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Higher order conserved charge fluctuations inside the mixed phase
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General formulas are presented for higher order cumulants of the conserved charge statistical fluctuations
inside the mixed phase. As a particular example, the van der Waals model in the grand canonical ensemble is
used. The higher order measures of the conserved charge fluctuations up to the hyperkurtosis are calculated in
a vicinity of the critical point (CP). The analysis includes both the mixed phase region and the pure phases
on the phase diagram. It is shown that even-order fluctuation measures, e.g., scaled variance, kurtosis, and
hyperkurtosis, have only positive values in the mixed phase and go to infinity at the CP. For odd-order measures,
such as skewness and hyperskewness, the regions of positive and negative values are found near the left and
right binodals, respectively. The obtained results are discussed in a context of the event-by-event fluctuation
measurements in heavy-ion collisions.
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I. INTRODUCTION

The structure of the QCD phase diagram is one of most in-
teresting unsolved problems in physics. Statistical fluctuations
of conserved charges are regarded to be sensitive probes of
the critical behavior in strongly interacting matter [1–6]. The
fluctuations can be quantified in terms of cumulants (suscepti-
bilities) of the conserved charge distribution. Without the loss
of generality, we will specifically refer to net baryon number
B throughout this work. Cumulant of order j can be written as
follows:

κ j =
[

∂ j

∂t j
ln

∞∑
r=0

〈Br〉
r!

t r

]
t=0

, j = 1, 2, . . . , (1)

where 〈. . .〉 denotes the ensemble average. Cumulants can be
expressed in terms of the moments 〈Br〉 explicitly [7]

κ j =
j∑

k=1

(−1)k−1(k − 1)!Bj,k (〈B〉, . . . , 〈B j−k+1〉). (2)

Here Bj,k are partial exponential Bell polynomials.
It useful to consider ratios of cumulants because such quan-

tities are intensive, i.e., they are volume-independent in the
thermodynamic limit. The most familiar such measures are
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scaled variance ω, skewness Sσ , and kurtosis κσ 2 (see, e.g.,
Ref. [8]):

〈B〉 = κ1, ω = κ2

κ1
, Sσ = κ3

κ2
, κσ 2 = κ4

κ2
. (3)

Higher order measures such as hyperskewness κ5/κ2 and hy-
perkurtosis κ6/κ2 are also used.

The statistical fluctuations are sensitive to presence of a
first-order phase transition (FOPT). The endpoint of the FOPT
is the critical point (CP), where the cumulant ratios exhibit
singular behavior. The larger the order of a cumulant is, the
stronger is its sensitivity to critical phenomena.

At least two FOPTs are relevant for the QCD phase dia-
gram: (i) the nuclear liquid-gas transition at small temperature
T and large baryon chemical potential μ, which is well estab-
lished both theoretically [9–16] and experimentally [17–19],
and (ii) the hypothetical first-order chiral phase transition at
finite baryon densities [2,4,20,21]. Both transitions are ex-
pected to influence the baryon number fluctuations. Model
calculations suggest that the behavior of baryon number cu-
mulants in certain regions of the phase diagram is determined
by a complex interplay of the chiral and liquid-gas phase
transitions [22,23].

Significant attention has been given to the structure of
higher order measures of fluctuations of conserved charges
at supercritical temperatures and in pure phases (see, e.g.,
Refs. [2,4,20–25]). On the other hand, less attention has been
paid to the mixed phase. Nevertheless, it is feasible that a sys-
tem created in relativistic nucleus-nucleus collisions can enter
the mixed phase of a FOPT under certain conditions. This is
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FIG. 1. The (n, T ) phase diagram of first-order phase transition
in the reduced variables ñ = n/nc and T̃ = T/Tc.

especially relevant in view of the plans of the HADES col-
laboration at Helmholtzzentrum für Schwerionenforschung
(GSI) to measure the higher order net-proton and net-charge
fluctuations in central Au + Au reactions at collision energies
Elab = 0.2A–1.0A GeV to probe the liquid-gas FOPT region
[26]. The freeze-out of the expanding system created in colli-
sions at these energies may well take place in the mixed phase
of the nuclear liquid-gas FOPT.

From a theoretical point of view, it is convenient to study
the statistical fluctuations using the grand canonical ensemble
(GCE). In the GCE, the cumulants are determined by partial
derivatives of the pressure p with respect to a corresponding
chemical potential μ:

κ j = V T 3 ∂ j (p/T 4)

∂ (μ/T ) j
. (4)

Here V and T are the system volume and temperature,
respectively.

In (μ, T ) variables, the FOPT is a line at subcritical tem-
peratures (T < Tc) that ends at the CP. Each point on this line
corresponds to a coexistence of two phases: a diluted “gas”
phase with density n1 and a dense “liquid” phase with density
n2. The total baryon density n is a superposition of the gaseous
and liquid phase densities and lies anywhere in the range
n ∈ [n1, n2]. For this reason it is more appropriate to study the
mixed phase phenomena using density-temperature variables
(n, T ) instead. Figure 1 depicts a typical phase diagram for a
system with the liquid-gas FOPT calculated within the van
der Waals (vdW) model (see Sec. III). A large fraction of
the (n, T ) plane at T < Tc corresponds to the mixed phase.
At each point of the mixed phase the pressures of the first
and second phases are equal, p1(T, μ) = p2(T, μ). This is a
manifestation of the so-called Gibbs equilibrium condition for
the FOPT. However, the T and μ derivatives of the functions
p1 and p2 are different. Therefore, the statistical fluctuations
of conserved charges given by Eq. (4) differ between the first
and second phases.

In this paper, we present a general formalism to calculate
the GCE conserved charge cumulants in the mixed phase. The

formalism, presented in Sec. II, takes into account the statis-
tical fluctuations in each of the two phases that comprise the
mixed phases, as well as fluctuations in the volume fractions
occupied by each of the phases. The formalism is then applied
to describe the behavior of cumulants up to sixth order in the
mixed phase of a vdW fluid (Sec. III). The summary in Sec. IV
closes the paper.

II. GRAND-CANONICAL FLUCTUATIONS IN THE
MIXED PHASE

The total system volume V is partitioned in the mixed
phase into volumes V1 = xV and V = yV occupied by the first
and second phases, respectively. Here y ≡ 1 − x.

The rth moment of conserved charge distribution is the
following:

〈Br〉 = 〈(B1 + B2)r〉 = V r〈(xρ1 + yρ2)r〉. (5)

Here ρ1 ≡ B1/V1 and ρ2 = B2/V2 are the baryon densities in
the first and second phase, respectively, and 〈. . .〉 corresponds
to the GCE averaging. The fluctuating quantities are the den-
sities ρ1, ρ2 and the volume fraction x, whereas the total
volume V is fixed. Following Refs. [27,28] we assume that
the fluctuations of all these quantities are independent in the
thermodynamic limit, i.e., 〈ρ l

1ρ
m
2 xn〉 = 〈ρ l

1〉〈ρm
2 〉〈xn〉 for any

non-negative integers l , m, and n.
It is instructive to start with the first moment, r = 1. Equa-

tion (5) in this case reduces to

〈B〉 = x0V n1 + y0V n2 = V n, (6)

where x0 = 〈x〉 is the mean volume fraction occupied by
the first phase, y0 ≡ 1 − x0, and n1 = 〈ρ1〉, n2 = 〈ρ2〉 are the
mean densities in the first and second phases, respectively. 〈B〉
defines the mean baryon density n in the system: n ≡ 〈B〉/V .
Equation (6) defines x0 in terms of the mean densities:

x0 ≡ 〈x〉 = n2 − n

n2 − n1
. (7)

To obtain all other cumulants one substitutes Eq. (5) into
Eq. (2). The first three cumulants read

κ1 = V x0n1 + V y0n2 = κ1,1 + κ1,2, (8)

κ2 = κ2,1

[
1 + κ2,x

x2
0

]
+ κ2,2

[
1 + κ2,x

y2
0

]
+ (n2 − n1)2V 2κ2,x, (9)

κ3 = κ3,1

[
1 + 3

κ2,x

x2
0

]
+ κ3,2

[
1 + 3

κ2,x

y2
0

]
− 3(n2 − n1)

×V

[
κ2,1

κ3,x + 2x0κ2,x

x2
0

+ κ2,2
κ3,x − 2y0κ2,x

y2
0

]
+

[
κ3,1

x3
0

− κ3,2

y3
0

− (n2 − n1)3V 3

]
κ3,x. (10)

Here κ j,1 (κ j,2) is a jth-order cumulant of the B1 (B2) fluctu-
ations in the first (second) phase. These cumulants describe
fluctuations in a pure phase; thus, they should be calculated
according to Eq. (4). κ j,x is the jth-order cumulant of the
volume fraction x distribution. It is expressed in terms of

024912-2



HIGHER ORDER CONSERVED CHARGE FLUCTUATIONS … PHYSICAL REVIEW C 103, 024912 (2021)

cumulants of a subvolume V1 distribution as κ j,x ≡ V − jκ j[V1].
In the thermodynamic limit, V → ∞, all cumulants of exten-
sive quantities are proportional to the system volume V : i.e.,
κ j,1(2) ∼ V and κ j[V1] ∼ V . This implies κ j,x ≡ V − jκ j[V1] ∼
V − j+1. Leaving in Eqs. (8)–(10) only the terms that are linear
in V , one obtains the following expressions for the cumulants
in the thermodynamic limit:

κ1 = κ1,1 + κ1,2, (11)

κ j = κ j,1 + κ j,2 + [(n1 − n2)V ] jκ j,x, j � 2. (12)

Cumulants κ j,x of the volume fraction parameter x distribution
can be expressed in the thermodynamic limit in terms of the
GCE cumulants κ j,1 and κ j,2 of the two phases. Details of this
calculation are given in the Appendix.

Note that the total cumulants reduce to the sum of cumu-
lants of fluctuations in the two phases if the x fluctuations are
neglected, i.e., for x ≡ x0 one has

κ j 	 κ j,1 + κ j,2, j = 1, 2, . . . . (13)

Note that Eq. (13) is also valid away from the thermodynamic
limit, i.e., at finite values of the system volume V .

It is also instructive to rewrite Eqs. (11) and (12) in terms
of susceptibilities, χ j ≡ κ j/(V T 3), which are the intensive
measures of particle number fluctuations. One obtains

χ1 = x0χ1,1 + (1 − x0)χ1,2, (14)

χ j = x0χ j,1 + (1 − x0)χ j,2

+ [(n1 − n2)V ] j

V T 3
κ j,x, j � 2. (15)

The susceptibility χ j of particle number fluctuations in the
mixed phase corresponds to a linear combination of the pure
phase susceptibilities at the left and right binodals plus the
contribution from the x fluctuations.

Equations (11) and (12) [as well as Eqs. (14) and (15)] are
model-independent expressions describing the GCE fluctua-
tions of a conserved charge in the mixed phase of a FOPT in
the thermodynamic limit. Model dependence will enter only
through explicit form of the cumulants κ j,1 and κ j,2.

III. VAN DER WAALS FLUID

In this section we illustrate the general formalism intro-
duced in the previous section using the vdW equation of state
describing Maxwell-Boltzmann interacting particles. Here we
neglect the antiparticles, therefore, the number of particles
plays the role of the conserved charge.

The system pressure of a vdW fluid in a pure phase reads

p(n, T ) = nT

1 − bn
− an2, (16)

where a > 0 and b > 0 are the model parameters describing
the attractive and repulsive interactions, respectively. The CP
is defined by conditions [29,30](

∂ p

∂n

)
T

= 0,

(
∂2 p

∂n2

)
T

= 0, (17)

which give

Tc = 8a

27b
, nc = 1

3b
, pc = a

27b2
. (18)

Introducing reduced variables T̃ = T/Tc, ñ = n/nc, and p̃ =
p/pc one can rewrite the vdW equation (16) in a universal
form

( p̃ + 3̃n2)

(
3

ñ
− 1

)
= T̃ , (19)

which is independent of the specific numerical values of the
interaction parameters a and b. This is a particular case of the
principle of the corresponding states (see, e.g., Ref. [29]). The
phase diagram of the vdW fluid in the (n, T ) plane is presented
in Fig. 1.

In the GCE, the vdW model particle number density can be
written as follows [31]:

ñ = bnid (T, μ)(3 − ñ) exp

[
− ñ

3 − ñ
+ 9̃n

4T̃

]
, (20)

where nid (T, μ) is the ideal-gas density in the GCE.
The cumulants of vdW model particle number distribution

in the GCE can be calculated up to a desired order by iter-
atively differentiating Eq. (20) with respect to the chemical
potential μ (see Ref. [32] for the technical details). The result-
ing expressions for the scaled variance, skewness, and kurtosis
for the case of pure phases read [6,31]:

ω = 1

9

[
1

(3 − ñ)2
− ñ

4T̃

]−1

, (21)

Sσ = 1

3

[
1

(3 − ñ)2
− ñ

4T̃

]−2[ 1 − ñ

(3 − ñ)3

]
, (22)

κσ 2 = 3(Sσ )2 − 2ωSσ − 54ω3 ñ2

(3 − ñ)4
. (23)

Following the same procedure, we also calculate the GCE hy-
perskewness κ5/κ2 and hyperkurtosis κ6/κ2. As the resulting
expressions are very lengthy, we do not list them here. Note
that Eqs. (21)–(23) describe cumulants of the GCE particle
number distribution in pure phases, i.e., at all densities at
T > Tc and outside the mixed phase region at T < Tc, as
well as in metastable phases. Calculation of fluctuations in the
mixed phase, however, requires the use of Eqs. (11) and (12).

The boundaries of the mixed phase—the left and right bin-
odals ñ1(T̃ ) and ñ2(T̃ )—are defined by the Gibbs equilibrium
conditions: μ(T̃ , ñ1) = μ(T̃ , ñ2) and p(T̃ , ñ1) = p(T̃ , ñ2). In
the case of vdW model, these conditions lead to

ñ1 + ñ2 = 8T̃

(3 − ñ1)(3 − ñ2)
, (24)

9

4

ñ2 − ñ1

T̃
= ln

[
3 − ñ1

ñ1

]
− ln

[
3 − ñ2

ñ2

]
+ ñ2

3 − ñ2
− ñ1

3 − ñ1
. (25)

The binodals are depicted in Figs. by green lines. The fluctu-
ations inside the mixed phase are presented in Figs. 2 and 3.
The quantities shown in Figs. 2, 3(b), and 3(d) are calculated
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FIG. 2. The vdW model results in the reduced (̃n, T̃ ) coordinates
for the (a) scaled variance, (b) skewness, and (c) kurtosis. The mixed
phase fluctuation values are obtained using Eq. (13). The binodals
and the CP are represented by the green lines and the green points,
respectively.

using Eq. (13), i.e., the x fluctuations are neglected. The re-
sults presented in Figs. 3(a) and 3(c) are obtained via Eq. (12),
where the x fluctuations are taken into account.

The calculations show that the x fluctuations do not affect
ω, Sσ , and κσ 2 significantly. The only exception is a close
proximity to the right binodal, where x 
 1 (see Appendix).
The differences between Eqs. (13) and (12) would be barely
visible in Fig. 2. Thus, ω, Sσ , and κσ 2 calculated using
Eq. (12) are not presented in Fig. 2.

As seen from Fig. 2(a), the scaled variance ω → +∞ at
the CP, both inside and outside the mixed phase. This is in

agreement with Ref. [27]. A behavior of Sσ shown in Fig. 2(b)
is also similar inside and outside the mixed phase. However,
the behavior of κσ 2 inside and outside the mixed phase differs
drastically. This is shown in Fig. 2(c). Outside the mixed
phase, κσ 2 attains large positive or negative values in vicinity
of the CP, it approaches +∞, −∞, or 0 at T → Tc, n → nc,
i.e., its value depends on the path of approach toward the
CP in the (n, T ) plane. Inside the mixed phase, κσ 2 is only
positive, with large values attained in the vicinity of the CP.
κσ 2 tends to +∞ when approaching the CP from inside the
mixed phase. Negative values of κσ 2 are observed at T > Tc

only. At T < Tc the values of κσ 2 are only positive, this is
a reflection of the fact that κσ 2 in pure phases outside the
mixed phase is positive at subcritical temperatures [27]. It thus
follows from Eq. (13) that κσ 2 in the mixed phase is positive
as well. Large negative values of κσ 2 near the CP are only
possible in a small region outside the mixed phase at super-
critical temperatures T � Tc The same qualitative structure of
kurtosis in pure phases around the CP is also present in the
Ising model [21]. Our conclusions regarding the behavior of
κσ 2 in and around the mixed phase region near the CP thus
applies to the Ising model as well.

Similar arguments are applicable for the hyperkurtosis
shown in Figs. 3(c) and 3(d) and higher fluctuation measures
of even order. For instance, the structure of hyperkurtosis is
more involved in comparison with κσ 2. The band of large
positive values at n ≈ nc is surrounded by two bands of large
negative values. However, close to binodals κ6/κ2 becomes
positive again (in this aspect κ6/κ2 is similar to κσ 2). As a
consequence, the hyperkurtosis is positive in the whole mixed
phase region, in accordance with Eq. (13). Thus, we conclude
that hyperkurtosis is mostly positive in the vicinity of the CP if
the mixed-phase region is taken into account. Negative values
of κ6/κ2 appear within two relatively narrow bands at super-
critical temperatures, T > Tc, on the (n, T ) phase diagram.

In general, the structure of the fluctuation measures out-
side the mixed phase becomes increasingly complex with an
increase of their order. This is not the case inside the mixed-
phase region. Only positive values of the even-order measures
are found in the vicinity of the CP inside the mixed phase.
For the odd-order fluctuation measures, e.g., hyperskewness,
the mixed phase is split into two regions: (i) the first region
has positive values and generally corresponds to lower den-
sities close to the left (gaseous) binodal and (ii) the second
region with negative values of odd order cumulants at higher
densities close to the right (liquid) binodal. This is shown for
the case of hyperskewness in Figs. 3(a) and 3(b). Therefore,
the odd-order fluctuation measures may attain both positive
or negative values in the mixed-phase region, as opposed
to even-order cumulants which are predominantly positive
inside the mixed phase. Note, however, that a large positive
(hyper)skewness generally corresponds to the phase diagram
point close to the gaseous phase (the left binodal) whereas a
large negative one is indicative of the vicinity of the liquid
phase (the right binodal).

The x fluctuations do become increasingly important for
higher order fluctuation measures. The behavior of the hy-
perskewness κ5/κ2 and hyperkurtosis κ6/κ2 with account of
the x fluctuations are presented in Figs. 3(a) and 3(c). These
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FIG. 3. Hyperskewness and hyperkurtosis are calculated, including the x fluctuation effects using Eq. (12), and shown, respectively, in
panels (a) and (c). For comparison the same quantities calculated with Eq. (13), i.e., when x fluctuations are neglected, are presented in panels
(b) and (d).

should be compared with Figs. 3(b) and 3(d), which exhibit
the same quantities calculated via Eq. (13), i.e., accounting
for the x fluctuations. One sees that x-fluctuation effects are
only relevant near the right binodal. No qualitative changes
in a behavior of the considered fluctuation measures due to a
presence of the x fluctuations are found.

IV. SUMMARY

In the present work we determined the thermal (grand-
canonical) fluctuations of a conserved charge inside the mixed
phase of a first-order phase transition. As opposed to fluctua-
tions in pure phases, where they are determined solely by the
equilibrium properties of that single phase, in the mixed phase
the cumulants receive contributions from fluctuations in both
the gaseous and the liquid phases, as well from the fluctuations
in the volume fractions occupied by the two phases. Our main
result here is given by Eqs. (11) and (12), which express the
grand-canonical conserved charge cumulants for a point in-
side the phase coexistence region in the thermodynamic limit
for any equation of state with a first-order phase transition.

A mixed phase cumulant κ j of order j reduces to a sum
of the corresponding pure phase cumulants κ j,1 and κ j,2 from
each of the two phases plus a contribution from the fluctua-
tions of the relative volume fraction x occupied by the gaseous
phase, the cumulants of the x distribution are denoted as κ j,x.
The cumulants κ j,1(2) should be calculated in the standard

way—as derivatives of the grand potential with respect to the
chemical potential on the left (right) side of the phase coexis-
tence line in the (μ, T ) plane. The x fluctuation cumulants κ j,x

can be expressed in terms of the cumulants κ j,1(2), although
their calculation can be quite involved (see Appendix for ex-
plicit results up to fourth order). We do observe, however, that
the effects of the x fluctuations are found to be negligible for
cumulants up to fourth order. For the fifth and the sixth orders,
notable contributions of the x fluctuations appear in a vicinity
of the right binodal.1 Therefore, the simple approximate re-
lation (13) can be used in most practical applications. This
also implies that fluctuations in the mixed phase are mainly
determined by the intrinsic properties of the two coexisting
phases.

To illustrate our results more explicitly, we used the equa-
tion of state of a van der Waals fluid. The cumulant ratios of
conserved charge fluctuations such as scaled variance κ2/κ1,
skewness κ3/κ2, kurtosis κ4/κ2, hyperskewness κ5/κ2, and hy-
perkurtosis κ6/κ2 were calculated both outside and inside the
mixed phase region. Outside the mixed phase we reproduce
the earlier results from the literature [21,27,33,34], where
cumulant ratios exhibit increasingly involved structures as the
order is increased. Inside the mixed phase, on the other hand,

1Note, however, that quantitative effects of x fluctuations are seen
at x0 � 1/2 in the fifth cumulant.
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the structure of cumulants is simpler. The even-order cumu-
lants are predominantly positive while odd-order cumulants
can have either sign, generally attaining positive (negative)
values close to the left (right) binodal. In particular, we con-
clude that negative values of the kurtosis are consistent with a
crossover region just above the critical point, as discussed in
Ref. [21], but not with any region inside the mixed phase of a
FOPT.

The obtained results are relevant in the context of heavy-
ion collisions, which create a strongly interacting fluid that
may pass through a mixed phase of a FOPT at finite baryon
density. Such a scenario can be probed by event-by-event
fluctuation measurements. In particular, one can consider the
well-established nuclear liquid-gas phase transition (LGPT).
A beam energy scan of different colliding ions in a sub-
GeV collision energy regime will probe the phase diagram
in the vicinity of the nuclear LGPT. Such a program can
be performed by the HADES experiment at GSI. If the
specific nonmonotonic behavior of high-order cumulants, as
calculated here in the grand-canonical limit, is observed in
measurements of higher-order fluctuations, this can be inter-
preted as a signal of the proximity to the CP.

We note, however, that the results are not directly suitable
for quantitative conclusions. The measurements in heavy-ion
collisions are performed in momentum rather than coordinate
space. Also, even in the scenario where thermalization of fluc-
tuations is achieved in heavy-ion collisions, the measurements
will still be affected by global charge conservation, finite sys-
tem size, and volume fluctuation effects, as has been discussed
in the literature [35–38]. To address the effects of global con-
servation in pure phases, a subensemble acceptance method
has recently been introduced by us in Refs. [39–41]. In the
future we plan extend this method to address global charge
conservation influence on conserved charge fluctuations in
the mixed phase. Another interesting avenue is the so-called
strongly intensive fluctuation measures [36,42]. These quan-
tities are designed to cancel out the geometric effects of the

total volume fluctuations, but they are expected to be sensitive
to the critical point of a FOPT [43], thus it is of interest to
elucidate their behavior in the mixed phase.
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APPENDIX: EVALUATION OF x FLUCTUATIONS

As stated in Sec. II, we assume that, in thermodynamic
limit, i.e., for V → ∞, correlations between baryon numbers
B1, B2, and x can be neglected. Thus, in the following cal-
culations we use the canonical ensemble with B1, B2 fixed
to their mean values B1 = 〈B1〉, B2 = 〈B2〉. Furthermore, in
thermodynamic limit the surface terms between coexistent
phases can be neglected and, in similarity with Refs. [39,41],
the partition function can be presented as a product of partition
functions of the two subsystems. Then the probability P(x) is
proportional to the product of the canonical partition functions
of the first and second phase:

P(x) ∝ Z (T, xV, 〈B1〉)Z (T, yV, 〈B2〉). (A1)

Here y ≡ 1 − x, 〈B1〉 = V x0n1, 〈B2〉 = V y0n2, and x0 is given by Eq. (7).
In the thermodynamic limit, the above results can be generalized, since in this case the canonical partition function can

be expressed through the volume-independent free-energy density f : Z (T,V, B) = exp[−V
T f (T, n)] with n ≡ B/V being the

conserved baryon density. Thus,

P(x) ∝ exp

[
−V

x f
(
T, x0

x n1
) + y f

(
T,

y0

y n2
)

T

]
. (A2)

To evaluate κ j,x we introduce the cumulant generating function ψx(t ):

ψx(t ) ≡ ln〈etx〉 = ln
∫

dxetxP(x) = ln

{∫
dx exp

[
tx − V

x f
(
T, x0

x n1
) + y f

(
T,

y0

y n2
)

T

]}
+ C̃. (A3)

Here C̃ is an irrelevant normalization constant. The cumulants κ j,x correspond to the Taylor coefficients of ψx(t ):

κ j,x = ∂ jψx(t )

∂t j

∣∣∣∣
t=0

≡ κ̃ j,x(t )|t=0. (A4)

Here we have introduced a shorthand κ̃ j,x(t ) for the nth derivative of the generating function at arbitrary values of t , which we
subsequently refer to as t-dependent cumulants. Clearly, all higher order cumulants are given as a t derivative of the first order
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t-dependent cumulant κ̃1,x(t ), which is given by

κ̃1,x(t ) = ∂ψx(t )

∂t
=

∫ 1
0 dxxP̃(x; t )∫ 1
0 dxP̃(x; t )

= 〈x(t )〉, (A5)

with the (un-normalized) t-dependent probability

P̃(x) ∝ exp

[
tx − V

x f
(
T, x0

x n1
) + y f

(
T,

y0

y n2
)

T

]
. (A6)

One can check that, in the thermodynamic limit, V → ∞, P̃ has a sharp maximum at the mean value of x, 〈x(t )〉. The
condition ∂P̃(x; t )/∂x = 0 determines the location of this maximum resulting in an implicit relation that determines 〈x(t )〉:

t = V

T

[
f
(

T,
x0

x
n1

)
− f

(
T,

y0

y
n2

)
− x0

x
n1μ

(
T,

x0

x
n1

)
+ y0

y
n2μ

(
T,

y0

y
n2

)]
. (A7)

Here x = x(t ), n1 = n1(t ) = 〈B1〉/(x(t )V ), n2 = n2(t ) = 〈B2〉/([1 − x(t )]V ). Here we also used a thermodynamic relation[
∂ f (T, n)

∂n

]
T

= μ(T, n). (A8)

The solution to Eq. (A7) at t = 0 is 〈x(t = 0)〉 = x0, as should be by construction.
The second cumulant is determined by the t derivative of κ̃1,x, i.e., κ̃2,x = ∂κ̃1,x/∂t = 〈x′(t )〉. To calculate 〈x′(t )〉 we

differentiate Eq. (A7) with respect to t . To evaluate the t derivative of the right-hand side (r.h.s.) of (A7) we apply the chain
rule ∂μ/∂t = [∂μ(T, n)/∂n]T [∂n(t )/∂t], ∂κi/∂t = [∂κi(T, n)/∂n]T [∂n(t )/∂t],[

∂μ(T, n)

∂n

]
T

= TV

κ2
,

[
∂κi

∂n

]
T

=
[
∂κi

∂μ

]
T

[
∂μ(T, n)

∂n

]
T

= V
κi+1

κ2
, (A9)

and use the thermodynamic identity (A8). The solution for the resulting equation for 〈x′(t )〉 ≡ κ̃2,x at t = 0 gives the second-order
cumulant:

κ2,x = 1

V 2

κ2,1κ2,2

n2
2κ2,1 + n2

1κ2,2
. (A10)

This expression is in agreement with a result of Refs. [27,28], obtained there for, respectively, the vdW and Skyrme-like scalar
interaction equations of state.

To evaluate the higher-order cumulants, κ j,x with j � 3, we iteratively differentiate the t-dependent cumulants κ̃ j,x(t ) with
respect to t , starting from κ̃ j,x(t ), and make use of the expressions for 〈x( j−2)(t )〉. The result for third- and fourth-order cumulants
is the following:

κ3,x = y0n2
1κ

3
2,2

(
3κ2

2,1 − 〈B1〉κ3,1
) − x0n2

2κ
3
2,1

(
3κ2

2,2 − 〈B2〉κ3,2
)

V 4x0y0
(
n2

2κ2,1 + n2
1κ2,2

)3 , (A11)

κ4,x = 1

V 6x2
0y2

0

(
n2

2κ2,1 + n2
1κ2,2

)5

[
5x2

0n4
2κ

5
2,1κ2,2

(
3κ2

2,2 − 2〈B2〉κ3,2
) + 5y2

0n4
1κ

5
2,2κ2,1

(
3κ2

2,1 − 2〈B1〉κ3,1
)

+ 2x0y0(n1n2κ2,1κ2,2)2
(
4V n1κ

2
2,2κ3,1 + 4V n2κ

2
2,1κ3,2 + 5〈B2〉κ2

2,1κ3,2 + 5〈B1〉κ2
2,2κ3,1 − 15κ2

2,1κ
2
2,2

)
+ (V x0y0)2{n6

1κ
5
2,2κ4,1 + n6

2κ
5
2,1κ4,2 + n4

1n2
2κ

4
2,2

(
κ2,1κ4,1 − 3κ2

3,1

) + n4
2n2

1κ
4
2,1

(
κ2,2κ4,2 − 3κ2

3,2

)
− 6n3

1n3
2κ

2
2,1κ

2
2,2κ3,1κ3,2

} − 12n2
1n2

2κ
4
2,1κ

4
2,2

]
. (A12)

Equations (A10)–(A12) are model independent, i.e., they are applicable for an arbitrary equation of state in the thermody-
namic limit. The expressions for κ5,x, κ6,x, and higher cumulants can be obtained using the same logic. In two limiting cases,
namely, x0 → 0 and x0 → 1, one has either κ j,1 → 0 in the first case and κ j,2 → 0 in the second case, thus, κ j,x → 0. As a result,
cumulants κ j stay continuous as one crosses the binodals. The expressions for κ j,x are simplified in a limit n1 
 n2:

(n2 − n1)2V 2κ2,x = κ2,2, (A13)

(n2 − n1)3V 3κ3,x = κ3,2 − 3
κ2

2,2

〈B2〉 , (A14)

(n2 − n1)4V 4κ4,x = κ4,2 + 5κ2,2
3κ2

2,2 − 2〈B2〉κ3,2

〈B2〉2
, (A15)

024912-7



ROMAN V. POBEREZHNYUK et al. PHYSICAL REVIEW C 103, 024912 (2021)

where as before 〈B2〉, κ j,2 ∼ (1 − x)V . The condition n1 
 n2

can be realized, e.g., in the low-temperature limit of a liquid-
gas transition. The x fluctuations in this case are proportional

to (1 − x); thus, they are mostly relevant in the vicinity of the
second binodal, where x 
 1.
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