0.0218 0.0191 −0.0140 0.8279
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FIG. 3. Phase shifts for the �� (I = 3/2) S- and D-wave as functions of the c.m. kinetic energy. The LECs are fit to the 1S0 and 3S1 phase
shifts from the HAL QCD Collaboration (t = 14) [25] for energies up to 30 MeV. The shaded bands show the variation of the cutoff in the
range � = 550-700 MeV.

five systems in Table VI. The predictions from the three
phenomenological models, i.e., fss2, NSC97a, and NSC97f,

TABLE V. �� (I = 3/2) and �� singlet and triplet S-waves
scattering lengths a and effective ranges r (in units of fm) for various
cutoff values �F (in units of MeV). The last three columns show the
results of the SU(6) quark cluster model (fss2) [16] and the Nijmegen
potentials (NSC97a, NSC97f) [15].

Rel. ChEFT

550 600 650 700 fss2 NSC97a NSC97f

a��
s −1.02 −1.02 −1.02 −1.02 −4.63 4.13 2.32

r��
s 0.88 0.91 0.93 0.94 2.39 1.46 1.17

a��
t −1.58 −1.60 −1.61 −1.62 −3.48 3.21 1.71

r��
t 2.10 2.13 2.15 2.17 2.52 1.28 0.96

a��
s −0.46 −0.46 −0.46 −0.46 −1.43 17.28 2.38

r��
s 7.24 7.23 7.20 7.17 3.20 1.85 1.29

a��
t 0.16 0.16 0.17 0.17 3.20 0.40 0.48

r��
t 11.07 9.66 8.74 8.12 0.22 3.45 2.80

are also listed for comparison. Our results show that the at-
traction decreases fast as strangeness increases from S = 0 to

TABLE VI. Singlet scattering lengths as (in units of fm) of the
baryon-baryon systems from S = 0 to S = −4. The results are calcu-
lated in the relativistic ChEFT at LO with a cutoff �F = 600 MeV.
The last three columns show results for the SU(6) quark cluster
model (fss2) [16] and the Nijmegen potentials (NSC97a, NSC97f)
[15]. Note that the Coulomb force is considered for the �� (I = 2)
channel in the NSC97a and NSC97f potentials, while not in the
SU(6) quark cluster model and our present study.

as

Channel Isospin Rel. ChEFT fss2 NSC97a NSC97f

S = 0 NN 1 −21.30 −23.76 −15.84 −14.49
S = −1 �N 3/2 −4.04 −2.51 −6.06 −6.16
S = −2 �� 2 −0.80 −85.30 10.19 6.98
S = −3 �� 3/2 −1.02 −4.63 4.13 2.32
S = −4 �� 1 −0.46 −1.43 17.55 2.38
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FIG. 4. Phase shifts for the �� (I = 1) 1S0 and (I = 0) 3S1 partial waves as functions of the c.m. kinetic energy. The LECs are fit to the 1S0

and 3S1 phase shifts provided by the HAL QCD Collaboration (t = 18) [26], for energies up to 30 MeV. The shaded bands show the variation
of the cutoff in the range �F = 550–700 MeV.

S = −2, but then remains almost unchanged until S = −4.
In particular, the �� interaction is even less attractive than
that of the �� system. It is worthwhile emphasizing that
the LECs in the S = 0 and −1 baryon-baryon potentials are
determined by fitting to experimental data, while those from
S = −2 to −4 are fit to LQCD data. It is also interesting to
note that the scattering lengths of the �� (I = 2) channel are
rather different in these models, and the result of the SU(6)
quark cluster model will increase to −9.27 fm after taking
into account the Coulomb force [16].

IV. SUMMARY AND OUTLOOK

In this work, we have studied the strangeness S = −3 and
−4 baryon-baryon interactions in the relativistic ChEFT at
leading order. To be self-consistent, we first redetermined the
hyperon-nucleon interactions by fitting the 12 LECs to the
36 Y N scattering data with cutoff �F = 550–700 MeV. By
assuming strict SU(3) flavor symmetry, the S = −1 baryon-

baryon interactions were extended to the S = −3 and −4
sectors. Compared to the state-of-the-art LQCD simulations,
it is found that there is an appreciable SU(3) flavor symme-
try breaking from strangeness S = −1 to S = −3 and −4
sectors. To consider these effects, we redetermined two sets
of LECs by fitting to the LQCD data for the �� and ��

channels respectively. The fitting results demonstrated that
the S-waves phase shifts of LQCD can be described rather
well. In addition, without any additional free LECs, the pre-
dicted phase shifts for the 3D1 channel and the mixing angle
ε1 are also found to be in qualitative agreement with the
LQCD data in the S = −3 sector. Quantitatively, the relativis-
tic ChEFT predicted a stronger coupling than the LQCD for
the 3S1 - 3D1 channel. With the obtained LECs, the S-wave
scattering lengths and effective ranges were also calculated
for these two systems at the physical point. Finally, using
the S = 0 and −2 results obtained in our previous works, we
studied the evolution of the singlet S-wave scattering lengths
with the increase of strangeness, which belong to the same ir-
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reducible representation “27.” It was shown that the attraction
decreases fast as strangeness increases from S = 0 to S = −2,
but then remains almost unchanged from S = −2 to S = −4,
which indicates that the existence of bound states in the ��

and �� systems is rather unlikely.
Although experimental studies of baryon-baryon interac-

tions of strangeness S = −3 and −4 are rather challenging,
it has been recently demonstrated that it is possible to
extract information on such interactions from correlation mea-
surements in heavy-ion collisions at RHIC or CERN [31].
In addition, baryon-baryon systems with S = −2,−3,−4

can also be produced in photon induced reactions on the
deuteron at JLab [32] or K− induced reactions at J-PARC
[33]. In the not-so-far future, these studies might sub-
stantially advance our understanding of multistrangeness
systems.
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