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Chemical freeze-out systematics of thermal model analysis using hadron yield ratios
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We provide a framework to estimate the systematic uncertainties in chemical freeze-out parameters extracted
from χ 2 analysis of thermal models, using hadron multiplicity ratios in relativistic heavy-ion collision experi-
ments. Using a well known technique of graph theory, we construct all possible sets of independent ratios from
available hadron yields and perform χ 2 minimization on each set. We show that even for ten hadron yields,
one obtains a large number (108) of independent sets which results in a distribution of extracted freeze-out
parameters. We analyze these distributions and compare our results for chemical freeze-out parameters and
associated systematic uncertainties with previous results available in the literature.
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I. INTRODUCTION

Relativistic heavy-ion collisions provides the opportunity
to create hot and dense QCD matter and study its ther-
modynamic and transport properties. The “standard” model
of relativistic heavy-ion collision has been developed in
last few decades by analyzing the experimental data from
Relativistic Heavy-Ion Collider (RHIC) at Brookhaven Na-
tional Lab, USA and the Large Hadron Collider (LHC) at
CERN in Geneva, Switzerland. The analysis of experimental
data suggests that the fireball produced in these collisions
consists of deconfined quarks and gluons in the early stage of
evolution which tends to thermalize rapidly. This quark-gluon
plasma (QGP) undergoes a transition from partonic phase to
hadronic phase during the later stage of evolution and finally
the energy-momenta of these hadrons are measured by the
detectors. The rapid thermalization of the fireball, due to
strongly interacting constituents of the medium, provides the
motivation to look for thermal description of the observed
hadron yields. Thermal models of the hadronic system have
a long history [1–5]. Indeed, statistical models, with the as-
sumption of complete thermalization of hadronic matter, have
been quite successful in explaining the hadron yields and their
ratios measured in relatively recent experiments [6–42].

Thermodynamic parameters obtained from statistical
model analysis can be used to characterize the freeze-out
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hypersurface as the last surface of interaction. The onset of
chemical freeze-out is said to have occurred when particle
abundances are fixed and composition altering inelastic inter-
actions have ceased. Subsequently kinetic freeze-out occurs
when elastic interactions between particles have also stopped
and the density drops to the level at which the hadron momen-
tum spectra remain unchanged. Beyond kinetic freeze-out,
hadrons are assumed to stream freely to the detector. The
hadron resonance gas (HRG) model, which assumes a statis-
tical description of a mixture of hadrons and their resonances
in thermodynamic equilibrium, leads to a good description of
the medium at freeze-out, for a wide range of collision energy
[6–44]. In this model, the thermodynamic equilibrium state
of the strongly interacting matter is completely determined by
the temperature (T ) and the three chemical potentials μQ, μB,
and μS corresponding to baryon number (B), electric charge
(Q), and strangeness (S), respectively. These parameters at
freeze-out can be extracted from statistical model calcula-
tions by performing a χ2 minimization fit to the available
experimental multiplicity data [21–24,45–51]. Several codes,
such as THERMUS [52], SHARE [53], and THERMINATOR [54],
are publicly available to compute the abundances of particles
using such a statistical hadronization approach.

The systematic uncertainties in the experimental data are
expected to be reduced when one considers the ratios of
hadron yields for χ2 analysis, which overall cancels the the
system volume (V ) [21,55]. However, there are multiple ways
to form a set of (N − 1) independent ratios given N number of
hadron yields. For simplicity, we call a set containing (N − 1)
independent ratios an independent set. It is evident that the
choice of particle ratios may introduce a bias for the extracted
freeze-out parameters [21,56]. Therefore, the freeze-out pa-
rameters extracted from a χ2 minimization fit to these ratios
would depend on the set under consideration. To avoid this
problem, one may try to fit the absolute yields rather than their
ratios, which requires the inclusion of an additional parameter
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V . This, however, is subject to its own bias [21,22,24]. It has
also been observed that fitting absolute yield is more prone to
converge to a false minimum because of the strong correlation
between yield normalization and other freeze-out parameters
[53]. This problem becomes more pronounced when one tries
to incorporate excluded volume effect [21]. On the other hand,
yields ratios are not affected significantly when considering
the excluded volume effect and therefore the extracted freeze-
out parameters remains stable.

In order to reliably extract freeze-out parameters from
hadron yield ratios, one has to understand the systematic un-
certainties due to the choice of specific ratios. The first attempt
towards understanding this uncertainty was made recently in
Ref. [56], where the authors considered several independent
sets for extraction of freeze-out parameters. These sets were
chosen such that each of the NC2 ratios appear in at least
one set. However, it is important to note that the choice of
these particular sets is also not unique. Therefore, the bias
arising from the choice of those specific sets still remains,
which could only be removed by considering all possible
independent sets. Given the importance of statistical models
in the context of relativistic heavy-ion collisions, it is essential
to conclusively address the issue of systematic uncertainty.

In this article, we provide a framework to estimate sys-
tematic uncertainties in the extraction of chemical freeze-out
parameters from analysis of hadron multiplicity ratios. We
construct all possible independent sets from available hadron
yields by using a well known technique in graph theory. Sub-
sequently, we perform χ2 minimization on each set, which
leads to a distribution of the extracted freeze-out parameters.
From these distributions, we obtain quantitative estimates of
systematic uncertainty in the extracted freeze-out parameters
corresponding to yield ratios of experimental data at 200 GeV
(RHIC) and 2.76 TeV (LHC) collision energies. We also esti-
mate these uncertainties after removing the usual constraints
on the conserved charges. Finally, we compare our results
for chemical freeze-out parameters and associated systematic
uncertainties with previous results available in the literature.

II. HADRON RESONANCE GAS MODEL

We consider the HRG model for our analysis of yield
ratios. The thermodynamic potential of HRG in terms of the
grand-canonical partition function is given by

ln Z id = ±
∑

i

V gi

(2π )3

∫
d3 p ln

[
1 ± exp

(
−Ei − μi

T

)]
, (1)

where the sum runs over all hadrons and resonances. The
upper sign is for fermions and lower is for bosons, and the
normalization factor V is the volume of the fireball. Here gi,
Ei, and mi are respectively the degeneracy factor, energy, and
mass of the ith hadron, while, μi = BiμB + SiμS + QiμQ is
the chemical potential of the ith hadron with Bi, Si, and Qi

denoting its baryon number, strangeness, and electric charge.
For a thermalized system the number density ni obtained

from partition function is given as

ni = T

V

(
∂ ln Zi

∂μi

)
V,T

= gi

(2π )3

∫
d3 p

exp[(Ei − μi )/T ] ± 1
. (2)

The rapidity density for ith detected hadron corresponding to
the number density in the HRG model can be written as [23]

dNi

dy

∣∣∣∣∣
Det

� dV

dy
nTot

i

∣∣∣∣∣
Det

(3)

where the subscript “Det” denotes the detected hadrons. If the
heavier resonances j decay to the ith hadron, then

nTot
i = ni +

∑
j

n j × branching ratio of ( j → i), (4)

where ni and n j depend on the thermal parameters
(T, μB, μQ, μS ), which can be obtained by fitting experimen-
tal hadron yields to the model calculations. The fitted values
of thermal parameters are obtained by minimizing χ2, which
is defined as

χ2 =
∑

α

(
Rexp

α − Rth
α

)2

(
σ

exp
α

)2 , (5)

where Rexp
α is the ratio of hadron yields obtained from experi-

ments, Rth
α is the ratio of the number densities from the model

calculations, and σ
exp
α is the experimental uncertainty.

As individual multiplicities or their ratios are not conserved
by strong interactions, χ2 fitting is performed by choosing
a set of multiplicity ratios. In general, with N given ex-
perimental hadron yields p1, p2, . . . , pN one can construct
N (N − 1) ratios of the form pi/p j , where 1 � i, j � N and
i �= j. However, interchanging numerator and denominator
does not provide any new information in our analysis. There-
fore, it is sufficient to consider N (N − 1)/2 ratios of the given
particle yields. Because of the correlation existing between
all possible multiplicity ratios, it is only relevant to choose
(N − 1) number of statistically independent ratios out of those
N (N − 1)/2 ratios to parametrize the thermal model [21,57].
It has also been pointed out within a thermal model analysis
that choosing a specific independent set may introduce bias
in the minimization process [56]. However, it is possible to
quantify this systematic uncertainty in the freeze-out param-
eters, extracted from χ2 fitting, by considering all possible
sets of independent ratios. Observe that (N − 1) ratios can be
chosen in N (N−1)/2CN−1 ways. But, any set containing (N − 1)
ratios may not necessarily be independent. Also, enumerating
all independent sets from N (N−1)/2CN−1 sets is a complex and
tedious process because the total number of independent sets
grows immensely for large N . We perform this enumeration
process by relating it to a particular case of the minimum
spanning tree enumeration problem, one of the well-known
problems in combinatorial optimization.

III. GENERATING ALL INDEPENDENT SETS

Let p1, p2, . . . , pN be N distinct particle yields. Assume S
to be an independent set containing the ratios of these particle
yields denoted as r1, r2, . . . , rN−1. We associate an undirected
graph G to S whose vertices are labeled by p1, p2, . . . , pN

and there is an edge pi p j between the vertices pi, p j , if either
pi/p j or p j/pi is in S. Observe that if pi p j, p j pk are edges of
G then the vertices pi and pk are connected through the vertex
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p j . More generally, a path between two vertices pi and p j is
said to exist if either there is an edge between them or they
can be connected through some or all of the remaining N − 2
vertices. Since each of the particle yields p1, p2, . . . , pN must
appear at least in one of the ratios in S, then every vertex of G
is connected to at least one of the remaining N − 1 vertices.
Independence of S also implies that for each 1 � k � N − 1

rk �=
N−1∏

l = 1 l �= k

rsl
l , where sl = 0,±1. (6)

The above equation imposes the condition that if pi p j is an
edge of G then there is no other path between pi and p j .
Equivalently, between any two vertices of G there is a unique
path between them. Hence, G is a tree on the N vertices la-
beled by p1, p2, . . . , pN . Conversely, every tree on N vertices
p1, p2, . . . , pN gives rise to an independent set. Therefore,
we have a one-to-one correspondence between the trees on N
vertices labeled by p1, p2, . . . , pN and the independent sets.

For example, let us consider four distinct particles
p1, p2, p3, p4. Then we have the following 16 independent
sets:

I1 =
{

p2

p1
,

p3

p1
,

p4

p1

}
, I2 =

{
p2

p1
,

p4

p1
,

p3

p2

}
,

I3 =
{

p2

p1
,

p3

p1
,

p4

p3

}
, I4 =

{
p2

p1
,

p3

p1
,

p4

p2

}
,

I5 =
{

p2

p1
,

p3

p2
,

p4

p2

}
, I6 =

{
p2

p1
,

p4

p1
,

p4

p3

}
,

I7 =
{

p3

p1
,

p4

p1
,

p3

p2

}
, I8 =

{
p3

p1
,

p3

p2
,

p4

p2

}
,

I9 =
{

p3

p1
,

p3

p2
,

p4

p3

}
, I10=

{
p2

p1
,

p3

p2
,

p4

p3

}
,

I11 =
{

p2

p1
,

p4

p2
,

p4

p3

}
, I12=

{
p3

p1
,

p4

p1
,

p4

p2

}
,

I13 =
{

p4

p1
,

p4

p2
,

p4

p3

}
, I14=

{
p4

p1
,

p3

p2
,

p4

p3

}
,

I15 =
{

p4

p1
,

p3

p2
,

p4

p2

}
, I16=

{
p3

p1
,

p4

p2
,

p4

p3

}
.

These sets can be obtained by associating a unique tree Gm

to every independent set Im for all 1 � m � 16 as shown
in Fig. 1. Here the vertices symbolize particle yields. Each
diagram in Fig. 1 corresponds to one set of independent ra-
tios, where the ratios are represented by lines joining two
vertices. There are six distinct ratios (unique up to inverse)
for N = 4, which are denoted by different colors. In general,
the total number of different trees on N labeled vertices is
equal to NN−2, which is given by Cayley’s formula [58,59].
In fact the generation of those NN−2 many trees is equivalent
to generating all spanning trees of the complete graph on N
vertices labeled by p1, p2, . . . , pN . This is a particular case
of the minimum spanning tree enumeration problem. This
problem is important in its own right due to its wide range
of applications, including telecommunication networks, and

FIG. 1. All possible tree diagrams for the N = 4 case. The ver-
tices symbolize particle yields. Each diagram corresponds to one set
of independent ratios, where the ratios are represented by lines join-
ing two vertices. There are six distinct ratios (unique up to inverse)
which are denoted by different colors.

therefore several algorithms with improvised efficiencies have
been developed since mid 1950s. We refer to [60–62] and the
references therein for more details.

The algorithm we have employed to generate all trees
on N labeled vertices is as follows. It is straightforward to
check that there can be N (N−1)

2 different edges connecting any
two vertices pi, p j considering 1 � i, j � N and i �= j. By
implementing the algorithm, at every step we choose N − 1
edges, say e1, e2, . . . , eN−1 (without repetition), from N (N−1)

2
edges and denote the graph formed with N vertices labeled by
p1, p2, . . . , pN and edges e1, e2, . . . , eN−1 by G′. In the next
step, we shall verify whether the vertex pi, for all 1 � i � N ,
is connected to any other vertex by an edge or not. Then
we construct the incidence matrix M = (mi j )N×(N−1) to verify
whether the graph G′ is a tree. The entries of M are defined
as follows: mi j = 1 whenever the edge e j joins the vertex pi

to some other vertex, and 0 otherwise, for all 1 � i, j � N .
Observe that, if we delete one of the rows of M then we obtain
a submatrix of M of size (N − 1) × (N − 1). We continue
this process for each of the N rows of M and obtain N many
submatrices of M. Then we check whether the rank of each
of those N submatrices of M is N − 1. If it is true then we
conclude that G′ is a tree. In this way, we generate all NN−2

trees on N vertices and, consequently, we obtain all NN−2

possible independent sets of ratios for our analysis.

IV. DATA ANALYSIS

We have used RHIC [63–78] and LHC [79–82] data at
midrapidity for the most central collisions for our analysis.
All hadrons with masses up to 2 GeV, with known degrees of
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freedom, are included for the HRG spectrum. The masses and
branching ratios used are as given in Refs. [52,83]. It is to be
noted that we have used vacuum masses for all the hadrons,
as the in-medium mass modification in connection with chiral
symmetry restoration does not have any significant effect on
freeze-out parameters for higher collision energies [84–86].
We could not find the �̄ yield at LHC. Therefore, at this
energy, we assumed �̄ yield to be same as that reported for
�. Therefore, in order to obtain the freeze-out parameters, we
have used the hadron yields of π± (139.57 MeV), k± (493.68
MeV), p, p̄ (938.27 MeV), �, �̄ (1115.68 MeV), and �∓
(1321.71 MeV).

To obtain the freeze-out parameters it is a common ap-
proach to fix μQ and μS using the following constraint
relations [45]:∑

i ni(T, μB, μS, μQ)Bi∑
i ni(T, μB, μS, μQ)Qi

= constant (7)

and ∑
i

ni(T, μB, μS, μQ)Si = 0. (8)

With these two constraint equations, the problem is reduced to
a two-dimensional problem. The constant value of the ratio of
net baryon number and net charge depends on the physical
system. For example, in Au + Au collisions, this constant
is given by (Np + Nn)/Np = 2.5, with Np and Nn denoting
the number of protons and neutrons in the colliding nuclei.
However for LHC (

√
sNN = 2.76 TeV) and RHIC (

√
sNN =

200 GeV) energies, baryon stopping is expected to be negli-
gible. In such cases, net baryon number and net charge may
be vanishingly small and therefore their ratio may become
arbitrary in a rapidity bin. Thus, it seems natural to relax the
constraint given in Eq. (7) to extract freeze-out parameters by
χ2 minimization. In the present analysis, we consider both
cases: we call Model-I the case where the constraint given in
Eq. (7) is imposed and Model-II the case where we do not
enforce this constraint relation to hold.

For N = 10 observed hadron yields, we first obtained 108

independent sets of nine ratios, as explained in Sec. III. We
then performed χ2 minimization fits for each set using our
numerical code for both Model-I and Model-II with a con-
vergence criterion of 10−4 or better. This procedure to fit all
possible independent sets results in 108 values of each ex-
tracted freeze-out parameter and corresponding χ2 numbers.
We then construct histograms for each extracted freeze-out
parameter, as well as for the χ2 values. However, histograms
give an overall notion about the density of the underlying
distribution of the data. Therefore, for further analysis, we
perform a least-square fit to histograms of each parameter with
Gaussian distribution. The fitted distribution curves quantify
the probability distribution function for a population that has
the maximum likelihood of producing the distribution that
exists in the given sample. The mean of the Gaussian distribu-
tion corresponding to a given freeze-out parameter leads to an
estimate of the central value of that parameter. The systematic
uncertainties arising from the fitting procedure is calculated
from the full width at half maximum (2.3548σ ), where σ is
the standard deviation of the Gaussian distribution.

V. RESULTS AND DISCUSSIONS

In this section, we discuss the extracted chemical freeze-
out parameters for center-of-mass collision energies

√
sNN =

200 GeV at RHIC and
√

sNN = 2.76 TeV at LHC. We fit 108

sets of yield ratios to obtain a distribution for fit parameters,
i.e., freeze-out temperatures T and freeze-out chemical poten-
tials μB, μQ, and μS . The estimated values of the parameters
are derived from the mean of the fitted Gaussian distribution.
The error bars quantify the variations of the parameters ob-
tained from all possible sets of independent ratios. Results
including the constraint, Eq. (7), on net baryon and net charge
(Model-I) and those for the unconstrained system (Model-II)
are shown separately. Finally we also compare our results with
those obtained earlier in literature.

Histogram distribution and corresponding Gaussian fit to
this distribution for freeze-out temperatures are shown for
center of mass energy

√
sNN = 200 GeV in Fig. 2(a) and√

sNN = 2.76 TeV in Fig. 2(b). The qualitative as well as
the quantitative estimations, for both Model-I and Model-II,
are consistent with each other. We find that for RHIC the
extracted mean value of freeze-out temperature is 169 MeV.
which is slightly larger than the earlier estimates. On the
other hand, for LHC, we find the fitted mean value to be 155
MeV. Nevertheless the estimated values lies near the values
reported in literature, where the analysis was done with a
particular set of independent ratios as documented in Tables I
and in II. Our analysis shows that the present model has a
small systematic uncertainty in chemical freeze-out temper-
ature, which is quite promising. In general, the freeze-out
temperature increases with increasing

√
sNN and approaches

a saturation [87], except at the LHC energy. As expected, in
our analysis also, the temperature is lower at LHC energy than
at RHIC energy, due to the lower yield of protons at LHC
[82].

In Fig. 3, we show the histogram distribution and the
Gaussian fit to this distribution for baryon chemical potential
μB extracted from all independent sets. In Fig. 3(a) we present
our results for

√
sNN = 200 GeV collision energy whereas in

Fig. 3(b) results for
√

sNN = 2.76 TeV are shown. Generally,
for lower collision energies, a significant number of baryons
deposit their energies in the vicinity of the center-of-mass
frame due to baryon stopping. But as the energy increases col-
liding baryons may become almost transparent to each other
and deposit their energy outside the collision region. In our
analysis for both the models, we have estimated the value of
μB and quantified the systematic uncertainty for high collision
energies. The comparison with several literature results shows
our derived values lie in the range of their predicted values;
see Tables I and II for reference.

Due to the possible redistribution of Fermi momentum
among larger degrees of freedom, strangeness production at
higher baryon densities is conjectured to be dominant. The
nonzero value of baryon chemical potential induces the pro-
duction of strange baryons, which imminently requires the
strange chemical potential to produce enough strange an-
tiparticles. The existence of this nonzero strange chemical
potential μS ensures the vanishing of the net strangeness con-
dition of the colliding nuclei. The appearance of nonzero μS
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FIG. 2. The distribution of chemical freeze-out temperatures for collision energies
√

sNN = 200 GeV (RHIC) and
√

sNN = 2.76 TeV
(LHC). Also shown are the fitted Gaussian curves, and the values of extracted freeze-out temperature with systematic error bars are listed,
for both Model-I and Model-II.

TABLE I. Comparison of the values of freeze-out parameters with recent literature for
√

sNN = 200 GeV at RHIC.

Parameters
Bhattacharyya et al. [56]

for RHIC Model-I Model-II Andronic et al. [21] STAR BES [55] WC WOC

T (GeV) 0.169 ± 0.003 0.169 ± 0.004 0.160 ± 0.006 0.164 ± 0.005 0.165+0.008
−0.010 0.166+0.010

−0.012

μB (GeV) 0.028 ± 0.010 0.030 ± 0.016 0.020 ± 0.004 0.028 ± 0.006 0.028+0.012
−0.015 0.032+0.010

−0.017

μS (GeV) 0.007 ± 0.003 0.009 ± 0.010 0.006 ± 0.004 0.007+0.002
−0.003 0.009+0.006

−0.008

μQ (GeV) −0.001 ± 0.0004 −0.004 ± 0.018 −0.0008+0.0004
−0.0003 −0.005+0.008

−0.004

TABLE II. Comparison of the values of freeze-out parameters with recent literature for
√

sNN = 2.76 TeV at LHC.

Parameters
Bhattacharyya et al. [56]

for LHC Model-I Model-II Andronic et al. [40] WC WOC

T (GeV) 0.155 ± 0.003 0.155 ± 0.003 0.157 ± 0.002 0.152+0.008
−0.006 0.152+0.007

−0.005

μB (GeV) 0.002 ± 0.009 0.002 ± 0.015 0.007 ± 0.004 0.003+0.013
−0.013 0.006+0.011

−0.016

μS (GeV) 0.0006 ± 0.0018 0.0005 ± 0.0089 0.0005+0.0023
−0.0028 0.002+0.007

−0.012

μQ (GeV) −0.00005 ± 0.0002 −0.0004 ± 0.016 −0.00005+0.0003
−0.0003 −0.003+0.004

−0.002
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FIG. 3. The distribution of baryon chemical potential at chemical freeze-out for collision energies
√

sNN = 200 GeV (RHIC) and
√

sNN =
2.76 TeV (LHC). Also shown are the fitted Gaussian curves, and the values of extracted baryon chemical potential freeze-out with systematic
error bars are listed, for both Model-I and Model-II.
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FIG. 4. The distribution of strange chemical potential at chemical freeze-out for collision energies
√

sNN = 200 GeV (RHIC) and
√

sNN =
2.76 TeV (LHC). Also shown are the fitted Gaussian curves, and the values of extracted strange chemical potential at freeze-out with systematic
error bars are listed, for both Model-I and Model-II.

is considered to be an indication of chemical equilibration
in strongly interacting matter [88]. As the collision energy
increases, μS eventually decreases. On the other hand, electric
charge chemical potential μQ appears due to the net isospin
of the colliding nuclei. While scanning the collision energy
range, μQ remains nonzero but quite small and eventually
approaches to zero at higher

√
sNN. Several analyses thus

approximated μQ to be zero at higher collision energies [55].
In our analysis, we have estimated the values of μS and μQ

using both Model-I and Model-II.
The mean values of μS are in reasonable agreement with

each other for both the models, as illustrated in Figs. 4(a)
and 4(b) for RHIC energy. Though the estimated values are
commensurate for both models, Model-II has much larger
systematic uncertainty, and exclusion of the constraint is the
source of this uncertainty. The same features are also observed
for LHC energy as shown in Figs. 4(c) and 4(d).

Furthermore, as shown in Figs. 5(a) and 5(b), the numerical
value of μQ is small. Especially for LHC energy, as shown
in Figs. 5(c) and 5(d), it is vanishingly small. Therefore,

exclusion of the net baryon to net charge constraint in Model-
II results in fluctuations. Only the χ2 analysis using these
parameters can confirm the reliability of Model-II, which will
be discussed later.

For comparison, the freeze-out parameters from relevant
literature are also documented in Tables I and II for collision
energies of

√
sNN = 200 GeV at RHIC and

√
sNN = 2.76 TeV

at LHC, respectively. Specifically we have used results from
Refs. [21,55,56] for RHIC energy and Refs. [40,56] for LHC
energy. For RHIC, we obtain a slightly larger value of the ex-
tracted freeze-out temperature. Nevertheless, we find that our
extracted values of freeze-out parameters are more or less in
agreement with those reported earlier in literature. However,
one must keep in mind that there are significant differences in
the analysis procedure and computation techniques employed
here. The error bars considered in Ref. [21] are obtained by
varying the χ2 by unity, which accounts for the fitting error.
In Ref. [55], μQ was assumed to be vanishingly small and
was therefore neglected. However, an additional parameter
γs was introduced to account for the possible deviation of
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FIG. 5. The distribution of electric charge chemical potential at chemical freeze-out for collision energies
√

sNN = 200 GeV (RHIC) and√
sNN = 2.76 TeV (LHC). Also shown are the fitted Gaussian curves, and the values of extracted electric charge chemical potential at freeze-out

with systematic error bars are listed, for both Model-I and Model-II.

strange particle abundances from chemical equilibrium. The
only ratios that are used in the analysis of Ref. [55] are
π−/π+, k−/k+, p̄/p, �̄/�, �+/�−, k−/π−, p̄/π−, �/π−,
and �+/π−. They also studied different sources of system-
atic uncertainties, which propagates from yield to freeze-out
parameters. In Ref. [56] the systematic error bars were cal-
culated with nine independent sets, considering the usual
constraint of strong charges (WC) and without constrain re-
lations (WOC) of Eqs. (7) and (8). In Ref. [40], the authors
considered system volume as a parameter and the stan-
dard deviations quoted there come only from experimental
uncertainties.

Reduced χ2, i.e., χ2/NDF, gives a measure of goodness of
fit, where NDF stands for the number of degrees of freedom.
The usual practice is to choose a specific independent set so
that the χ2 is equal to the number of degrees of freedom of the
system. The histogram distribution of reduced χ2 correspond-
ing to all possible independent sets for

√
sNN = 2.76 TeV

(LHC) and
√

sNN = 200 GeV (RHIC) are shown for both
Model-I and Model-II in Fig. 6. We see that χ2/NDF for
the models differ only slightly. It is interesting to see that the
distribution is peaked at χ2/NDF � 1 for RHIC, as shown
in Fig. 6(a), indicating a good fit. On the other hand, from
Fig. 6(b), we see that χ2/NDF � 2.2 for LHC. This suggests
that quality of fit at LHC may not be as good as that at RHIC.
Anyhow, this result is not surprising as it has been pointed
out in existing literature that reduced χ2 for LHC is quite
large, if we consider the equilibration of all the hadrons si-
multaneously within the framework of the conserved charges
[46,89]. However, the usual practice is to minimize χ2 for
a specific independent set, and a large value of χ2/NDF for
that particular set is not necessarily alarming. But, we have
done the study for all possible independent sets and observe
that the peak of the reduced χ2 distribution lies near 2.2, for
both models. Thus, the thermal model analysis for LHC data
demands further study.
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FIG. 6. The histogram distribution of χ 2/NDF for all possible independent sets for collision energies
√

sNN = 200 GeV (RHIC) and√
sNN = 2.76 TeV (LHC), for both Model-I and Model-II.

VI. SUMMARY AND OUTLOOK

It has been conjectured in existing literature that χ2 fit
of experimentally measured hadronic yields, or multiplicity
ratios, within the thermal model framework can successfully
extract chemical freeze-out parameters to a certain extent. It
is evident that there are many possible sources of systematic
uncertainties that can affect the analysis. The usual practice is
to choose a specific set of independent ratios for the analysis,
such that χ2/NDF is close to 1. This is one of the sources
of systematic uncertainty, as the equilibration parameters are
biased to the chosen particle ratios. Estimation of these un-
certainties is important because it would shed light on the
reliability of such thermal models where we have assumed
a grand canonical ensemble with thermodynamic equilibra-
tion of all the hadrons emerging from the heavy-ion collision
experiments.

In this article, we have provided an elegant method to
quantify such systematic uncertainties in the chemical freeze-
out parameters extracted from thermal model analysis of
hadron multiplicity ratios. We have identified the enumeration
problem of independent sets to a well known problem in com-
binatorial optimization and graph theory. By implementing
the minimum spanning tree algorithm, we have generated all
possible independent sets. This corresponds to the number
of all different trees on N vertices resulting in generation of
NN−2 independent sets as expected from Cayley’s formula.

We have performed the χ2 minimization on each set to
obtain freeze-out parameters corresponding to yield ratios of
experimental data at collision energies of

√
sNN = 200 GeV

at RHIC and
√

sNN = 2.76 TeV at LHC. Since the number of
sets is extremely large (108), we obtain a distribution of these
parameters. From these distributions, we estimate the mean
value of the said parameter along with the quantitative mea-
sure of systematic uncertainty. Model-II seems to have larger
systematic uncertainty than Model-I, which is expected be-
cause Model-II has one extra free parameter. But the χ2/NDF
distribution for RHIC is peaked around 1, which ensures that

the systematics are under control for both the models. One
may be tempted to conclude that a global equilibration sce-
nario is achieved for RHIC where equilibration of all hadrons
occurs simultaneously. On the other hand, for LHC we found
that, although the parameters seem to be in good agreement
with existing literature, the value of the χ2/NDF distribution
is peaked is away from 1. This leads to a serious challenge
about the applicability of the thermal model (in the present
form) at LHC energy.

At this juncture, we would like to emphasize that there are
no empirical reasons to believe that the simplistic statistical
hadronization models can explain the entire physical scenario
near the crossover region [90,91]. The uncertainties in the
prediction at LHC energy leads to study of alternative freeze-
out schemes, such as [92–94]. Moreover, even within thermal
model analysis, there is a possibility of a mass dependent or
flavor dependent sequential freeze-out scenario. The intrinsic
limitation of these statistical models is that one does not have
precise knowledge of how different ratios are dependent on
the physical scenario. On the other hand, our method of esti-
mating systematic uncertainties by generating all possible sets
of independent ratios is quite general and is applicable also
for data sets with bias. For instance, if one could estimate the
bias on the ratios then the present method could be employed
to fit all possible sets and calculate the weighted average of
the fitted parameters and corresponding standard deviations.
In the absence of that knowledge, the present analysis is the
best one can do to extract systematic errors, which we have
estimated in the present article.

Looking forward, the framework presented here can be
applied to other collision energies at RHIC and LHC in order
to discern whether the extraction of chemical freeze-out pa-
rameters is biased by the choice of yield ratios. Moreover, the
current framework can be easily extended to physics analysis
using double or multiple ratios, which will have important
implications for sequential freeze-out models. We leave these
for future work.
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